Session #20: Retrieval from Memory

Thursday, November 3 CSCI 601.771: Self-supervised Statistical Models

As I mentioned in the class, **if everyone is on board** I am happy to move the final project presentations earlier before the final exam.

- Currently, the final presentation/report is due Dec 22.
- The **alternative** is to move the final presentation to Thursday, Dec 8, and the final report deadline to Sunday, Dec 11 (just before the reading days).

As I mentioned in the class, **if everyone is on board** I am happy to move the final project presentations earlier before the final exam.

- Currently, the final presentation/report is due Dec 22.
- The **alternative** is to move the final presentation to Thursday, Dec 8, and the final report deadline to Sunday, Dec 11 (just before the reading days).

What is your preference?

12 responses

Comments

- "I'd prefer the earlier date in general but the only issue is that that week is EMNLP, so a few of us will be traveling. If there is an alternate way to submit our presentations by Dec 8th (e.g. a recording) I'd prefer the earlier date."
- "It would be great if we move the report date to a bit later if possible"
- "[MASK] and I are at EMNLP in Abu Dhabi during this time but we are very happy to do the earlier date + coordinate some sort of virtual presentation if possible "

Problem Statement

Some issues with pre-trained neural language models:

• They cannot easily expand or revise their memory

They can't straightforwardly provide insight into their predictions

• They may produce "hallucinations"

Stakeholders A: Muzzi & Fadil

Model Overview

Figure 1: Overview of the model.

- Combined pre-trained retriever (Query Encoder + Document Index) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end.
- For query x, Maximum Inner Product Search (MIPS) is used to find the top-K documents z .

Stakeholders A: Muzzi & Fadil

Models difference

$$p_{\text{RAG-Sequence}}(y|x) \approx \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\theta}(y|x,z) = \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) \prod_{i}^{N} p_{\theta}(y_{i}|x,z,y_{1:i-1})$$

$$p_{\text{RAG-Token}}(y|x) \approx \prod_{i}^{N} \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) p_{\theta}(y_{i}|x,z_{i},y_{1:i-1})$$

Both models are trained by directly minimising the log likelihood of each target $-\log p(y|x)$

Stakeholders A: Muzzi & Fadil

Overall Setup

• A single Wikipedia dump is used for all experiments

 Each article is split into 100 word chunks to form 21 M documents

- The top k documents are retrieved for each task with k being limited between 5 to 10
- Stakeholders 🖄: Muzzi & Fadil

Open Domain Q/A

- Questions are treated as input output text pairs
- RAG is trained by minimizing **negative** log likelihood
- Comparisons are made to the extractive Q/A paradigm and to closed book Q/A
- Tested on 4 datasets Natural Questions (NQ), TriviaQA (TQA) WebQuestions (WQ) and CuratedTrec (CT)
- Stakeholders A: Muzzi & Fadil

- Sets new SOA performances in all categories
- More efficient than salient span masking training
- Generating answers allows us to get them even when they don't directly exist in the passage

	Model	NQ	TQA	WQ	CT
Closed	T5-11B 52	34.5	- /50.1	37.4	-
Book	T5-11B+SSM 52	36.6	- /60.5	44.7	-
Open	REALM 20	40.4	- / -	40.7	46.8
Book	DPR 26	41.5	57.9/ -	41.1	50.6
	RAG-Token RAG-Seq.	44.1 44.5	55.2/66.1 56.8/ 68.0	45.5 45.2	50.0 52.2

_

Abstractive Q/A

- MMARSCONLG is used as the task
- There are 10 gold passages retrieved for the questions via a search engine and then annotated into an answer
- Using only the Questions and answers makes MMARSCO abstractive
- RAG must rely on its parametric knowledge to generate reasonable answers

• Stakeholders A: Muzzi & Fadil

• Approaches SOA performances

 Specially impressive given that there s no access to the gold passages

• RAG hallucinates less and gives more factually correct answers than BART

Model	Jeopardy		MSMARCO		FVR3	FVR2
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8 *	49.9 *	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.	17.3 14.7	22.2 21.4	40.1 <u>40.8</u>	41.5 <u>44.2</u>	72.5	<u>89.5</u>

Jeopardy Q/A

- Generates factually demanding Jeopardy questions
- Splits from SearchQA, with 100K train, 14K dev, and 27K test examples are used
- BART model is trained for comparison
- Finally human evaluation is done for accuracy and specificity

• Stakeholders A: Muzzi & Fadil

 RAG Token Outperforms RAG Sequence with both outperforming BART

• RAG more factual in 42.7% of cases !

Model	Jeoj	oardy	MSM	MSMARCO		FVR2
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8 *	49.9 *	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.	17.3 14.7	22.2 21.4	40.1 <u>40.8</u>	41.5 <u>44.2</u>	72.5	<u>89.5</u>

FEVER

- Classifies whether a natural language claim is supported or refuted by Wikipedia
- Retrieval problem coupled with entailment reasoning task
- Map FEVER class labels (supports, refutes, or not enough info) to single output tokens and directly train with claim-class pairs
- No supervision is used on retrieved evidence

• Stakeholders A: Muzzi & Fadil

• Within 4.3% of SOA systems

- Within 2.7% of RoBERTa SOA although its only given the claim
- Top 10 document are gold in 90% of cases!

Model	Jeoj	pardy	MSMARCO		FVR3	FVR2
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8 *	49.9 *	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.	17.3 14.7	22.2 21.4	40.1 40.8	41.5 <u>44.2</u>	72.5	<u>89.5</u>

Additional results

1) Generation diversity

	MSMARCO	Jeopardy QGen
Gold	89.6%	90.0%
BART	70.7%	32.4%
RAG-Token	77.8%	46.8%
RAG-Seq.	83.5%	53.8%

Model	NQ	TQA	WQ	СТ	Jeopa	rdy-QGen	MSN	larco	FVR-3	FVR-2
		Exact	Match		B-1	QB-1	R-L	B-I	Label A	Accuracy
RAG-Token-BM25 RAG-Sequence-BM25	29.7 31.8	41.5 44.1	32.1 36.6	33.1 33.8	17.5 11.1	22.3 19.5	55.5 56.5	48.4 46.9	75.1	91.6
RAG-Token-Frozen RAG-Sequence-Frozen	37.8 41.2	50.1 52.1	37.1 41.8	51.1 52.6	16.7 11.8	21.7 19.6	55.9 56.7	49.4 47.3	72.9	89.4
RAG-Token RAG-Sequence	43.5 44.0	54.8 55.8	46.5 44.9	51.9 53.4	17.9 15.3	22.6 21.5	56.2 57.2	49.4 47.5	74.5	90.6

Additional results

1) Index hot swapping

Replacing non parametric memory is enough to change the way data works in RAG !

1) Effects of more documents

TBD

TBD

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis^{†‡}, Ethan Perez^{*},

Aleksandra Piktus[†], Fabio Petroni[†], Vladimir Karpukhin[†], Naman Goyal[†], Heinrich Küttler[†],

Mike Lewis[†], Wen-tau Yih[†], Tim Rocktäschel^{†‡}, Sebastian Riedel^{†‡}, Douwe Kiela[†]

[†]Facebook AI Research; [‡]University College London; *New York University; plewis@fb.com

Ayo & Elisée

⊠ RAG VERSION DIVERSITY

• Proposed 2 version of RAG:

RAG Sequence (Retrieved single doc from data base and condition on 1 doc)

RAG Token (Retrieved multiple doc from data base and switch b/w the set of doc)

Ø RAG VARIANCE COMPARISON

Model	Jeop	pardy	MSMARCO		FVR3	FVR2
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8 *	49.9 *	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.	17.3 14.7	22.2 21.4	40.1 <u>40.8</u>	41.5 <u>44.2</u>	72.5	<u>89.5</u>

Ø INTERACTION B/W PARAMETRIC VS NON-PARAMETRIC

Ø OTHER POSITIVES

- Latent Retrieval: No labels needed for retrieved docs.
- General in use/application: For any seq2seq task.
- Easy to follow and well visualized.

Ø OTHER POSITIVES (CONT.)

- Results indicate what RAG model, RAG-token vs RAG-seq, perform better on certain tasks, so others interested in solving certain problems (Open-domain Question Answering) for instance, might opt to using RAG-seq model.
- Usage of pairwise comparative evaluation as opposed to Likert scores or single-turn pairwise evaluation for Jeopardy Question Generation.
- RAG's world knowledge can be updated by replacing its non-parametric memory unlike GPT (reducing hallucinations).
 - After updating Wikipedia dumps, they saw that RAG had 70% accuracy in the 2016 index and 68% accuracy in 2018 index. "Who is the President of Peru?"

NEGATIVES

- No clear explanation/hypothesis as to why the RAG-Tok model outperforms the RAG-Seq or vice versa in certain experiments. This was only done for the Jeopardy Question Generation experiment but not others.
- Bringing up points not previously addressed in previous sections of the paper, such as the reference to Rouge-L points (could be a negative based on the type of reader).
- Nit-pick: Grammatical errors
- Retrieval and Generation framework discussed in the paper has also been used in other papers but was presented a new idea that was developed.

<u>Retrieval-guided Dialogue Response Generation via a Matching-to-Generation Framework</u>

• Does RAG only look at Wikipedia articles? What happens if these articles are outdated? How can we fact-check the "facts?" This was a downside addressed in the broader impact section of the paper.

RAG Fact-verification experiments

- Goal: Retrieve evidence related to claim, reasoning about this to classify whether supported, refused, or unverified by Wikipedia
- Input: a claim, output: 3 classes
- Test RAG models classification ability
- Map 3 labels to single token and train claim-class pairs

Figure 1: Overview of our approach. We combine a pre-trained retriever (*Query Encoder + Document Index*) with a pre-trained seq2seq model (*Generator*) and fine-tune end-to-end. For query x, we use Maximum Inner Product Search (MIPS) to find the top-K documents z_i . For final prediction y, we treat z as a latent variable and marginalize over seq2seq predictions given different documents.

Table 2: Generation and classification Test Scores. MS-MARCO SotA is [4], FEVER-3 is [68] and FEVER-2 is [57] *Uses gold context/evidence. Best model without gold access underlined.

Model	Jeo	pardy	MSM	ARCO	FVR3	FVR2
	B-1	QB-1	R-L	B-1	Labe	I Acc.
SotA	-	-	49.8*	49.9*	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.	17.3 14.7	22.2 21.4	40.1 40.8	41.5 44.2	72.5	<u>89.5</u>

Use RAG model to support improving Wikipedia Verifiability

- Motivation: claims that are likely to be challenged need to be backed by citations

Figure 1: The decision flow of SIDE from a claim on Wikipedia to a suggestion for a new citation is as follows: (1) the claim is sent to the *Sphere Retrieval Engine* which produces a list of potential candidate documents from the *Sphere corpus*; (2) the *verification engine* ranks the candidate documents and the original citation w.r.t. the claim; (3) if the original citation is not ranked above the candidate documents, then a new citation from the retrieved candidates is suggested. Note that the score of the *verification engine* can be indicative of a potential *failed verification*, as the one reported in the example.

Fabio, et al., 2022. Improving Wikipedia Verifiability with Al