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Stakeholder

* Learning robust representations from speech audio alone, followed
by fine-tuning on transcribed can outperform the best semi-
supervised methods ,Also conceptually simpler.

« wav2vec 2.0 masks the speech input and solves the contrastive
learning task

* A framework for self-supervised learning of representations of raw
audio data.

Steven Tan,Neha Verma ,zhiging Zhong



Stakeholder: Method

* Encodes speech audio through a multilayer convolutional neural
network

 Latent representations are fed into the Transformer network to build
context-based representations

* As part of training, we learn discrete speech units via softmax to
represent latent representations in contrast tasks.

Steven Tan,Neha Verma ,Zhiging Zhong



Stakeholder: Method

e The model is fine-tuned on labeled data
* Method end-to-end Both problems are solved in a straightforward manner.

* Other related work includes learning representations by auto-encoding
input data or directly predicting future time steps

e Our results show that jointly learning discrete speech units with contextual
representations achieves better results than fixed units learned in a prior

step .
* The feasibility of ultra-low-resource speech recognition

* We achieve state-of-the-art sota on TIMIT phoneme recognition as well as
Librispeech's 100-hour clean subset.

Steven Tan,Neha Verma ,Zhiging Zhong



Stakeholder: Models

Contrastive loss .
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X={x1, x2, ..., XT'}, this is the original wave form, e.g. sample rate = 16000;

Z={z1, z2, ..., ZT}, this is the "latent speech representation” (hidden layer speech representation) obtained after subsampling
with 7-layer CNN; the combination of these 7-layer CNNs is called " feature extractor".

Q ={ql,92, ..., qT}, "quantized" from Z. For example, in the default code of fair seq, if there are two codebooks, each
codebook has 320 codewords, and each codeword is represented by a 128-dimensional vector. That is to say, a tensor with
shape (2, 320, 128) (similar to codeword embedding matrix) is what we need to learn.

C ={c1,c2, ..., cT}, is the "context representations” obtained by inputting Z through multiple layers of transformer encoders.
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Steven Tan,Neha Verma ,Zhiging Zhong



Stakeholder:Models

Contrastive loss

£
A VLR DLIE.
Transformer
Masked/
o | &

Quantized
representations Q

Latent speech Z
representations

Ry (Y m

Steven Tan,Neha Verma ,zhiging Zhong

Algorithm:

From X to Z, the original speech is represented as, the
hidden layer speech representation;

FromZ to Q, quantization operation;

A part of Z is given to the mask, for example, five 10-gram
positions, these positions are replaced with a uniform vector;
then Z_mask after the mask is thrown to the transformer
encoder;

The result C predicted by the transformer is compared with
the reference answer (= quantization of the (unmasked) Z
sequence to get the Q sequence), and the "contrastive
learning loss" is calculated, as well as several other Loss.



Stakeholder:Models(which has been masked?)

* In the above figure, the z3 correspondingto q3in q1, g2, g3, g4, g5,
is masked

* In order to predict g3, two interference terms are randomly found:
ql, q2.
» After pretraining on unlabeled speech, the model is fine-tuned on

labeled data with a connectionist temporal classification (CTC)
loss for downstream speech recognition tasks .



Training

Mask:

P: portion of time steps to start masking
(p=0.065)

M: consecutive time steps (M=10)

Z4: Steven Tan, Neha Verma, Zhiging Zhong
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Different Masking Strategies

avg WER std

Baseline (p = 0.075) 797 0.02
Mask length M = 8 8.33 0.05
Mask length M = 12 8.19 0.08
Mask length M = 15 843 0.19
Mask probability p = 0.065 7.95 0.08
Mask probability p = 0.06 8.14 0.22
Mask w/o overlap, uniform(1,31) 8.39  0.02
Mask w/o overlap, uniform(10,30) 9.17 0.05
Mask w/o overlap, poisson(15) 8.13  0.04
Mask w/o overlap, normal(15, 10) 8.37 0.03
Mask w/o overlap, length 10 9.15 0.02
Mask w/o overlap, length 15 943 0.26

Z4: Steven Tan, Neha Verma, Zhiqing Zhong



CNN for Feature Extraction

e 7-layer CNN block
e Receptivefield 400 input sample/25 ms of audio

Latent speech 2
representations

CNN

raw waveform X

£%: Steven Tan, Neha Verma Zhiging Zhong
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Training Objective L =Ly +aLly

Lm: contrastive loss
C: contextual representation from transformer

Q: quantized candidate of input

exp(sim(ct, qt)/ k)

JCm, = —1 . =
o6 > _g~q, €Xp(sim(ct, q)/k)

K =100 (# distractors),
temperature=0.1
Z4: Steven Tan, Neha Verma, Zhiging Zhong
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Training Objective L =Ly +aly

Ld: diversity loss
V: entries eXp(lg;v + nv)/T

G: #codebooks v Z)}f/_l eXp(lgj}.: + nk)/,]—

Z4: Steven Tan, Neha Verma, Zhiging Zhong
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Training Objective L =Ly +aLly

Ld: diversity loss
V=320
G=2

Entry dimension:input dim /G =768 /2 =384

Z4: Steven Tan, Neha Verma, Zhiging Zhong
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Finetuning

e (CTCloss

For an input,
like speech

Predict a
sequence of
tokens

Merge repeats,

drop €

Final output

£%: Steven Tan, Neha Verma, Zhiging Zhong
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CTC loss
el

We start with an input sequence
ike a spectrogram of audio

The input is fed into an RNN
for example.
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Z4: Steven Tan, Neha Verma, Zhiging Zhong

Our favorite: intractable marginalization!

p(Y | X) = 3y

AcAxy

T
H pi(az | X)
t=1

The CTC conditiona computing the probability for a

probability set of valid alignments

marginalizes over the
single alignment step-by-step.

Inference: beam-search
Y* = argmax p(Y | X) - p(¥Y)* - L(Y)?
v

The CTC conditional The language The "word"

probability. model probability. insertion bonus.
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Datasets and Evaluation

1. Pretraining

1. Librispeech (no labels): g60 hrs

2. LibriVox: 53.2K hrs

2. Language Model (for Speech
Recognition)

1. Librispeech LM corpus

Z4: Steven Tan, Neha Verma, Zhiging Zhong

2. Fine-tuning

1.

2.

3.

960 hrs of Librispeech (labels)
Librispeech subsets

1. Train-clean-100 hrs

2. Libri-light 10 hrs

3. Libri-light 1 hr

4. Libri-light 10 min

TIMIT Acoustic-Phonetic Speech Corpus (5
hrs)

16



Model varieties

1. Size
1. Base
1. 12 Transformerlayers
2. Large

1. 24 Transformerlayers

Z4: Steven Tan, Neha Verma, Zhiging Zhong

1.

LM used
1. 4-gram
2. Transformer-based

1. 20-layer

17



Results: Low-Resource Labeled Data

Unlabeled dev test
Model data LM clean  other clean  other
10 min labeled
Discrete BERT [4] LS-960 4-gram 15.7 24.1 16.3 252
BASE LS-960 4-gram 8.9 15.7 9.1 15.6
Transf. 6.6 13.2 6.9 12.9
LARGE LS-960 Transf. 6.6 10.6 6.8 10.8
LV-60k Transf. 4.6 7.9 4.8 8.2
1h labeled
Discrete BERT [4] LS-960 4-gram 8.5 16.4 9.0 17.6
BASE LS-960 4-gram 5.0 10.8 5.5 11.3
Transf. 38 9.0 4.0 93
LARGE LS-960 Transf. 38 7.1 39 1.6
LV-60k Transf. 29 5.4 29 5.8

10h labeled
Discrete BERT [4] LS-960 4-gram 53 132 59 14.1
Iter. pseudo-labeling [58] LS-960  4-gram+Transf. 2351 2548 2437 26.02
LV-60k  4-gram+Transf. 17.00 1934 18.03 1992
BASE LS-960 4-gram 3.8 9.1 43 9.5
Transf. 29 7.4 3.2 7.8
LARGE LS-960 Transf. 29 57 32 6.1
LV-60k Transf. 24 4.8 2.6 49
100h labeled
Hybrid DNN/HMM [34] - 4-gram 50 195 58 18.6
TTS data augm. [30] - LSTM 4.3 13.5
Discrete BERT [4] LS-960 4-gram 40 109 4.5 12.1
Iter. pseudo-labeling [58] LS-860 4-gram+Transf. 4.98 7.97 5.59 8.95
LV-60k  4-gram+Transf. 319  6.14 372 7.1
Noisy student [42] LS-860 LSTM 3.9 8.8 42 8.6
BASE LS-960 4-gram 2.7 79 34 8.0
Transf. 2.2 6.3 2.6 6.3
LARGE LS-960 Transf. 2.1 4.8 23 5.0
LV-60k Transf. 1.9 4.0 2.0 4.0

® Very good WER for ultra-low resource 10 min recording

® New state-of-the-art on Librispeech train-clean-100

Z4: Steven Tan, Neha Verma, Zhiging Zhong
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Results: High-Resource Labeled Data (Librispeech)

Table 2: WER on Librispeech when using all 960 hours of labeled data (cf. Table 1).

Unlabeled dev test

Model data LM clean other clean other
Supervised e New state-of-the-art
CTC Transf [51] - CLM-+Transf. 220 494 247 545
S28 Transf. [51] - CLM-+Transf. 2,10 4.79 233 517 .
Transf. Transducer [60] - Transf. - - 2.0 4.6 [ Oth erarc h Itectures fI’O m
ContextNet [17] - LSTM 1.9 39 1.9 4.1
Conformer [15] - LSTM 21 43 19 39 scratch work better
Semi-supervised
CTC Transf. + PL [51] LV-60k CLM-+Transf. 2.10 479 233 454 L. .
$2S Transf. + PL [51] LV-60k  CLM+Transf.  2.00  3.65 200 411 o  butself-supervision technique
Iter. pseudo-labeling [58] LV-60k 4-gram+Transf. 1.85 3.26 210  4.01 .
Noisy student [42] LV-60k LSTM 1.6 34 1.7 34 is very helpful
This work
LARGE - from scratch - Transf. 1.7 4.3 2.1 4.6
BASE L.S-960 Transf. 1.8 4.7 2.1 4.8
LARGE LS-960 Transf. 1.7 3.9 2.0 4.1

LV-60k Transf. 1.6 3.0 1.8 33

Z4: Steven Tan, Neha Verma, Zhiging Zhong



Results: TIMIT Phoneme Recognition

e Task: transcribe speechusing 39 phones

Table 3: TIMIT phoneme recognition accuracy in terms of phoneme error rate (PER).

dev PER test PER

CNN + TD-filterbanks [59] 15.6 18.0
PASE+ [47] - 17.2
Li-GRU + fMLLR [46] - 14.9
wav2vec [49] 12.9 14.7
vg-wav2vec [5] 0.6 11.6
This work (no LM)

LARGE (LS-960) 7.4 8.3

Z4: Steven Tan, Neha Verma, Zhiging Zhong



Results: Ablations

e Quantizinghappensonly for latents as targets, not for latents as inputs
e Continuous input —retain more info
e Quantized output —more robust training

Table 4: Average WER and standard deviation on combined dev-clean/other of Librispeech for three
training seeds. We ablate quantizing the context network input and the targets in the contrastive loss.

avg. WER  std.
Continuous inputs, quantized targets (Baseline) 797 0.02
Quantized inputs, quantized targets 12.18  0.41
Quantized inputs, continuous targets 11.18 0.16
Continuous inputs, continuous targets 8.58 0.08

Z4: Steven Tan, Neha Verma, Zhiging Zhong
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Empiricists

https://colab.research.google.com/drive/2gR5rMqy3H5D74qVGIZCE2iSJT4E5VNyp?usp
=sharing

£: Lingfeng Shen, Isabel Cachola
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Reviewer: Strengths
e Extensively open-sourced codesand models.
e Greatresults on low-resource labelled data, huge potential impactfor uncommon
languages.
e Alotof movingparts work together well.

e Quantizationmodule: a great way to downscale feature representation

e Motivation: considerreal world
e Experiments based on publicdataset

4 Tiangi, Yongrui, Aayush
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Reviewer: Weaknesses

e Paperistoo dense: hardto follow all the techniques.

e No evaluation for the pretrained model.

e Noreasoningforusing relative positional embedding vs absolute in contextualized
representations.

e Tons of other hyperparameter choices mentioned with explanations or ablation
studies either missing or left in appendix.

e Notend-to-end, needs secondary recognition model.
e Relies heavilyonthe pre-trainingmodel, which is very large and hard to train.

&2: Tiangi, Yongrui, Aayush
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Reviewer: Weakness

e Limitedargumentation
o  Whysuch design decision has made
o Quantization: yes, discretize to smaller space, and then ...

e Lessclarity

o Denotesnotclear: G,V

e Not easyto reproduce to evaluation

o Large computational resources

Aayush, Tiangi, Yongrui

27



Visionary: Few-shot speech recognition for close languages

e Papershowsimpressive performance on low-resource languages and phenome

recognition.
o However, it doesn't show the verbal equivalent of zero or few-shot performance.
o Additionally, it doesn't show how proficiency in one language may generalize to proficiency in similar
languages.

e Create a study of the few-shot performance of wavavec and see how finetuning on

one language generalizesto similarlanguages.
O Ex:Fine-tune on Spanish and see if it has generalization properties in Italian.
O Ex:Japanese has 2 written forms expressing different aspects of the language and it doesn't
necessarily correlate 1-to-1 with spoken Japanese.

e Motivation: For languages with no written form, you may be able to use a similar
language that has written language and then generalize.

9 : Vicky Zeng and Iliana Maifeld-Carucci 28



Visionary: Improvement from Error Analysis

Time of Trained Labeled Data Error Types

10 minutes - Phonetic spelling errors in general (omit silent and repeated
characters)i.e. are -> ar

1 hour - Phonetic spelling errors for less commonwords i.e. soul -> sol
10 hours - Articles mistakeni.e. a -> the, in -> and
- Alternative spellingsi.e colorvs colour

100 hours - Phonetic spelling errors mostly for personnames i.e. christie -> cristy
- Incorrectspacing i.e anyonevs any one

960 hours - Similar to 100 hours but error rate to 2% + rare words

e Emphasisonsilent/repeated-letterwords
e Why articlesare mistaken

9 : Vicky Zeng and Iliana Maifeld-Carucci 29



Visionary: Downstream Emotion and Sarcasm Detection

e Strength in self-supervisedlearning with unlabeled data: Limited emotion and

sarcasm detection datasets with annotation

e Additionalinformationinaudio not presentin text

\
[Tt
| | I
[Lexica] | | Hyperbolic | | Pragmatic | | Prosodic ‘

« MFCC

« Unigram « Interjection « Emoticons « Pitch
« Fundamental

« Bigram « Punctuation , Smilies « Intensity

« N-gram Marks « Intonation Frequency

« Quotes «» Stress « Other spectral
+ Adjective Features
Adverbs

e Transferlearning: Use the trained weights of contextual representations as starting
points for emotion and sarcasm detection models

9 : Vicky Zeng and Iliana Maifeld-Carucci 30



