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Introduction

• Large language models: powerful!
• GPT3

• Could generate simple programs from Python docstrings

• Exciting: not explicitly trained on code generation

• ➡ hypothesis: a specialized GPT would excel at coding tasks ➡ Codex

• Method: inspired by real-world programming
• Real-word: iterations, bug fixes

• Approximation: generating many samples from our model, select one that 
passes all unit tests

• Further evaluation: what if only one sample is generated?



Models & GPT

• GPT: Baseline to compare with Codex
• GPT-12B: solve no problems when single sample generated

• GPT-J: solve 11.4% of problems

• Codex = GPT + fine-tuning
• Solve 28.8% of problems with single sample generated

• Codex-S = Codex + supervised fined-tuning
• Solve 77.5% of problems with at least one correct solution

• Solve 37.7% of problems with single sample generated

• Codex-D: generate docstrings from code



Codex-S

• Motivation: some code unrelated to synthesizing functions from 
docstrings

• Supervised fine-tuned on correctly implemented standalone functions

• Data collected from
• Competitive programming website

• problem statements ➡docstrings
• example unit tests

• Repositories with continuous integration
• input/output for functions ➡ unit tests
• no need to know algorithms and data structures

• complement the puzzle nature of coding competition

• broaden the distribution of tasks



Codex-D

• Motivation: describe the intent behind generated code

• But not easy
• Leave out important details

• Over conditioned on the function name

• Developers devote less time to writing docstrings
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Evaluation

• Pass@k evaluates
• Functional correctness

• k: Number of code samples 
generated per problem

• Pass: Any sample that passes the 
unit tests.

• Total fraction of problems solved is 
reported.

• Downside: Causes high variance



Evaluation

• Pass@k evaluates
• Functional correctness

• k: Number of code samples 
generated per problem

• Pass: Any sample that passes the 
unit tests.

• Total fraction of problems solved is 
reported.

• Downside: Causes high variance

• Let's reduce variance:

• Generate n >= k samples per 
task

• n= 200

• k<= 100

• c: Count the number of correct 
samples, c <= n

• Calculate unbiased estimator



Evaluation Metric

• BLEU Score vs. Pass @ k
• Match based metric vs Function based metric

• Sequential vs Tree structure

• Ambiguity in NLP vs Unique semantics in Code
• BLEU score has problems getting semantics that are code-specific



Evaluation Metric

• BLEU Score vs. Pass @ k
• Match based metric vs Function based metric

• Sequential vs Tree structure

• Ambiguity in NLP vs Unique semantics in Code
• BLEU score has problems getting semantics that are code-specific

Conclusion: BLEU score may not indicate improved rates of functional correctness in practice.



Datasets

• HumanEval
• Dataset of 164 handwritten programming problems
• Each problem includes a

• Function signature
• Docstring
• Body

• Unit tests, 7.7 tests per problem

• Programming tasks in the HumanEval dataset assess
• Language comprehension
• Reasoning
• Algorithms
• Simple mathematics.



pass@k in practice



Results: Temp vs k



Codex and Codex-S Comparison on HumanEval
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Datasets

• APPS
• APPS dataset was used to measure the coding challenge competence of 

language models.

• Collected from open source materials

• 10,000 coding problems

• 5000 training problems
• Each with a set of unit tests and, for the training data, a set of correct solutions.

• 5000 testing problems
• Each with a set of unit tests and, for the training data, a set of correct solutions.



APPS Results



Limitations

• Not sample efficient to train

• Invoke undefined/out-of-scope functions, variables

• Performance degradation as docstring length increases

• Have difficulty with binding operations to variables



Thank You!



Empiricist

● Examples from CoPilot (https://github.com/features/copilot).

● Examples from a public model, CodeGen.

● Examples from GTP-2 (https://beta.openai.com/playground).

● Test and evaluation of the codes generated by GPT-2

● (https://colab.research.google.com/drive/1R6rWcqseTKGWglBiPyIIutwBx4xEQuCl#

scrollTo=hiNfrqWr8Vl1)
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