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Paper Main Idea

As Language Models get Larger, Memorization within the 
model increases, and arises concerns



Properties that Impacts Memorization

• Model Scale: Larger models memorize 2-5X more than smaller 
models

• Data Duplication: Repeated words are more likely to be memorized

• Context: Longer context sentences are easier to extract



Graphs



What is memorization ?

➢ A string s is extractable with k tokens of 
context from a model f if there exists a 
(length-k) string p, such that the 
concatenation [p || s] is contained in the 
training data for f , and f produces s when 
prompted with p using greedy decoding.

➢ Greedy decoding just picks the next token
containing the largest probability – the 
argmax



Creating the dataset:
➢ Ideally we want to test on every 

sequence but this is too computationally 
expensive

➢ The authors use a small but 
REPRESENTATIVEsample to get 
statistical confidence (50,000 
sequences)

➢ To account for duplication – the set is 
duplication normalized

➢ This means we have repeated sequences 
which influence's memorization!



Setting up experiments:

➢The Pile which is the largest
publicly available dataset is 
used

➢The GPT-Neo Family of 
models is used

➢Parameters range from 125 
million to 6 billion



Bigger Models 
Memorize 
More
➢There is a log linear 

trend with respect to 
increasing model size

➢GPT-2 is used as a 
baseline which confirms 
the models are 
memorizing and not just 
generalizing



Repeated Strings 
Are Memorized 
More

➢Between 2 and 900 
duplicates are tested 
on

➢There is once again a 
log linear relationship
between the number 
of repetitions and 
fraction extractable



Longer Context = 
More memorization

➢Language models may 
only show 
memorization when 
prompted with sufficiently 
long context

➢This is good as it protects
privacy but may leave 
vulnerabilities open



Random Data Set Sampling

➢We sample truly random
sequences this time for a 
total of 100,000 unique 
sequences

➢The overall probability of
memorization is lower 
however, the trends
remain the same



Different Strategies 
for search and 
decode
➢Testing is done using beam 

search vs standard greedy 
decoding

➢The second experiment tests 
for whether the prompt is 
anywhere in the data



Replication study

➢This was done on 
T5 models

➢The relationship 
with model size is 
clear however not 
with repetitions



De–Duplication:

• Exhibits less memorization
than duplicated dataset

• De-duplication is helpful up 
until approximately 100 
repeats after that it is 
imperfect



🔭Ammar Latheef, Ayo Ajayi



Main Ideas

● Paper motivation: 
○ Large language models memorize training data which can violate user privacy, degrade utility, 

and hurts fairness.

● Experiments on GPT-Neo model, GPT-2 model, and T5 masked language 

model. The main results:
○ Bigger models memorize more

○ Repeated strings are memorized more

○ Longer context discovers more memorization

🔭Ammar Latheef, Ayo Ajayi



Looking Beyond

● What other methods can we use to effectively prepare datasets to reduce 

memorization issue within large language models?
○ Paper proposes deduplication and finds that:

■ Models trained on deduplicated datasets memorize less data than models trained 

without deduplicated data sets

■ Deduplication does not help with for sequences repeated more than ~100 times.

● How can we determine possible prompts to use that will minimize the 

memorization issue in large language models?

● What other ways can we quantify memorization?

🔭Ammar Latheef, Ayo Ajayi



Testing for Memorization of Sensitive Information

● This paper measured direct memorization in LMs by testing if the model 
completes the text in training data if given context.

● Instead, test if models memorize associations between people and their data.

<Name>’s physical address is _______

This is unlikely to be the real prefix of a specific person’s address in the 
training data. But we want to test if the model can associate the name with 
the address, assuming the data exists in the training corpus.

● Huang et al (2022) tested this with emails, attempting to get LMs to reveal 
email addresses.

● Deduplication could be used on sensitive information in the training dataset.

🔭Ammar Latheef, Ayo Ajayi
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Pros
▪ Convincing Model and dataset choices

▪ Strong motivation

Figure2- (memorization definition) from Counterfactual Memorization in Neural Language 

Models

Figure1- (memorization definition) from Extracting 

Training Data from Large Language Models

Figure2- (memorization definition) from the paper



Some clarification/future work?

Would the Pile-derived 
prompts give an accurate 

representation of how the 

GPT-2 family perform?

How is it exponential?



Pros

✅ Analysis of diverse properties that significantly impact memorization

✅ Replication study on different language models and datasets

✅ Thorough Methodology and Experiments section

✅ Straightforward data visualization and examples



Limitations

• No analysis about the modified "duplication-normalized" dataset(not open-

source)

• Only consider model comparing, no single model analysis (i.e. What's the 

repetition threshold of a model "remember" a certain sequence)



Limitations

• Report the sequence as “extractable” if the next 50 tokens (25words) emitted by 

the model exactly match

• Model has some amount of memorization not shared by each other model. (Even 

the 125M model memorizes a few sequences the 6B model does not.) Go over 

those sequences.



Limitations

• Fraction extractable decreased in specific range for data repetition

• No discussion on why this phenomenon occurs


