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Motivation

MODEL TRAINING

This is a dog This is not a dog This is not a dog This is not a dog
This is not a bird This is a bird This is not a bird This is not a bird
This is not a squirrel This is not a squirrel This is a squirrel This is not a squirrel
This is not a horse This is not a horse This is not a horse This is a horse

!

Learn that this examples
is a dog but not bird,
squirrel and a horse MODEL TESTING

through language
g guag - Like MCQ Questions

- Chose what is correct

A. This is a dog

B. This is a bird

C. This is a squirrel
D. This is a horse
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Introduction

e Vision Models: Restricted!

O Most state-of-the-art computer vision systems are trained to predict a fixed set of predetermined
object categories. *Limit "zero-shot" capabilities

o Thisrestricts the generality and plagues the model performance when facing unseen data/visual
concepts. *Curtail flexibility

Solution: Inspired from the method from NLP
* Autoregressive modeling
* Masked language modeling

* Doesn't require output heads or dataset customization
Incorporate text information with images!

Method: Given a specific caption, find its corresponding matching images.
e Novelty: Using prompt template, the model doesn't have classification head
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Model

Astonishing Performance

o Same accuracy as ResNet-50 on ImageNet zero-shot without needing to use
any of the 1.28 million training examples.

o Easily transfer over 30 different existing computer vision datasets, spanning

wide range of vision tasks. (OCR, action recognition, fine-grained object
classification, etc.)

o Dataset: 400 million (image,text) pairs

Without using any dataset specific training!
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Model

(1) Contrastive pre-training
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(2) Create dataset classifier from label text

A photo of
a {object}.

(3) Use for zero-shot prediction

= B

Image
Encoder

Text

Encoder

a dog.
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A photo of

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.
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Model
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Zero-Shot ImageNet Accuracy
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Replace prediction function
with contrastive function
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4X efficiency 3X efficiency

- Bag of Words Prediction
-8 Transformer Language Model

——

—&— Bag of Words Contrastive (CLIP)

2M 33M 67M 134M 268M
# of images processed

CLIP is much more efficient at zero shot transfer

400M

Difficult to train due to variety
of description/comments

Contrastive learning alleviate
the difficulty of supervision



Model

Simple implementation

* No difference with previous
contrastive learning work

* Nreal pairs, N*2-N incorrect pairs
* Symmetric cross entropy loss to
minimize similarity scores

Large Dataset

* Avoid overfitting

* No need for pretraining image
encoder and text encoder
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image_encoder
text_encoder
I[n, h, w, c]
T[n, 1]

W_i[d_i, d_el
W_t[d_t, d_e]

ResNet or Vision Transformer
CBOW or Text Transformer
minibatch of aligned images

- minibatch of aligned texts
learned proj of image to embed
learned proj of text to embed
- learned temperature parameter

xtract feature representations of each modality

image_encoder(I) #[n, d_i]

text_encoder(T)

#[n, d_t]

oint multimodal embedding [n, d_e]

# ]
I_e =
T_e =

12_
12_

normalize(np.dot(I_f, W_i), axis=1)
normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]

logits

np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels
loss_i
loss_t
loss

np.arange(n)

cross_entropy_loss(logits, labels, axis=0)
cross_entropy_loss(logits, labels, axis=1)
(loss_i + loss_t)/2

Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.
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Experiment

(2) Create dataset classifier from label text
I . Prompt Engineering

Why Prompt Engineering? il ﬁ

A photo of

° POlySemy - "l a tobject). ;D
* Same words might have different bird —
meaning in same dataset! (3) Use for zero-shot prediction v v
« ImageNet: construction crane vs carne . Softmax T, | T, | T
«  Oxford-IlIT Pet: Boxer (pet vs athlete)
EII'TO?)gdeer I] I]'T] I]'Tz I]'T3
* Use 8otemplatesin CLIP e v
G A photo of

a dog.
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imagenet templates = [

bad photo of a {}.',

photo of many {}.',

sculpture of a {}.',

photo of the hard to see {}.',
low resolution photo of the {}.',
rendering of a {}.',

'graffiti of a {}.',

'a bad photo of the {}.',

'a cropped photo of the {}.',
'a tattoo of a {}.',

'the embroidered {}.',

R

a

photo of a hard to see {}.',
bright photo of a {}.',
photo of a clean {}.',

photo of a dirty {}.',

dark photo of the {}.',
drawing of a {}.',

photo of my {}.',

'the plastic {}.',

EEEEEEEEER]

photo of the cool {}.',
close-up photo of a {}.',
black and white photo of the {}.',
painting of the {}.',
painting of a {}.',
pixelated photo of the {}.',
sculpture of the {}.',
bright photo of the {}.',
cropped photo of a {}.',
plastic {}.',

photo of the dirty {}.',
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Experiment

Better performance on object classification
* If object exists in the image, the
corresponding text should contains it.

Limited on Texture classification and

Object counting

* No informative label

* Few-shot might be more appropriate
for complex tasks
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StanfordCars
Country211 +23.2
Food101 +22.5
Kinetics700
SST2

SUN397
UCF101
HatefulMemes
CIFAR10

+0.5

Birdsnap
MNIST
FGVCAircraft
RESISC45
Flowers102
DTD
CLEVRCounts
GTSRB
PatchCamelyon
KITTI Distance
EuroSIAT . : :

-40 -30 -20 -10 O 10 20 30 40

A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.
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Experiment

* BiT-M: designed for transfer learning
by Google, one of the best model in
few-shot transfer learning (Strong Baseline)

Zs: Names

Linear Probe CLIP]
70 A
65 4Zero-Shot :
BiT-M (I t-21
4 CLIP i (ImageNe K
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o
>
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0 1 4 8 16

2
# of labeled training examples per class

Figure 6. Zero-shot CLIP outperforms few-shot linear probes.

Zero-shot CLIP matches the average performance of a 4-shot linear
classifier trained on the same feature space and nearly matches the
best results of a 16-shot linear classifier across publicly available
models. For both BiT-M and SimCLRv2, the best performing
model is highlighted. Light gray lines are other models in the eval
suite. The 20 datasets with at least 16 examples per class were
used in this analysis.
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Linear probe average over Kornblith et al.'s 12 datasets
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SST2 +23.6
Country211 +22.7
HatefulMemes
StanfordCars

GTSRB
SUN397
Kinetics700
RESISC45
FER2013
Food101
FGVCAircraft ;
UCF101 +3.1
KITTI Distance
Birdsnap
Flowers102 .
Caltech101 [@+1.3

OxfordPets

-0.8 CIFAR10

-1.28 PatchCamelyon
=17 CIFAR100

-2.4 CLEVRCounts
: -3.0 ImageNet : : :
-10 -5 0 5 10 15 20 25

A Score (%)
Logistic Regression on CLIP vs. EfficientNet L2 NS

Figure 11. CLIP’s features outperform the features of the best
ImageNet model on a wide variety of datasets. Fitting a linear
classifier on CLIP’s features outperforms using the Noisy Student
EfficientNet-L2 on 21 out of 27 datasets.
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ImageNet Models
Overfit

Whereas CLIP is
more robust!

Zs: Names

Robustness to Natural Distribution Shift

50 Linear probe average over Kornblith et al.'s 12 datasets

Transfer Score (%)

Linear probe average over 26 datasets

Makes Sense
Intuitively cause
Zero Shot Models
are not trained to
work better on a
specific task.
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Y CLIP-ViT Instagram A ViT (ImageNet-21k)
¢ CLIP-ResNet SimCLRv2 A BiT-M
+ EfficientNet-NoisyStudent BYOL v BiT-S
¢ EfficientNet MoCo ResNet

Figure 12. CLIP’s features are more robust to task shift when compared to models pre-trained on ImageNet. For both dataset
splits, the transfer scores of linear probes trained on the representations of CLIP models are higher than other models with similar

ImageNet performance. This suggests that the representations of models trained on ImageNet are somewhat overfit to their task.

17



Zs: Names

Robustness to Natural Distribution Shift

ImageNet Zero-Shot

100 ResNet101  CLIP A Score

—~ Ideal robust model (y = x) /
95 o Zero-ShotCLIP 7 - € > X
ol 3 Besinhaenis [ 1 imageNet [ = BT S En e 62 2 o
-
854
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65 -
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554
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ImageNetV2 64.3 70.1 +5.8%

ImageNet-R 37.7 889 +51.2%

ObjectNet |

ImageNet ( ‘
Sketch \_~— =

o ImageNet-A T4l
-

326 723 +39.7%

35 A
30
25
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252 60.2 +35.0%

Average on 7 natural distribution shift datasets (top-1, %)

y T v T 27 771 +74.4%
65 70 75 80 85 90 95 10

Average on class subsampled ImageNet (top-1, %)

Figure 13. Zero-shot CLIP is much more robust to distribution shift than standard ImageNet models. (Left) An ideal robust model
(dashed line) performs equally well on the ImageNet distribution and on other natural image distributions. Zero-shot CLIP models shrink

this “robustness gap” by up to 75%. Linear fits on logit transformed values are shown with bootstrap estimated 95% confidence intervals.

(Right) Visualizing distribution shift for bananas, a class shared across 5 of the 7 natural distribution shift datasets. The performance of
the best zero-shot CLIP model, ViT-L/14@336px, is compared with a model that has the same performance on the ImageNet validation
set, ResNet-101.
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Average on 7 natural distribution shift datasets (top-1, %)

80 -

75 A

70 A

65
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45
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301

25

Robustness to Natural Distribution Shift

How is it possible to improve accuracy by 9.2% on the Im-
ageNet dataset with little to no increase in accuracy under
distribution shift? Is the gain primarily from “exploiting
spurious correlations”? Is this behavior unique to some com-
bination of CLIP, the ImageNet datatset, and the distribution
shifts studied, or a more general phenomena? Does it hold
for end-to-end finetuning as well as linear classifiers? We
do not have confident answers to these questions at this time.

” Adapt to class shift @/

‘T
L Adapt to ImageNet
Py

Ideal robust model (y = x)
Adaptive Zero-Shot CLIP
ImageNet Zero-Shot CLIP

4 ® ® Logistic Regression CLIP
L] ’ @ Standard ImageNet training
% ® Robustness intervention
o ® Trained with more data
(]
T T T T T
70 75 80 85 90 95

Average on class subsampled ImageNet (top-1, %)

Adapt to ImageNet

ImageNet
ImageNetV2

ImageNet Sketch
ObjectNet
ImageNet-R

-10 -5 0 5 10 15 20 25 30
Change from zero-shot ImageNet classifier accuracy (%)

Adapt to class shift

Youtube-BB
ImageNet Vid
ObjectNet;
ImageNet Sketch|0
ImageNet-R|0
ImageNet-A|0
ImageNetV2|0
ImageNet|0

-10 -5 0 5 10 15 20 25 30
Change from zero-shot ImageNet classifier accuracy (%)

+26.9

+8.3

#2.3

751

701

65 1

60

55

50

454

40 4

354

Average on 7 natural distribution shift datasets (top-1, %)

30 4 Ideal robust model (y = x)
@ Few-Shot CLIP (best model)
. ®  Zero-Shot CLIP (best model)
254 @ Standard ImageNet training
® Robustness intervention
© Trained with more data
20
65 70 75 80 85 90 95

Average on class subsampled ImageNet (top-1, %)

Figure 15. Few-shot CLIP also increases effective robustness
compared to existing ImageNet models but is less robust than
zero-shot CLIP. Minimizing the amount of ImageNet training
data used for adaption increases effective robustness at the cost of
decreasing relative robustness. 16-shot logistic regression CLIP
matches zero-shot CLIP on ImageNet, as previously reported in
Figure 7, but is less robust.
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CLIP Vs Human

Zero-Shot CLIP

Shot Human
Zero-Shot Human
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Figure 16. The hardest problems for CLIP also tend to be the hard-

est problems for humans. Here we rank image categories by diffi-
culty for CLIP as measured as probability of the correct label.
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Top labels,
images of women

Bias

Top labels,
images of men

woman i

lady

female I
looking -
senior citizen - —
public speaking -
blonde -
spokesperson J—
blazer -
laughing =
hot =
magenta J—
bob cut -r—
black hair ==
pixie cut -—
pink ==
bangs ==
newsreader ™
purple ™=
blouse =
0 20 40 60
Frequency (%)

facial expression I —
suit - —————
photo e
military officer m—
walking i ke—
photograph ke
elder -
display
tie m—
shoulder
frown
Kid -
= Women necktie
= Men yellow -
80 100 0 20 40 60
Frequency (%)

. Women
. Men

'
80 100

Figure 18. CLIP performance on Member of Congress images when given the combined returned label set for the images from Google
Cloud Vision, Amazon Rekognition and Microsoft Azure Computer Vision. The 20 most gendered labels for men and women were
identified with x? tests with the threshold at 0.5%. Labels are sorted by absolute frequencies. Bars denote the percentage of images for a

certain label by gender.
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Surveillance

m,p'ss-'sou,an'

Model 100 Classes 1k Classes 2k Classes o 8 ‘»' S
CLIP L/14 59.2 433 42.2
CLIP RN50x64 56.4 39.5 38.4
CLIP RN50x16 52.7 374 36.3
CLIP RN50x4 52.8 38.1 37.3

Table 8. CelebA Zero-Shot Top-1 Identity Recognition Accuracy
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Empiricists

https://colab.research.gooqgle.com/drive/27PUGjMAuelKXoiopvahoQ4LyFsBBn7B7?usp

=sharing

&. Ammar, Ayo
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Strengths

- Personally think this is a impactful paper
Tackle an important problem in zero-shot learning (no need retraining, labeling new dataset)

- Very well written paper
- Provided detailed experiment settings
- Easy access to additional resources: slides, source-code, talk after publication

pes Ha, Elisée
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Strengths

Broader Impact of paper:

CLIP allows for easy classification for categorization
Significant promise of varied task handling such as Image search and retrieval

Addresses Bias
Addresses acknowledgement of data gathering source, participants and
researchers involved

o Ha, Elisée



Strengths

CLIP significantly exceeds the performance of conventional zero-shot

transfer.

aYahoo ImageNet SUN

Visual N-Grams 72.4 11.5 23.0
CLIP 98.4 76.2 58.5

Table 1. Comparing CLIP to prior zero-shot transfer image classi-
fication results. CLIP improves performance on all three datasets
by a large amount. This improvement reflects many differences
in the 4 years since the development of Visual N-Grams (Li et al.,
2017).

Source: https://arxiv.org/abs/2103.00020

pes Ha, Elisée



Weaknesses

- Often require prompt engineering
- Detail paper, but also too many words in arXiv version
- Lack of notation clarification

- Personally expect more theoretical analysis for a ICML paper
Contrastive Learning
Uncertainty under Distributional-Shift

- Personally expect more investigation on distributional shift experiment

pes Ha, Elisée
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Weaknesses - notation

- Misunderstand the number of probability spaces, definition clarification:
- Nneed to be the same as test and train?

(1) Contrastive pre-training

?‘

|

Pepper the
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. l
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L ol b | |1 | T LT LTy
Image I LT | 3T, | T I3 Ty
Eneotar —> b 31y 3T | 3T 3In
— In INTy | INT | INTy InTy

(2) Create dataset classifier from label text

A photo of
a

(3) Use for zero-shot prediction

Image
Encoder

Text
Encoder

_)ll

T | T2 (T3 Tn
LTy | T | Ty LTy
A photo of

a

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the

#: Ha, Elisée target dataset’s classes.
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Weaknesses - distributional shift experiment

pes Ha, Elisée

Distributional-shift experiment:
Expect shift intensity by ImageNet-C

Adapt to ImageNet: There is still unsolved question like *How is it possible to improve accuracy by
9.2% on the ImageNet dataset with little to no increase in accuracy under distribution shift?”

Adapt to class shift is look obvious
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i s s s il
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Severity = 1 Severity = 2 Severity = 3
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W w s & u o 2 3

o

-3
S

~
o

o o o o

S o

[

N
o

‘@9 —— |deal robust model (y = x)
© Adaptive Zero-Shot CLIP
ImageNet Zero-Shot CLIP
Logistic Regression CLIP
Standard ImageNet training
Robustness intervention
Trained with more data

70

©leeeee

75 80 85
Average on class subsampled ImageNet (top-1, %)

95

Adapt to ImageNet

ImageNet-A
ImageNet Sketch
ObjectNet
ImageNet-R
-10 0 5 10 15 20 25 30
Change from zero-shot ImageNet classifier accuracy (%)
Adapt to class shift

Youtube-BB

ImageNet Vid

ObjectNet|
ImageNet Sketch|0
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ImageNetV2|0
ImageNet|0
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Change from zero-shot ImageNet classifier accuracy (%)

+26.9
+8.3

+2.3
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Conclusion

Personally think:

- Animpactful paper: very well written and experiments

- Expect more theoretical analysis and notation elaboration
=> Strongly accept.

pes Ha, Elisée



Problem

- Crafting a good data set for semi supervised learning is hard

- Clips data set picks from captioned images online

- This obviously creates the problem of OOD Data !

*#-: Muzammil Godil & Fadil



Noisy teacher student model (Xie 2020)

1) Train a teacher model on labeled
images

2) Use the teacher to generate pseudo
labels on unlabeled images

3) Train a student model on the
combination of labeled images and
pseudo labeled images
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Reviewer

Google slide:
https://docs.google.com/presentation/d/1Xacs-2FQ fMqgD-
XxQolJiA EMeKcsuQKKT/edit?usp=sharing&ouid=106673766508452900823&rtpof=true

&sd=true
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