Session #15;:
Self-Supervised Coding Models

Tuesday, October 18
CSCI 601.771: Self-supervised Statistical Models

JOHNS HOPKINS

UNIVERSITY



Your Al pair programmer

https://github.caom/features/copilot



https://github.caom/features/copilot

sentimentsts
#!/usr/bin/env ts-node

import { fetch } from “fetch-h2";

async function isPositive(text: string): Promise<boolean> {
const response = await fetch( http://text-processing.com/api/sentiment/", {
method: "POST",
body: "text=${text}’,
headers: {
"Content-Type": "application/x-www—-form-urlencoded",
}
3
const json = await response.json();
return json.label === "pos";

}
&3 Copilot

https://github.caom/features/copilot


https://github.caom/features/copilot

Python

import boto3

Amazon CodeWhisperer

from botocore.exceptions import ClientError
Build applications faster with the ML-powered coding companion ( excel PO

# Function to upload a file to an S3 bucket
upload_file(file_name, bucket, object_name=None
"""Upload a file to an S3 bucket

https://aws.amazon.com/codewhisperer/

:param file_name: File to upload

:param bucket: Bucket to upload to

:param object_name: S3 object name. If not specified then file_name is used
:return: True if file was uploaded, else False

# If S3 object_name was not specified, use file_name
if object_name is None:
object_name = file_name

# Upload the file
s3_client = boto3.client('s3')
try:
response = s3_client.upload_file(file_name, bucket, object_name)

except ClientError as e:
logging.error(e)
return False

return True

Amazon CodeWhisperer



https://aws.amazon.com/codewhisperer/

: Google Al Blog

The latest from Google Research

ML-Enhanced Code Completion Improves Developer
Productivity
Tuesday, July 26, 2022

Posted by Maxim Tabachnyk, Staff Software Engineer and Stoyan Nikolov, Senior Engineering
Manager, Google Research

salesforce

Al Coding with CodeRL:
Toward Mastering Program
Synthesis with Deep
Reinforcement Learning



Evaluating Large Language Models Trained on Code

Mark Chen"! Jerry Tworek *! Heewoo Jun®! Qiming Yuan®! Henrique Ponde de Oliveira Pinto !

Jared Kaplan “? Harri Edwards! Yuri Burda' Nicholas Joseph? Greg Brockman' Alex Ray' Raul Puri'
Gretchen Krueger! Michael Petrov' Heidy Khlaaf® Girish Sastry! Pamela Mishkin' Brooke Chan !
Scott Gray! Nick Ryder! Mikhail Pavlov! Alethea Power' Lukasz Kaiser! Mohammad Bavarian !
Clemens Winter ! Philippe Tillet! Felipe Petroski Such! Dave Cummings! Matthias Plappert '
Fotios Chantzis ' Elizabeth Barnes' Ariel Herbert-Voss' William Hebgen Guss' Alex Nichol! Alex Paino'
Nikolas Tezak ' Jie Tang' Igor Babuschkin' Suchir Balaji' Shantanu Jain! William Saunders '
Christopher Hesse! Andrew N. Carr! Jan Leike! Josh Achiam' Vedant Misra! Evan Morikawa !
Alec Radford! Matthew Knight'! Miles Brundage! Mira Murati! Katie Mayer ! Peter Welinder !
Bob McGrew! Dario Amodei> Sam McCandlish? Ilya Sutskever ! Wojciech Zaremba !

Ayo, Fadil, Yongrui

Stakeholders &)



Introduction

* Large language models: powerful!
* GPT3

* Could generate simple programs from Python docstrings
* Exciting: not explicitly trained on code generation

 — hypothesis: a specialized GPT would excel at coding tasks = Codex

* Method: inspired by real-world programming
* Real-word:iterations, bug fixes

* Approximation:generating many samples from our model, select one that
passes all unit tests

* Further evaluation:whatif only one sampleis generated?



Models & GPT

* GPT: Baseline to compare with Codex

* GPT-12B: solve no problems when single sample generated
e GPT-J: solve 11.4% of problems

* Codex = GPT + fine-tuning
* Solve 28.8% of problems with single sample generated

* Codex-S = Codex + supervised fined-tuning

 Solve 77.5% of problems with at least one correct solution
 Solve 37.7% of problems with single sample generated

e Codex-D: generate docstrings from code



Codex-S

* Motivation: some code unrelated to synthesizing functions from
docstrings

 Supervised fine-tuned on correctly implemented standalone functions

 Data collected from
* Competitive programming website
* problem statements = docstrings
e example unit tests
* Repositories with continuousintegration
* input/outputforfunctions = unit tests

* noneed to know algorithms and data structures
* complement the puzzle nature of coding competition
* broaden the distribution of tasks



Codex-D

* Motivation: describe the intent behind generated code

* But not easy
e Leave out important details
* Over conditioned on the function name
* Developers devote less time to writing docstrings



Samples

def incr_list(l: list):

"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 31)

[2, 3, 4]

>>> iner_list([5, 3, 5, 2, 3, 3, 9, 0, 1231)
(6, 4, 6, 3, 4, 4, 10, 1, 124]

v

return [i + 1 for i in 1]

def solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 11) ==>12
solution([3, 3, 3, 3, 3]) ==9
solution([3@, 13, 24, 3211) ==>0

return sum(lst[i] for i in range(d,len(lst)) if i % 2 == 0 and 1lst[i] % 2 == 1)

prompts

Generated
sample

prompts

Generated
sample



Evaluation

e Pass@k evaluates
d Functionalcorrectness

* k: Number of code samples
generated per problem

* Pass: Any sample that passes the
unit tests.

» Total fraction of problems solved is
reported.

* Downside: Causes high variance



Evaluation

e Pass@k evaluates
d Functionalcorrectness

* k: Number of code samples
generated per problem

* Pass: Any sample that passes the
unit tests.

» Total fraction of problems solved is
reported.

* Downside: Causes high variance

def pass_at_k(n, c, k):

mmn

:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@S$SkS$

mmrn

if n - ¢ < k: return 1.0
return 1.0 - np.prod(1.0 - k /
np.arange(n - ¢ + 1, n + 1))

Figure 3. A numerically stable script for calculating an unbiased
estimate of pass@k.

* Let's reduce variance:

* Generate n >= k samples per
task

* n=200
e k<=100

e ¢: Countthe number of correct
samples, c<=n

e (Calculate unbiased estimator



Evaluation Metric

* BLEU Score vs. Pass @ k
* Match based metric vs Function based metric
* Sequential vs Tree structure

* Ambiguity in NLP vs Unique semantics in Code
* BLEU score has problems getting semantics that are code-specific



Evaluation Metric

* BLEU Score vs. Pass @ k
* Match based metric vs Function based metric
* Sequential vs Tree structure

* Ambiguity in NLP vs Unique semantics in Code
* BLEU score has problems getting semantics that are code-specific

Conclusion: BLEU score may not indicate improved rates of functional correctness in practice.




Datasets

* HumangEval
* Dataset of 164 handwritten programming problems

e Each problemincludesa
* Functionsignature
* Docstring
* Body
Unit tests, 7.7 tests per problem
* Programming tasks in the HumanEval dataset assess
* Language comprehension
* Reasoning
e Algorithms
e Simple mathematics.



pass@k in practice

0s
os.environ|

evaluate
code eval = load(

test cases

candidates
pass at k,
print(pass

candidates
pass at k,
print(pass

candidates
pass at k,
print(pass

= [

= [
results
at k)

= [
results
at k)

= [
results
at k)

load

code

id

code

code

def pass_at_k(n, c, k):

‘ ] :param n: total number of samples
eval.compute(references=test cases, predictions=candidates,

:param c: number of correct samples
:param k: k in pass@SkS$S

mnrn

]

eval.compute(references=test cases, predictions=candidates, if n - ¢ < k: return 1.0
return 1.0 - np.prod(1.0 - k /
np.arange(n - c + 1, n + 1))

]

eval.compute(references=test cases, predictions=candidates,

' € i

Figure 3. A numerically stable script for calculating an unbiased
estimate of pass@k.

TERMINAL

$ /bin/python3 /home/fadil/Desktop/test/t.py



Results: Temp vs k

In sequence generating models, for vocabulary of size N (number of words, parts of words, any
other kind of token), one predicts the next token from distribution of the form:

softmax(z;/T) i=1,...N,

Here T is the temperature. The output of the softmax is the probability that the next token will be
the i-th word in the vocabulary.

The temperature determines how greedy the generative model is.

Pass@k

Best temperature

0.4

0.3

0.2

0.1

0.8

0.6

0.4

0.2

Pass@K vs K, Temperature

., —————r7 ———
10° 10% 102
Number of samples (k)

Best Temperature vs K

T —— —— ]
100 101 10?
Number of samples (k)



Codex and Codex-S Comparison on HumanEval

PASS@k
E=1 k=10 k=100

GPT-NEO 125M  0.75% 1.88% 2.97%

Pass Rate vs Model Size

0.7 { — pass@1 (T*=0.2) GPT-NEO 1.3B  4.79% 7.47%  16.30%
L e i Lt L GPT-NEO2.7B  6.41% 11.27% 21.37%
i p GPT-J 6B 11.62% 15.74%  27.74%
& i A TABNINE 2.58%  4.35%  1.59%
8 03 ' CODEX-12M 2.00% 3.62%  8.58%
oy CODEX-25M 321%  7.1%  12.89%

' CODEX-42M 5.06%  8.8%  15.55%

0.1 - CODEX-85M 8.22% 12.81% 22.4%
e — CODEX-300M 13.17% 20.37% 36.27%
S P s v e COLER G100 i600% o574 40 05%

L 9 = 19 v L CODEX-2.5B 21.36% 35.42%  59.5%

Non-embedding parameters CODEX-12B 28.81% 46.81% 172.31%




Codex and Codex-S Comparison on
HumanEval

Codex-S Pass Rate vs Model Size

089 ... Codex pass@1 = i
~ =+ Codex pass@100 // g
0.6 —— Codex-S pass@1 il x
' —— Codex-S pass@100 / =
7

kv g
© . ’
w
"
&

10° 106 107 108 10° 3020
Non-embedding parameters



Datasets

* APPS

» APPS dataset was used to measure the coding challenge competence of
language models.

Collected from open source materials
10,000 coding problems
5000 training problems

* Each with a set of unit testsand, for the trainingdata, a set of correct solutions.

5000 testing problems

e Each with a set of unittestsand, for the trainingdata, a set of correct solutions.



APPS Results

INTRODUCTORY INTERVIEW COMPETITION
GPT-NEO 2.7B RAW PASS@ | 3.90% 0.57% 0.00%
GPT-NEO 2.7B RAW PASS@5 5.50% 0.80% 0.00%

1-SHOT CODEX RAW PASS @ |
1-SHOT CODEX RAW PASS@5
1-SHOT CODEX RAW PASS@ 100
1-SHOT CODEX RAW PASS@ 1000

4.14% (4.33%)
9.65% (10.05%)
20.20% (21.57%)
25.02% (27.77%)

0.14% (0.30%)
0.51% (1.02%)
2.04% (3.99%)
3.70% (7.94%)

0.02% (0.03%)
0.09% (0.16%)
1.05% (1.73%)
3.23% (5.85%)

1-SHOT CODEX FILTERED PASS @ 1
1-SHOT CODEX FILTERED PASS @5

22.78% (25.10%)
24.52% (27.15%)

2.64% (5.78%)
3.23% (7.13%)

3.04% (5.25%)
3.08% (5.53%)




def add_elements (arr, k):
LN

Given a non-empty array of integers arr and an

L] L] L]
integer k, return
I I I the sum of the first k element that has at most two

digits.
Example:

Input: arr = [111,21,3,4000,5,6,7,8,9], kK = 4

Not sample efficient to train o 24 # sum of 21 + 3
Invoke undefined/out-of-scope functio & = 11

Performance degradation as docstring $42 COUWPLETION 1 (WRONG) 444
Have difficulty with binding operations s+ cowusrron 2 aroner: #4s

for i in range (0, k):

if len(str(arr(i])) < 3:
k =k -1
def do_work(x, y, z, w): else‘f“"-i““e
mwr Add 3 to y, then subtract 4 return arr[i]
from both x and w. Return the
product of the four numbers. """ ### COMPLETION 3 (WRONG): ###
— sum_ = 0
t=y + 3 D -
u=x -4 while k > 0 and i < len(arr):
— * if len(str(arr[i])) <= 2:
v = Z W sum_ += arr[i]
return v k —=1
i4=1

return sum__



Thank You!



Empiricist

e Examplesfrom CoPilot (https://github.com/features/copilot).

e Examplesfrom a public model, CodeGen.

e Examplesfrom GTP-2 (https://beta.openai.com/playground).

e Testand evaluation of the codes generated by GPT-2
e (https://colab.research.google.com/drive/1R6rWcqseTKGWqIBiPyllutwBx4xEQuCl#

scrollTo=hiNfrgWr8VI1)

@: Empiricist: Tiangi Shang & Haoyue Guan@

25


https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ffeatures%2Fcopilot&data=05%7C01%7Ctshang2%40jhu.edu%7C5b3f23e7952a4669f78908dab05f2aba%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638016220027066111%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=a9k%2Fua4z%2FMsXUHOAPOCO4OmOCpHy9KQ61aVw2S5tzV4%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhuggingface.co%2FSalesforce%2Fcodegen-2B-multi&data=05%7C01%7Ctshang2%40jhu.edu%7C5b3f23e7952a4669f78908dab05f2aba%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638016220027066111%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=ACqLTYAHkjbtrjFN7D%2B9mixpxi3tNjJx3Qi4OU7TUoY%3D&reserved=0
https://beta.openai.com/playground
https://colab.research.google.com/drive/1R6rWcqseTKGWglBiPyIIutwBx4xEQuCl

