
Infini-gram: Scaling n-gram

Language Models to a Trillion

Tokens
The return of n-grams

To Infinity and Beyond!

Infinitely long n-grams with backoff

N-gram

● Sequence of n adjacent symbols in order
○ 1 gram: a, b, c, d

○ 2gram: ab, cd, ee, po

○ 3gram: abc, pow, ivo, ovq

N-Gram Probability

● Probability of the next token given (n-1) context
○ Bigram: p(a | b)

○ Trigram Example: p(a | po)

● N-Gram Probability is used interchangeably with N-Gram
○ Choose the right definition according to context

● In general, n-gram probability is calculated using

Backoff

● Sometimes n-gram sequence is rare or unseen in training data

● In this case, using less context might be helpful

● N-grams that are extrapolated to infinity.

● Backoff when the denominator is zero

● An infini-gram is sparse when for some 𝑤𝑖

● An effective n of an infini-gram is equal to one plus the length of the prompt’s

longest suffix that appears in the training data.
○ Given a string, n of the longest n-gram that appeared in the corpus.

∞-Gram: definition

Suffix Array

● A sorted list of all suffix start indices in a string

Suffix Array

● Suffixes of “APPLE”
○ APPLE
○ PPLE

○ PLE
○ LE

○ E

Suffix Array

● Suffixes of “APPLE”
○ APPLE

○ PPLE

○ PLE

○ LE

○ E

● Ordered Suffixes of “APPLE”

○ APPLE

○ E

○ LE

○ PLE

○ PPLE

Alphabetical

ordering

Suffix Array

● Suffixes of “APPLE”
○ APPLE

○ PPLE

○ PLE

○ LE

○ E

● Ordered Suffixes of “APPLE” (index)

○ APPLE [0]

○ E [4]

○ LE [3]

○ PLE [2]

○ PPLE [1]

Alphabetical

ordering

Suffix Array: [0,4,3,2,1]

Can use binary search to find suffixes (infini-grams)

N-Gram Search

● Ordered Suffixes of “APPLE” (index)
○ APPLE [0]
○ E [4]

○ LE [3]
○ PLE [2]

○ PPLE [1]

w = APPLE. w[j]: suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

N-Gram Search

● Ordered Suffixes of “APPLE” (index)
○ APPLE [0]
○ E [4]

○ LE [3]
○ PLE [2]

○ PPLE [1]

w = APPLE. w[j]: suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

Check w[i[2]] = w[3] = LE

N-Gram Search

● Ordered Suffixes of “APPLE” (index)
○ APPLE [0]
○ E [4]
○ LE [3]
○ PLE [2]
○ PPLE [1]

w = APPLE. w[j] suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

Check w[i[2]] -> w[3] = LE

LE < P, check w[i[4]]

N-Gram Search

● Ordered Suffixes of “APPLE” (index)
○ APPLE [0]
○ E [4]
○ LE [3]
○ PLE [2]
○ PPLE [1]

w = APPLE. w[j] suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

Check w[i[2]] -> w[3] = LE

LE < P, check w[i[4]]

w[I[4]] = w[1] = PPLE

PPLE > P and is the last index, search

for start index if bigram that starts with p

N-Gram Search

● Ordered Suffixes of “APPLE” (index)
○ APPLE [0]
○ E [4]
○ LE [3]
○ PLE [2]
○ PPLE [1]

w = APPLE. w[j] suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

Check w[i[2]] -> w[3] = LE

LE < P, check w[i[4]]

w[I[4]] = w[1] = PPLE

PPLE > P and is the last index, search

for start index if bigram that starts with p

w[i[3]] = w[2] = PLE

Thus there are two bigrams that start

with P. Namly PP and PL

Infini-grams

… … …

index:

● Want to find 𝑝 𝐵 𝑀𝐴)

● 𝑝 𝐵 𝑀𝐴) =
𝑐𝑛𝑡(𝑀𝐴𝐵)

𝑐𝑛𝑡(𝑀𝐴)
=

𝑐 −𝑏

𝑑 −𝑎

● Values of 𝑎, 𝑏, 𝑐, 𝑑 can be found by binary search

A

A
A
.

.

A

A
B
.

.

A

B
B
.

.

M

A
.
.

M

A
B
.

.

M

A
B
.

.

M

A
B
.

.

M

A
C
.

.

M

A
D
.

.

M

A
Z
.

.

M

B
B
.

.

M

B
C
.

.

a b c d

● Indices can be found by binary search

Suffix Array is Efficient

● Space efficient in O(N). ... (N: size of the corpus)
○ O(N log(N)) But in reality O(N)

● Search Efficient in O(log(N))

● Next word prediction with prob > .5 is fast
○ Check the .25, .5, .75 index of the n-gram

○ ∞-grams agree with text if the next word prediction from suffix array has probability greater

than .5 and matches text.

Suffix Array is (not) Efficient

● Full next-token distribution calculation is slow
○ O(V logN) (V is size of vocab, N is size of corpus)

● argmax (most possible next word prediction) is slow

Demo

● https://huggingface.co/spaces/liujch1998/infini-gram

Train / Test Data

● Train (Reference):
○ Pile-train (380B tokens)

○ RedPajama (1.4T tokens) for some experiments

● Test:
○ Pile-val

○ Pile-test

Decontamination of the Training Data

• Filtering out repeated documents in

training and test data
• Important, because ∞-grams memorizes

sparse sequences

• Document-wise filter

• 80% 13-gram overlap

Results

Comparing with Human-Written Text: Setup

● Next-token prediction

● Measure token-wise agreement between the predicted token and human-

written text
○ A prediction is deemed in-agreement if p > 0.5

○ Why agreement? Why not perplexity?

■ Because getting probabilities for every possible token is slow…

■ If the prediction is sparse and wrong, then perplexity = ∞

The cat sat on the ____

mat

desk
bed
⋮

(p=0.6)

(p=0.2)
(p=0.05)
⋮

I have a pet ____

dog

cat
snake
⋮

(p=0.3)

(p=0.25)
(p=0.05)
⋮

Human-Written Text: Results

● 47% overall agreement rate

● Larger effective n = higher agreement
○ Effective n: the actual length of context (+1)

being used in a prediction

○ 75% agreement for n = 16

● Sparse = higher agreement
○ 75% overall sparse agreement

Human-Written Text: against neural LMs

● “∞-grams shines where neural LMs fail”
○ N-gram performance is nontrivial even for tokens in which Llama performs very poorly

Comparing with Machine-Generated Text: Setup

● Generate a sequence with a model, then test for agreement with ∞-grams

next-token prediction

Machine-Generated Text: Results

● Impact of decoding methods
○ Greedy: most agreement

○ Nucleus (top-p): most similar distribution to ∞-grams vs. human-written text

(Human)

Machine-Generated Text: Results

● Impact of model size
○ Claim: increasing model size increases agreement level and slightly increases effective-n

○ What does effective-n mean?

■ Higher effective-n = the generator is more likely to copy verbatim from the training data

(if the training and reference data overlap)

Machine-Generated Text: Results

● Curious phenomenon:
○ For greedy decoding, agreement level fluctuates as effective-n increases

○ Not for nucleus or temperature sampling

○ Suspected reason: have something to do with positional embeddings

Can this help LLMs?

● Interpolate the probability of the infini-grams and neural network
o Different lambda values for sparse infinigrams

o Lambda values optimized on Pile-val

1 1

2 2

if P∞(yi|x) = 1 (sparse)

if 0 < P∞(yi|x) < 1 (non-sparse)

Interpolating with neural LMs: Results

● Significant improvements on perplexity
○ 11% to 42%

Interpolating with neural LMs: Results

● Smaller LMs = more improvement (for models in the same family)
○ Does not hold across families, some models are already trained on Pile

Interpolating with neural LMs: Results

● More reference context helps

Text generation

● Might harm generation, because the infinigram model may predict completely

irrelevant tokens and make the model digress.

Questions

● Isn’t this just memorization?
○ (Isn’t neural LMs also just memorization of probabilistic distributions of a language?)

● Loss on infinigrams alone?
○ We can use backoff + smoothing to estimate perplexity.

	Default Section
	幻灯片 1: Infini-gram: Scaling n-gram Language Models to a Trillion Tokens
	幻灯片 2: To Infinity and Beyond!
	幻灯片 4: N-gram
	幻灯片 5: N-Gram Probability
	幻灯片 6: Backoff
	幻灯片 7: ∞-Gram: definition
	幻灯片 8: Suffix Array
	幻灯片 9: Suffix Array
	幻灯片 10: Suffix Array
	幻灯片 11: Suffix Array
	幻灯片 12: N-Gram Search
	幻灯片 13: N-Gram Search
	幻灯片 14: N-Gram Search
	幻灯片 15: N-Gram Search
	幻灯片 16: N-Gram Search
	幻灯片 17: Infini-grams
	幻灯片 18
	幻灯片 19: Suffix Array is Efficient
	幻灯片 20: Suffix Array is (not) Efficient
	幻灯片 21: Demo
	幻灯片 22: Train / Test Data
	幻灯片 23: Decontamination of the Training Data
	幻灯片 24: Results
	幻灯片 25: Comparing with Human-Written Text: Setup
	幻灯片 26: Human-Written Text: Results
	幻灯片 27: Human-Written Text: against neural LMs
	幻灯片 28: Comparing with Machine-Generated Text: Setup
	幻灯片 29: Machine-Generated Text: Results
	幻灯片 30: Machine-Generated Text: Results
	幻灯片 31: Machine-Generated Text: Results
	幻灯片 32: Can this help LLMs?
	幻灯片 33: Interpolating with neural LMs: Results
	幻灯片 34: Interpolating with neural LMs: Results
	幻灯片 35: Interpolating with neural LMs: Results
	幻灯片 36: Text generation
	幻灯片 37: Questions

