Infini-gram: Scaling n-gram Language Models to a Trillion Tokens

The return of n-grams

To Infinity and Beyond! Infinitely long n-grams with backoff ... conducts research at the Paul G. Allen School of Computer Science and Engineering, University of Prompt 5-gram LM (n = 5)∞-gram LM (n = 16 for this case)cnt(research at the Paul G. Allen School of Computer Science and Engineering, University of) = 0cnt(Engineering, University of) = 274644cnt(at the Paul G. Allen School of Computer Science and Engineering, University of) = 10P(* | Engineering, University of) =P(* | at the Paul G. Allen School of Computer Science and Engineering, University of) =_California (20896 / 274644) 8% 4% Illinois (10631 / 274644) _Washington (10 / 10) _Michigan (9094 / 274644) 100% 3% Colorado (6438 / 274644) 2% Southern (6340 / 274644) 2% 5-gram table Infini-gram index (28 TiB) (10 TiB) Washington (6340 / 274644) 2%

N-gram

- Sequence of n adjacent symbols in order
 - 1 gram: a, b, c, d
 - \circ 2gram: ab, cd, ee, po
 - 3gram: abc, pow, ivo, ovq

N-Gram Probability

- Probability of the next token given (n-1) context
 - Bigram: p(a | b)
 - Trigram Example: p(a | po)
- N-Gram Probability is used interchangeably with N-Gram
 - Choose the right definition according to context
- In general, n-gram probability is calculated using

$$P(a_n|a_1a_2\cdots a_{n-1}) = \frac{\operatorname{cnt}(a_1a_2\cdots a_{n-1}a_n)}{\operatorname{cnt}(a_1a_2\cdots a_{n-1})}$$

Backoff

- Sometimes n-gram sequence is rare or unseen in training data
- In this case, using less context might be helpful

If $cnt(a_1a_2\cdots a_{n-1}a_n)=0$ but $cnt(a_3\cdots a_{n-1}a_n)=10$, we might want to calculate

$$P(a_n|a_3\cdots a_{n-1}) = \frac{cnt(a_3\cdots a_{n-1}a_n)}{cnt(a_3\cdots a_{n-1})}$$

Instead of

$$P(a_n|a_1a_2\cdots a_{n-1}) = \frac{cnt(a_1a_2\cdots a_{n-1}a_n)}{cnt(a_1a_2\cdots a_{n-1})}$$

∞-Gram: definition

$$P_{\infty}(w_i \mid w_{1:i-1}) = \frac{\operatorname{cnt}(w_{i-(n-1):i-1}w_i \mid \mathcal{D})}{\operatorname{cnt}(w_{i-(n-1):i-1} \mid \mathcal{D})}$$

- N-grams that are extrapolated to infinity.
- Backoff when the denominator is zero
- An infini-gram is **sparse** when $P_{\infty}(w_i|w_{1:i-1}) = 1$ for some w_i
- An **effective n** of an infini-gram is equal to one plus the length of the prompt's longest suffix that appears in the training data.
 - Given a string, n of the longest n-gram that appeared in the corpus.

• A sorted list of all suffix start indices in a string

Figure 2: Left: the suffix array for a toy string. Right: illustration of the suffix array in the infini-gram index, with N = 4 tokens in the dataset.

- Suffixes of "APPLE"
 - APPLE
 - PPLE
 - PLE
 - o LE
 - E

- Suffixes of "APPLE" •
 - APPLE 0
 - PPLE 0
 - PLE Ο
 - LE Ο
 - Е 0

Ordered Suffixes of "APPLE"

> APPLE 0 Е

> > LE

PLE

PPLE

0

0

0

0

- Suffixes of "APPLE"
 - o APPLE
 - PPLE
 - o PLE
 - o le
 - 0 E

- Ordered Suffixes of "APPLE" (index)
 - APPLE [0]
 - E [4]
 - LE [3]
 - PLE [2]
 - PPLE [1]

Suffix Array: [0,4,3,2,1]

Can use binary search to find suffixes (infini-grams)

- Ordered Suffixes of "APPLE" (index)
 - APPLE [0]
 - E [4]
 - LE [3]
 - PLE [2]
 - PPLE [1]

w = APPLE. w[j]: suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

- Ordered Suffixes of "APPLE" (index)
 - APPLE [0]
 - E [4]
 - LE [3]
 - PLE [2]
 - PPLE [1]

w = APPLE. w[j]: suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

Check w[i[2]] = w[3] = LE

- Ordered Suffixes of "APPLE" (index)
 - APPLE [0]
 - E [4]
 - LE [3]
 - PLE [2]
 PPLE [1]

w = APPLE. w[j] suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

Check w[i[2]] -> w[3] = LE

LE < P, check w[i[4]]

- Ordered Suffixes of "APPLE" (index)
 - APPLE [0]
 - E [4]
 - LE [3]
 - PLE [2]
 PPLE [1]

w = APPLE. w[j] suffix after jth index

```
i = [0, 4, 3, 2, 1]
```

Want to find bigram that starts with P.

Check w[i[2]] -> w[3] = LE

LE < P, check w[i[4]]

w[I[4]] = w[1] = PPLE

PPLE > P and is the last index, search for start index if bigram that starts with p

- Ordered Suffixes of "APPLE" (index)
 - APPLE [0]
 - E [4]
 - LE [3]
 - PLE [2]
 PPLE [1]

w = APPLE. w[j] suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

Check w[i[2]] -> w[3] = LE

LE < P, check w[i[4]]

w[I[4]] = w[1] = PPLE

PPLE > P and is the last index, search for start index if bigram that starts with p

w[i[3]] = w[2] = PLE

Thus there are two bigrams that start with **P**. Namly **PP** and **PL**

Infini-grams

- Want to find p(B | MA)
- $p(B | MA) = \frac{cnt(MAB)}{cnt(MA)} = \frac{c-b}{d-a}$
- Values of *a*, *b*, *c*, *d* can be found by binary search

Let i_c^s denote the first index from the suffix array where the suffix starts with s. Let i_c^e denote the last index from the suffix array where the suffix array starts with s. Then

$$P_\infty(w|c) = rac{i^e_{wc} - i^s_{wc}}{i^e_c - i^s_c}$$

• Indices can be found by binary search

Suffix Array is Efficient

- Space efficient in O(N). ... (N: size of the corpus)
 - \circ O(N log(N)) But in reality O(N)
- Search Efficient in O(log(N))
- Next word prediction with prob > .5 is fast
 - Check the .25, .5, .75 index of the n-gram
 - ∞-grams agree with text if the next word prediction from suffix array has probability greater than .5 and matches text.

Suffix Array is (not) Efficient

- Full next-token distribution calculation is slow
 - O(V logN) (V is size of vocab, N is size of corpus)
- argmax (most possible next word prediction) is slow

Reference Data (\rightarrow)	Pile-train $N = 0.36T$	$\begin{array}{c} \textbf{RPJ} \\ N = 1.4 \text{T} \end{array}$	Time Complexity (measured by number
Query Type (\downarrow)	S = 2	S = 8	of random disk accesses)
1. Counting an <i>n</i> -gram			$O(\log N)$
$(n = 1)$	7 ms	9 ms	
$(n = 2)$	13 ms	20 ms	
$(n = 5)$	14 ms	19 ms	
$(n = 10)$	13 ms	18 ms	
$(n = 100)$	13 ms	19 ms	
$(n = 1000)$	14 ms	19 ms	
2. Computing a token probability from <i>n</i> -gram LM ($n = 5$)	19 ms	30 ms	$O(\log N)$
3. Computing full next-token distribution from n -gram LM (n = 5)	31 ms	39 ms	$O(V \cdot \log N)$
4. Computing a token probability from ∞ -gram LM	90 ms	135 ms	$O(\log L \cdot \log N)$
on consecutive tokens	12 ms	20 ms	$O(\log N)$
5. Computing full next-token distribution from ∞ -gram LM	88 ms	180 ms	$O((\log L + V) \cdot \log N)$

Demo

• https://huggingface.co/spaces/liujch1998/infini-gram

Train / Test Data

- Train (Reference):
 - Pile-train (380B tokens)
 - RedPajama (1.4T tokens) for some experiments
- Test:
 - Pile-val
 - Pile-test

Decontamination of the Training Data

- Filtering out repeated documents in training and test data
 - Important, because ∞-grams memorizes sparse sequences
- Document-wise filter
- 80% 13-gram overlap

RedPajama							
Subset	Total docs	Filtered docs	Ratio filtered				
arxiv	1558306	213	0.01%				
book	205744	711	0.3%				
c4	364868892	53195	0.01%				
common_crawl	476276019	0	0%				
github	28793312	614259	2%				
stackexchange	29825086	40086	0.01%				
wikipedia	29834171	21973	0.07%				
Total	931361530	730437	0.08%				

PILE (TRAIN)							
Subset	Total docs	Filtered docs	Ratio filtered				
Arxiv	2377741	1089					
BookCorpus2	25355	6					
Books3	277655	99					
DM Mathematics	1918535	0	0%				
Enron Emails	926132	18236	2%				
EuroParl	131723	21					
FreeLaw	5069088	11821	0.2%				
Github	18044218	961726	5.3%				
Gutenberg (PG-19)	66981	70	0.1%				
HackerNews	1571968	14					
NIH ExPorter	1777926	3739	0.2%				
OpenSubtitles	632485	5754	0.9%				
OpenWebText2	32333654	136914	0.4%				
PhilPapers	63875	2324	0.4%				
Pile-CČ	52441354	19928					
PubMed Abstracts	29329202	2312					
PubMed Central	5679903	4230	0.1%				
StackExchange	29529008	2072					
USPTO Backgrounds	11123325	80088	0.7%				
Ubuntu IRC	20067	10					
Wikipedia (en)	16939503	45052	0.3%				
YoutubeSubtitles	328030	871	0.3%				
Total	210607728	1296376	0.6%				

Comparing with Human-Written Text: Setup

- Next-token prediction
- Measure token-wise agreement between the predicted token and humanwritten text
 - \circ A prediction is deemed in-agreement if p > 0.5
 - Why agreement? Why not perplexity?
 - Because getting probabilities for every possible token is slow...
 - If the prediction is sparse and wrong, then $perplexity = \infty$

The cat sat on th	e		
	mat desk bed	(p=0.6) (p=0.2) (p=0.05)	
	:	:	J

\bigcap	I have a pet			
		dog cat snake	(p=0.3) (p=0.25) (p=0.05)	×
		•	•)

Human-Written Text: Results

- 47% overall agreement rate
- Larger effective n = higher agreement
 - Effective n: the actual length of context (+1) Ο being used in a prediction
 - 75% agreement for n = 16Ο
- Sparse = higher agreement
 - 75% overall sparse agreement 0

0.0

32

2k

0k

2 4 8

16 effective n

Human-Written Text: against neural LMs

- "∞-grams shines where neural LMs fail"
 - N-gram performance is nontrivial even for tokens in which Llama performs very poorly

Comparing with Machine-Generated Text: Setup

• Generate a sequence with a model, then test for agreement with ∞-grams next-token prediction

Machine-Generated Text: Results

- Impact of decoding methods
 - Greedy: most agreement
 - Nucleus (top-p): most similar distribution to ∞-grams vs. human-written text

Machine-Generated Text: Results

- Impact of model size
 - Claim: increasing model size increases agreement level and slightly increases effective-n
 - What does effective-n mean?
 - Higher effective-n = the generator is more likely to copy verbatim from the training data (if the training and reference data overlap)

Machine-Generated Text: Results

- Curious phenomenon:
 - For greedy decoding, agreement level fluctuates as effective-n increases
 - Not for nucleus or temperature sampling
 - Suspected reason: have something to do with positional embeddings

Can this help LLMs?

- Interpolate the probability of the infini-grams and neural network
 - Different lambda values for sparse infinigrams
 - Lambda values optimized on Pile-val

$$\begin{cases} P(y \mid x) = \lambda_1 P_{\infty}(y \mid x) + (1 - \lambda_1) P_{\text{neural}}(y \mid x) & \text{if } P_{\omega}(y_i \mid x) = 1 \text{ (sparse)} \\ P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neural}}(y \mid x) & \text{if } 0 < P_{\omega}(y_i \mid x) < 1 \text{ (non-sparse)} \end{cases} \end{cases}$$

Interpolating with neural LMs: Results

- Significant improvements on perplexity
 - **11% to 42%**

Neural LM	Size	Reference Data	Va	lidation		Test	
i teurur Eiti	one	Activitie Dum	Neural	+ ∞-gram	Neural	+ ∞-gr	am
GPT-2 GPT-2 GPT-2 GPT-2	117M 345M 774M 1.6B	Pile-train Pile-train Pile-train Pile-train	22.82 16.45 15.35 14.42	13.71 (42%) 11.22 (34%) 10.39 (35%) 9.93 (33%)	22.86 16.69 15.40 14.61	13.58 11.18 10.33 9.93	(42%) (35%) (35%) (34%)
GPT-Neo GPT-Neo GPT-Neo GPT-J	125M 1.3B 2.7B 6.7B	Pile-train Pile-train Pile-train Pile-train	13.50 8.29 7.46 6.25	10.76 (22%) 7.31 (13%) 6.69 (12%) 5.75 (10%)	a) 14.08 b) 8.61 b) 7.77 b) 6.51	10.79 7.36 6.76 5.85	(25%) (16%) (15%) (12%)
Llama-2 Llama-2 Llama-2	7B 13B 70B	Pile-train Pile-train Pile-train	5.69 5.30 4.59	5.05 (14% 4.75 (13% 4.21 (11%	5.83 5.43 5.43 4.65	5.06 4.76 4.20	(16%) (15%) (12%)
Llama-2 Llama-2 Llama-2	7B 13B 70B	Pile-train + RedPajama Pile-train + RedPajama Pile-train + RedPajama	5.69 5.30 4.59	4.66 (22% 4.41 (21% 3.96 (18%	5.83 5.43 4.65	4.66 4.42 3.95	(24%) (23%) (19%)

Interpolating with neural LMs: Results

- Smaller LMs = more improvement (for models in the same family)
 - Does not hold across families, some models are already trained on Pile

Neural LM Size Reference Data			Validation			Test		
Tituru Lin	onde	Neural +∞-gram		gram	Neural +∞-g		gram	
GPT-2	117M	Pile-train	22.82	13.71	(42%)	22.86	13.58	(42%)
GPT-2	345M	Pile-train	16.45	11.22	(34%)	16.69	11.18	(35%)
GPT-2	774M	Pile-train	15.35	10.39	(35%)	15.40	10.33	(35%)
GPT-2	1.6B	Pile-train	14.42	9.93	(33%)	14.61	9.93	(34%)
GPT-Neo	125M	Pile-train	13.50	10.76	(22%)	14.08	10.79	(25%)
GPT-Neo	1.3B	Pile-train	8.29	7.31	(13%)	8.61	7.36	(16%)
GPT-Neo	2.7B	Pile-train	7.46	6.69	(12%)	7.77	6.76	(15%)
GPT-J	6.7B	Pile-train	6.25	5.75	(10%)	6.51	5.85	(12%)
Llama-2	7B	Pile-train	5.69	5.05	(14%)	5.83	5.06	(16%)
Llama-2	13B	Pile-train	5.30	4.75	(13%)	5.43	4.76	(15%)
Llama-2	70B	Pile-train	4.59	4.21	(11%)	4.65	4.20	(12%)
Llama-2	7B	Pile-train + RedPajama	5.69	4.66	(22%)	5.83	4.66	(24%)
Llama-2	13B	Pile-train + RedPajama	5.30	4.41	(21%)	5.43	4.42	(23%)
Llama-2	70B	Pile-train + RedPajama	4.59	3.96	(18%)	4.65	3.95	(19%)

Interpolating with neural LMs: Results

• More reference context helps

Neural LM	Size	Reference Data	Validation				Test	Test	
i icuiui Liii	onde	Activitie Dum	Neural	+ ∞-gram		Neural	+∞-;	gram	
GPT-2	117M	Pile-train	22.82	13.71	(42%)	22.86	13.58	(42%)	
GPT-2	345M	Pile-train	16.45	11.22	(34%)	16.69	11.18	(35%)	
GPT-2	774M	Pile-train	15.35	10.39	(35%)	15.40	10.33	(35%)	
GPT-2	1.6B	Pile-train	14.42	9.93	(33%)	14.61	9.93	(34%)	
GPT-Neo	125M	Pile-train	13.50	10.76	(22%)	14.08	10.79	(25%)	
GPT-Neo	1.3B	Pile-train	8.29	7.31	(13%)	8.61	7.36	(16%)	
GPT-Neo	2.7B	Pile-train	7.46	6.69	(12%)	7.77	6.76	(15%)	
GPT-J	6.7B	Pile-train	6.25	5.75	(10%)	6.51	5.85	(12%)	
Llama-2	7B	Pile-train	5.69	5.05	(14%)	5.83	5.06	(16%)	
Llama-2	13B	Pile-train	5.30	4.75	(13%)	5.43	4.76	(15%)	
Llama-2	70B	Pile-train	4.59	4.21	(11%)	4.65	4.20	(12%)	
Llama-2	7B	Pile-train + RedPajama	5.69	4.66	(22%)	5.83	4.66	(24%)	
Llama-2	13B	Pile-train + RedPajama	5.30	4.41	(21%)	5.43	4.42	(23%)	
Llama-2	70B	Pile-train + RedPajama	4.59	3.96	(18%)	4.65	3.95	(19%)	

Text generation

• Might harm generation, because the infinigram model may predict completely irrelevant tokens and make the model digress.

Questions

- Isn't this just memorization?
 - (Isn't neural LMs also just memorization of probabilistic distributions of a language?)
- Loss on infinigrams alone?
 - We can use backoff + smoothing to estimate perplexity.