
Session #15:
Self-Supervised Coding Models

Tuesday, October 18
CSCI 601.771: Self-supervised Statistical Models



https://github.caom/features/copilot

https://github.caom/features/copilot


https://github.caom/features/copilot

https://github.caom/features/copilot


https://aws.amazon.com/codewhisperer/

https://aws.amazon.com/codewhisperer/




Ayo, Fadil, Yongrui

● Stakeholders 😭



Introduction

• Large language models: powerful!
• GPT3

• Could generate simple programs from Python docstrings

• Exciting: not explicitly trained on code generation

• ➡ hypothesis: a specialized GPT would excel at coding tasks ➡ Codex

• Method: inspired by real-world programming
• Real-word: iterations, bug fixes

• Approximation: generating many samples from our model, select one that 
passes all unit tests

• Further evaluation: what if only one sample is generated?



Models & GPT

• GPT: Baseline to compare with Codex
• GPT-12B: solve no problems when single sample generated

• GPT-J: solve 11.4% of problems

• Codex = GPT + fine-tuning
• Solve 28.8% of problems with single sample generated

• Codex-S = Codex + supervised fined-tuning
• Solve 77.5% of problems with at least one correct solution

• Solve 37.7% of problems with single sample generated

• Codex-D: generate docstrings from code



Codex-S

• Motivation: some code unrelated to synthesizing functions from 
docstrings

• Supervised fine-tuned on correctly implemented standalone functions

• Data collected from
• Competitive programming website

• problem statements ➡docstrings
• example unit tests

• Repositories with continuous integration
• input/output for functions ➡ unit tests
• no need to know algorithms and data structures

• complement the puzzle nature of coding competition

• broaden the distribution of tasks



Codex-D

• Motivation: describe the intent behind generated code

• But not easy
• Leave out important details

• Over conditioned on the function name

• Developers devote less time to writing docstrings



Samples

prompts

prompts

Generated 

sample

Generated 

sample



Evaluation

• Pass@k evaluates
• Functional correctness

• k: Number of code samples 
generated per problem

• Pass: Any sample that passes the 
unit tests.

• Total fraction of problems solved is 
reported.

• Downside: Causes high variance



Evaluation

• Pass@k evaluates
• Functional correctness

• k: Number of code samples 
generated per problem

• Pass: Any sample that passes the 
unit tests.

• Total fraction of problems solved is 
reported.

• Downside: Causes high variance

• Let's reduce variance:

• Generate n >= k samples per 
task

• n= 200

• k<= 100

• c: Count the number of correct 
samples, c <= n

• Calculate unbiased estimator



Evaluation Metric

• BLEU Score vs. Pass @ k
• Match based metric vs Function based metric

• Sequential vs Tree structure

• Ambiguity in NLP vs Unique semantics in Code
• BLEU score has problems getting semantics that are code-specific



Evaluation Metric

• BLEU Score vs. Pass @ k
• Match based metric vs Function based metric

• Sequential vs Tree structure

• Ambiguity in NLP vs Unique semantics in Code
• BLEU score has problems getting semantics that are code-specific

Conclusion: BLEU score may not indicate improved rates of functional correctness in practice.



Datasets

• HumanEval
• Dataset of 164 handwritten programming problems
• Each problem includes a

• Function signature
• Docstring
• Body

• Unit tests, 7.7 tests per problem

• Programming tasks in the HumanEval dataset assess
• Language comprehension
• Reasoning
• Algorithms
• Simple mathematics.



pass@k in practice



Results: Temp vs k



Codex and Codex-S Comparison on HumanEval



Codex and Codex-S Comparison on 
HumanEval



Datasets

• APPS
• APPS dataset was used to measure the coding challenge competence of 

language models.

• Collected from open source materials

• 10,000 coding problems

• 5000 training problems
• Each with a set of unit tests and, for the training data, a set of correct solutions.

• 5000 testing problems
• Each with a set of unit tests and, for the training data, a set of correct solutions.



APPS Results



Limitations

• Not sample efficient to train

• Invoke undefined/out-of-scope functions, variables

• Performance degradation as docstring length increases

• Have difficulty with binding operations to variables



Thank You!



Empiricist

● Examples from CoPilot (https://github.com/features/copilot).

● Examples from a public model, CodeGen.

● Examples from GTP-2 (https://beta.openai.com/playground).

● Test and evaluation of the codes generated by GPT-2

● (https://colab.research.google.com/drive/1R6rWcqseTKGWglBiPyIIutwBx4xEQuCl#

scrollTo=hiNfrqWr8Vl1)

👩🏽‍🔬: Empiricist: Tianqi Shang & Haoyue Guan😭 25

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ffeatures%2Fcopilot&data=05%7C01%7Ctshang2%40jhu.edu%7C5b3f23e7952a4669f78908dab05f2aba%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638016220027066111%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=a9k%2Fua4z%2FMsXUHOAPOCO4OmOCpHy9KQ61aVw2S5tzV4%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhuggingface.co%2FSalesforce%2Fcodegen-2B-multi&data=05%7C01%7Ctshang2%40jhu.edu%7C5b3f23e7952a4669f78908dab05f2aba%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638016220027066111%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=ACqLTYAHkjbtrjFN7D%2B9mixpxi3tNjJx3Qi4OU7TUoY%3D&reserved=0
https://beta.openai.com/playground
https://colab.research.google.com/drive/1R6rWcqseTKGWglBiPyIIutwBx4xEQuCl

