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Background

® Language Models can regenerate training data [Carliniet al.,22]. Up to 1000 words long!
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® Language Models are susceptible to Model Inversion attacks [Shokri et al., 17, Friedrikson et
al., 15, Carliniet al., 21b].

e Differential Privacy frameworks [Dwork et al., 06, Yu et al., 21, Li et al., 22] give weak
guarantees of safety against such attacks.
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Motivation

1. How often does the model generate duplicated training sequences?
2. Do current adversarial attacks work for non-duplicated sequences?

3. How well does deduplication prevent privacy attacks?
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Main results

correlate with number of times it was

duplicatedin training data.
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Attack likelihood of recovering a sequenceis

De-duplicationreduces attack efficacy.
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How duplication affects sequence regeneration

e How generated sequences duplicate training corpus

e Method:

o0 Record Duplication number of N-length sequences
o Generate from LM

o Analyze how often is generation is a function of its count
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Influence of Sequence Length
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Longer Sequence reduce overlap chance
Tendency(Generation, Duplication)is consistent

Metrics: 1.Receiver Operating Characteristic (ROC); 2.True
Positive Rate(TPR), False Positive Rate(FPR)

Sequence Length, Mistral 345M



Influence of Epoch Number
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Results

Expected Number of Generations
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o Superlinear (#Regeneration, #Duplication)

Expected Number of Generations
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(b)

o Weak Memorization: #Duplication << # Regeneration (Especially low-freq)
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How duplication affect detection?

e Test Membershipinferencescoringmethods

o Reference Model, zlib, Lowercase

e Method:

0 Bucksamplein train with #Duplication (d)
o 25,000 Negative sequence (not in train)

o Measuredetection effectiveness

Z4: Aayush Mishra, Boyuan Zheng



Results
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(b)

e SOTA methods failto accurately detect when not in train

® Metrics: 1.Receiver Operating Characteristic (ROC); 2.True Positive Rate(TPR), False Positive Rate(FPR)

é,.:Aayéfﬁ\gﬂ slf{

gyeualﬁ%n%th Mistral 345M




Model Inversion with Deduplicated Data

® Train 1.5B parameter model on C4 and deduplicated Cs.

e Generate 1M samples, see how many unique 400-character sequences are generated.

Normal  Deduped
Model Model

Training Data Count 1,427,212 68,090
Generated Percent 0.14 0.007

e Randomlysubsample 25K copiesand 25K novel sequencesfor membershipinference.

zlib 0.76 0.67
Ref Model 0.88 0.87
Lowercase 0.86 0.68

Mem. Inference
AUROC
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Quality of Reference Model method

zlib 0.76 0.67

Meﬁﬁ%ﬁgme Ref Model  0.88 0.87
Lowercase 0.86 0.68

e Maybe usinga different notion: counterfactual memorization[Zhanget al., 21].
e Compare expected likelihood under modelsthat have [/not] trained on that sample.

e Maybe other notions of memorization are less sensitive to deduplication [Watson et
al., 21, Carliniet al., 21a].
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Conclusion and Discussion

e Deduplicationis an effective defense against some model inversion attacks, with
little-to-no cost on performance[Lee et al., 21].

e What other types of duplications may leak data?

e Are regenerationsfrom deduplicated models unique in some manner?

e What other domains suffer from problems of Data Duplication and Privacy?

Z4: Aayush Mishra, Boyuan Zheng



Pros:

® C(ClearWriting logicand Visuals

e Through description on background

and experimental setup

& 1sabel Cachola, Tiangi Shang

Generations Predicted Positives

=

Predicted Negatives

Training Data

.
1
1

I

Y I
Duplicate Count \
I

I

Membership
Inference

Compare Duplication and Detection Accuracy

s
g
°
<]
3
g
o
=
0
g
g
g
Q
5
3
2
g
g

Figure 2: Overview of our analysis. Web-scraped text datasets that are used to train language models
contain duplicated sequences, depicted in the figure as training data rows of the same color (top left).
Model inversion attacks attempt to recover training data from a trained model by first generating large
amounts of text, some of which is memorized training data (fop middle). Membership inference is then
performed to detect which generated sequences were copied from the training data (tep right). Our
analysis focuses on the relationship between the amount a sequence is duplicated in the training data and
the effectiveness of the model inversion attack at generating and detecting that sequence (bottom).



Pros

e Showed actionable results on mitigating privacy risks (train on deduplicated data)

e Analysisof duplicationin popular datasets

e Showed the effectiveness and limitations of membership detection techniques

4°: Isabel Cachola, Tiangi Shang
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Limitations:

e Unclearsignificance of modelinversion attack

o Q:Whatisthe email of A? A:12345@gmail.com
o Q:Whatisthe email of B? A: 678go@gmail.com
o Q:Whatisthe emailof C? A: 10298@gmail.com

e Onlydidtest onthe Carliniet al. (2021b) attack

& 1sabel Cachola, Tiangi Shang



Limitations

e Nodiscussionoranalysisof re-generation in highly sensitive contexts (e.g. clinical

domain)

e Onlylooked at exact re-generation
Didn'trelease de-duplicated data or code
Graphs hard to read / not colorblind friendly

4°: Isabel Cachola, Tiangi Shang
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Empiricist: Sampling Techniques
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Figure 5: The sampling method impacts how often LMs regenerate training samples. Sampling methods
that emit more likely sequences (e.g., top-k with smaller k& or temperature sampling with smaller T')
generate more verbatim training samples. Nevertheless, all sampling methods rarely generate training
sequences when the number of duplicates is small.



Empiricist: Sampling techniques

>>»> a = torch.tensor([1,2,3,4.])

E:wFH»WpI%uJ“Thdj =0.94 E:wgwm”pfﬁuﬂ“Thdﬂ‘%afﬁ = 0.97

r""______’d’/H‘________““\ f‘_“A“__\

tensor([0.0321, 0.0871, 0.2369, 0.8439]) _

>>»> F.softmax({a, dim=0)

>>> F.softmax(a/.5, dim=0)

tensor([0.0021, 0.0158, 0.1171, 0.8650]1)

>>> F.softmax(a/1.5, dim=0) ook D I] D D D D L0 0O o | | D e —

nice dog car woman guy  man people big  house cat drives s turns slops down & not  the small told

tensor ([0.0708, 0.1378, 0.2685, 0.5229]) P(w|“The”) P(w|“The”, “car”)

>>> F.softmax(a/le-§&, dim=0)

tensor([0., 0., 0., 1.1)



https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277
https://huggingface.co/blog/how-to-generate

Empiricist
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new users as an
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end of each chapter.
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trainees it can be a
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a collection of the base
knowledge needed to
proceed with system
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administration. This
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from the author's
experience as a Linux
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Four score and seven
years ago our fathers
brought forth on this
continent, a new nation,
conceived in Liberty,
and dedicated to the
proposition that all men
are created equal.

Now we are engaged

in a great civil war,
testing whether that
nation, or any nation so
conceived and so
dedicated, can long
endure. We are met on
a great battlefield of that
war. We have come to
dedicate a portion of
that field, as a final
resting place for those
who here gave their
lives that that nation
might live. It is
altogether fitting and
proper that we should do
this.
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in a great civil war,
testing whether that
nation, or any nation so
conceived, and so
dedicated and so
civilized, can long
endure. We are met on a
great battlefield of that
war. We have come to
dedicate a portion of that
field, as a final resting
place for those who here
gave their lives that that
nation might live. It is
altogether fitting and
proper that we should do
this.
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Four score and seven
years ago our fathers
brought forth on this
continent, a new nation,
conceived in Liberty,
and dedicated to the
proposition that all men
are created equal.

Now we are engaged

in a great civil war,
testing whether that
nation, or any nation so
conceived and so
dedicated, can long
endure. We are met on
a great battlefield of that
war. We have come to
dedicate a portion of
that field, as a final
resting place for those
who here gave their
lives that that nation
might live. It is
altogether fitting and
proper that we should do
this.

in a great civil war,
testing whether that
nation, or any nation
so conceived and so
dedicated, can long
endure. We are met
on a great battlefield of
that war. We have
come to dedicate a
portion of that field as
a final resting place for
those who here gave
their lives that that
nation might live. It is
altogether fitting and
proper that we should
do this.

in a great civil war,
testing whether that
nation, or any nation so
conceived, and so
dedicated and so
civilized, can long
endure. We are met on a
great battlefield of that
war. We have come to
dedicate a portion of that
field, as a final resting
place for those who here
gave their lives that that
nation might live. It is
altogether fitting and
proper that we should do
this.
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Four score and seven
years ago our fathers
brought forth on this
continent, a new nation,
conceived in Liberty,
and dedicated to the
proposition that all men
are created equal.

Now we are engaged

in a great civil war,
testing whether that
nation, or any nation so
conceived and so
dedicated, can long
endure. We are met on
a great battlefield of that
war. We have come to
dedicate a portion of
that field, as a final
resting place for those
who here gave their
lives that that nation
might live. It is
altogether fitting and
proper that we should do
this.

in a great civil war,
testing whether that
nation, or any nation
so conceived and so
dedicated, can long
endure. We are met
on a great battlefield of
that war. We have
come to dedicate a
portion of that field as
a final resting place for
those who here gave
their lives that that
nation might live. It is
altogether fitting and
proper that we should
do this.

in a great civil war,
testing whether that
nation, or any nation so
conceived and so
dedicated, can long
endure. Rather than in
glory, my country has
suffered approach those
destinies of decline has
been written step by step
with too many mournful
instances even to all their
own citizens.' *



https://colab.research.google.com/drive/1QkEotdNW2x0Asqv
mv8xMIS4K4gocob6CZ?usp=sharing



Duplication as a Controllable Parameter

e Paper Summary

o Findsa superlinear trend between duplication
and regeneration

O  Suggeststhatto maintainprivacy,
deduplicationshould be used

e Not all applications may require a low amount
of regeneration

O  Selectiveregeneration can be a goodthing

I : Vicky Zeng and Iliana Maifeld-Carucci

Create an application which allows individuals
and communities to control their data and
resulting generations

Assumptions

o Individuals and communities have control
over how much and which input datais
duplicated

Result

o Individuals and communities have a direct say
in how modelsportray them, allowing certain
information to remain private and other
information to have multiplicative influence



De-amplifying Bias with Deduplication

In previous discussions:

® Biasand toxicityindata:amplified, or even accurate representation

of dataisbad

® Medicalapplications:accurate representation of datais crucial

® (Casual recommendationalgorithms: amplified representationis

commercially desired
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