Session #15: Self-Supervised Coding Models

Tuesday, October 18 CSCI 601.771: Self-supervised Statistical Models

Your Al pair programmer

GitHub Copilot uses the OpenAl Codex to suggest code and entire functions in real-time, right from your editor.

https://github.caom/features/copilot

```
TS sentiments.ts
               👓 write_sql.go
                              🇬 parse_expenses.py
                                                 🛃 addresses.rb
1 #!/usr/bin/env ts-node
3 import { fetch } from "fetch-h2";
Δ
5 // Determine whether the sentiment of text is positive
6 // Use a web service
7 async function isPositive(text: string): Promise<boolean> {
    const response = await fetch(`http://text-processing.com/api/sentiment/`, {
      method: "POST",
      body: `text=${text}`,
      headers: {
        "Content-Type": "application/x-www-form-urlencoded",
      },
    });
    const json = await response.json();
    return json.label === "pos";
  8 Copilot
                                             C Replay
```

https://github.caom/features/copilot

Amazon CodeWhisperer

Build applications faster with the ML-powered coding companion

https://aws.amazon.com/codewhisperer/

Python

import boto3 from botocore.exceptions import ClientError

Function to upload a file to an S3 bucket
def upload_file(file_name, bucket, object_name=None):
 """Upload a file to an S3 bucket

:param file_name: File to upload :param bucket: Bucket to upload to :param object_name: S3 object name. If not specified then file_name is used :return: True if file was uploaded, else False

If S3 object_name was not specified, use file_name if object_name is None: object_name = file_name

Upload the file s3_client = boto3.client('s3') try: response = s3_client.upload_file(file_name, bucket, object_name) except ClientError as e: logging.error(e) return False return True

Amazon CodeWhisperer

The latest from Google Research

ML-Enhanced Code Completion Improves Developer Productivity

Tuesday, July 26, 2022

Posted by Maxim Tabachnyk, Staff Software Engineer and Stoyan Nikolov, Senior Engineering Manager, Google Research

AI Coding with CodeRL: Toward Mastering Program Synthesis with Deep Reinforcement Learning

Evaluating Large Language Models Trained on Code

Mark Chen^{*1} Jerry Tworek^{*1} Heewoo Jun^{*1} Qiming Yuan^{*1} Henrique Ponde de Oliveira Pinto^{*1} Jared Kaplan^{*2} Harri Edwards¹ Yuri Burda¹ Nicholas Joseph² Greg Brockman¹ Alex Ray¹ Raul Puri¹ Gretchen Krueger¹ Michael Petrov¹ Heidy Khlaaf³ Girish Sastry¹ Pamela Mishkin¹ Brooke Chan¹ Scott Gray¹ Nick Ryder¹ Mikhail Pavlov¹ Alethea Power¹ Lukasz Kaiser¹ Mohammad Bavarian¹ Clemens Winter¹ Philippe Tillet¹ Felipe Petroski Such¹ Dave Cummings¹ Matthias Plappert¹ Fotios Chantzis¹ Elizabeth Barnes¹ Ariel Herbert-Voss¹ William Hebgen Guss¹ Alex Nichol¹ Alex Paino¹ Nikolas Tezak¹ Jie Tang¹ Igor Babuschkin¹ Suchir Balaji¹ Shantanu Jain¹ William Saunders¹ Christopher Hesse¹ Andrew N. Carr¹ Jan Leike¹ Josh Achiam¹ Vedant Misra¹ Evan Morikawa¹ Alec Radford¹ Matthew Knight¹ Miles Brundage¹ Mira Murati¹ Katie Mayer¹ Peter Welinder¹ Bob McGrew¹ Dario Amodei² Sam McCandlish² Ilya Sutskever¹ Wojciech Zaremba¹

Ayo, Fadil, Yongrui

Introduction

- Large language models: powerful!
 - GPT3
 - Could generate simple programs from Python docstrings
 - Exciting: not explicitly trained on code generation
 - → hypothesis: a specialized GPT would excel at coding tasks → Codex
- Method: inspired by real-world programming
 - Real-word: iterations, bug fixes
 - Approximation: generating many samples from our model, select one that passes all unit tests
 - Further evaluation: what if only one sample is generated?

Models & GPT

- GPT: Baseline to compare with Codex
 - GPT-12B: solve no problems when single sample generated
 - GPT-J: solve 11.4% of problems
- Codex = GPT + fine-tuning
 - Solve 28.8% of problems with single sample generated
- Codex-S = Codex + supervised fined-tuning
 - Solve 77.5% of problems with at least one correct solution
 - Solve 37.7% of problems with single sample generated
- Codex-D: generate docstrings from code

Codex-S

- Motivation: some code unrelated to synthesizing functions from docstrings
- Supervised fine-tuned on correctly implemented standalone functions
- Data collected from
 - Competitive programming website
 - problem statements → docstrings
 - example unit tests
 - Repositories with continuous integration
 - input/output for functions → unit tests
 - no need to know algorithms and data structures
 - complement the puzzle nature of coding competition
 - broaden the distribution of tasks

Codex-D

- Motivation: describe the intent behind generated code
- But not easy
 - Leave out important details
 - Over conditioned on the function name
 - Developers devote less time to writing docstrings

Samples

Evaluation

- Pass@k evaluates
 - Functional correctness
 - k: Number of code samples generated per problem
 - Pass: Any sample that passes the unit tests.
 - Total fraction of problems solved is reported.
- Downside: Causes high variance

Evaluation

- Pass@k evaluates
 - Functional correctness
 - k: Number of code samples generated per problem
 - Pass: Any sample that passes the unit tests.
 - Total fraction of problems solved is reported.
- Downside: Causes high variance

```
def pass_at_k(n, c, k):
    """
    :param n: total number of samples
    :param c: number of correct samples
    :param k: k in pass@$k$
    """
    if n - c < k: return 1.0
    return 1.0 - np.prod(1.0 - k /
        np.arange(n - c + 1, n + 1))</pre>
```

Figure 3. A numerically stable script for calculating an unbiased estimate of pass@k.

- Let's reduce variance:
 - Generate n >= k samples per task
 - n= 200
 - k<= 100
 - c: Count the number of correct samples, c <= n
 - Calculate unbiased estimator

Evaluation Metric

- BLEU Score vs. Pass @ k
 - Match based metric vs Function based metric
 - Sequential vs Tree structure
 - Ambiguity in NLP vs Unique semantics in Code
 - BLEU score has problems getting semantics that are code-specific

Evaluation Metric

- BLEU Score vs. Pass @ k
 - Match based metric vs Function based metric
 - Sequential vs Tree structure
 - Ambiguity in NLP vs Unique semantics in Code
 - BLEU score has problems getting semantics that are code-specific

Conclusion: BLEU score may not indicate improved rates of functional correctness in practice.

Datasets

- HumanEval
 - Dataset of 164 handwritten programming problems
 - Each problem includes a
 - Function signature
 - Docstring
 - Body
 - Unit tests, 7.7 tests per problem
 - Programming tasks in the HumanEval dataset assess
 - Language comprehension
 - Reasoning
 - Algorithms
 - Simple mathematics.

pass@k in practice

```
📄 t.py
 🥏 t.py > ...
       import os
       os.environ["HF ALLOW CODE EVAL"] = "1"
       from evaluate import load
       code eval = load("code eval")
       test cases = ["assert add(2,3)==5"]
       candidates = [["def add(a, b): return a+b"]]
       pass at k, results = code eval.compute(references=test cases, predictions=candidates, k=[1])
       print(pass at k)
       candidates = [["def add(a,b): return a*b"]]
       pass at k, results = code eval.compute(references=test cases, predictions=candidates, k=[1])
       print(pass_at_k)
       candidates = [["def add(a, b): return a+b", "def add(a,b): return a*b"]]
       pass at k, results = code eval.compute(references=test cases, predictions=candidates, k=[1, 2]
       print(pass at k)
                               TERMINAL
fadil@fadil-Book-13-RZ09-0357:~/Desktop/test$ /bin/python3 /home/fadil/Desktop/test/t.py
 {'pass@1': 1.0}
 {'pass@l': 0.0}
  {'pass@1': 0.5, 'pass@2': 1.0}
 fadil@fadil-Book-13-RZ09-0357:~/Desktop/test$
```

```
def pass_at_k(n, c, k):
    """
    :param n: total number of samples
    :param c: number of correct samples
    :param k: k in pass@$k$
    """
    if n - c < k: return 1.0
    return 1.0 - np.prod(1.0 - k /
        np.arange(n - c + 1, n + 1))</pre>
```

Figure 3. A numerically stable script for calculating an unbiased estimate of pass@k.

Results: Temp vs k

In sequence generating models, for vocabulary of size N (number of words, parts of words, any other kind of token), one predicts the next token from distribution of the form:

 $\operatorname{softmax}(x_i/T) \quad i=1,\ldots N,$

Here T is the **temperature**. The output of the softmax is the probability that the next token will be the i-th word in the vocabulary.

The temperature determines how greedy the generative model is.

Codex and Codex-S Comparison on HumanEval

Pass Rate vs Model Size pass@1 (T*=0.2) 0.7 pass@100 (T*=0.8) 0.6 0.5 Pass@k 0.4 0.3 0.2 0.1 0.0 . 105 106 107 108 109 1010 Non-embedding parameters

	PASS@k		
	k = 1	k = 10	k = 100
GPT-NEO 125M	0.75%	1.88%	2.97%
GPT-NEO 1.3B	4.79%	7.47%	16.30%
GPT-NEO 2.7B	6.41%	11.27%	21.37%
GPT-J 6B	11.62%	15.74%	27.74%
TABNINE	2.58%	4.35%	7.59%
CODEX-12M	2.00%	3.62%	8.58%
CODEX-25M	3.21%	7.1%	12.89%
CODEX-42M	5.06%	8.8%	15.55%
CODEX-85M	8.22%	12.81%	22.4%
CODEX-300M	13.17%	20.37%	36.27%
CODEX-679M	16.22%	25.7%	40.95%
CODEX-2.5B	21.36%	35.42%	59.5%
CODEX-12B	28.81%	46.81%	72.31%

Codex and Codex-S Comparison on HumanEval

Datasets

- APPS
 - APPS dataset was used to measure the coding challenge competence of language models.
 - Collected from open source materials
 - 10,000 coding problems
 - 5000 training problems
 - Each with a set of unit tests and, for the training data, a set of correct solutions.
 - 5000 testing problems
 - Each with a set of unit tests and, for the training data, a set of correct solutions.

APPS Results

	INTRODUCTORY	INTERVIEW	COMPETITION
GPT-NEO 2.7B RAW PASS@1 GPT-NEO 2.7B RAW PASS@5	3.90% 5.50%	$0.57\% \\ 0.80\%$	$0.00\% \\ 0.00\%$
1-shot Codex raw pass@1	4.14% (4.33%)	0.14% (0.30%)	$\begin{array}{c} 0.02\% \ (0.03\%) \\ 0.09\% \ (0.16\%) \\ 1.05\% \ (1.73\%) \\ 3.23\% \ (5.85\%) \end{array}$
1-shot Codex raw pass@5	9.65% (10.05%)	0.51% (1.02%)	
1-shot Codex raw pass@100	20.20% (21.57%)	2.04% (3.99%)	
1-shot Codex raw pass@1000	25.02% (27.77%)	3.70% (7.94%)	
1-shot Codex filtered pass@1	22.78% (25.10%)	2.64% (5.78%)	3.04% (5.25%)
1-shot Codex filtered pass@5	24.52% (27.15%)	3.23% (7.13%)	3.08% (5.53%)

Limitations

- Not sample efficient to train
- Invoke undefined/out-of-scope functio
- Performance degradation as docstring
- Have difficulty with binding operations

```
def do_work(x, y, z, w):
    """ Add 3 to y, then subtract 4
    from both x and w. Return the
    product of the four numbers. """
    t = y + 3
    u = x - 4
    v = z * w
    return v
```

```
def add_elements(arr, k):
    .....
    Given a non-empty array of integers arr and an
         integer k, return
    the sum of the first k element that has at most two
          digits.
    Example:
        Input: arr = [111, 21, 3, 4000, 5, 6, 7, 8, 9], k = 4
        Output: 24 # sum of 21 + 3
    Constraints:
        1. 1 <= len(arr) <= 100
        2. 1 \le k \le len(arr)
    . . . .
    ### COMPLETION 1 (WRONG): ###
    pass
    ### COMPLETION 2 (WRONG): ###
    for i in range(0, k):
        if len(str(arr[i])) < 3:</pre>
            k = k - 1
            continue
        else:
            return arr[i]
    ### COMPLETION 3 (WRONG): ###
    sum = 0
    i = 0
    while k > 0 and i < len(arr):</pre>
        if len(str(arr[i])) <= 2:</pre>
            sum_ += arr[i]
            k -= 1
        i += 1
    return sum
```

Thank You!

Empiricist

- Examples from CoPilot (<u>https://github.com/features/copilot</u>).
- Examples from a public model, <u>CodeGen</u>.
- Examples from GTP-2 (<u>https://beta.openai.com/playground</u>).
- Test and evaluation of the codes generated by GPT-2
- (<u>https://colab.research.google.com/drive/1R6rWcqseTKGWglBiPyllutwBx4xEQuCl#</u> scrollTo=hiNfrqWr8Vl1)