Infini-gram: Scaling n-gram Language Models to a Trillion Tokens

The return of n-grams

To Infinity and Beyond! Infinitely long n-grams with backoff... conducts research at the Paul G. Allen School of Computer Science and Engineering, University of Prompt 5-gram LM $(n = 5)$ ∞-gram LM $(n = 16$ for this case) ent (research at the Paul G. Allen School of Computer Science and Engineering, University of) = 0 $\text{cnt}(\text{Engineering}, \text{University of}) = 274644$ cnt(at the Paul G. Allen School of Computer Science and Engineering, University of) = 10 $P(*)$ Engineering, University of) = _California (20896 / 274644) $P(*)$ at the Paul G. Allen School of Computer Science and Engineering, University of $=$ 8% $4%$ Illinois (10631 / 274644) Washington (10 / 10) **Mashington** 100% _Michigan (9094 / 274644) 3% Colorado (6438 / 274644) $2%$ Southern (6340 / 274644) 2% 5-gram table Infini-gram index $(28$ TiB) $(10$ TiB) Washington (6340 / 274644) $2%$ \cdots

N-gram

- Sequence of n adjacent symbols in order
	- 1 gram: a, b, c, d
	- o 2gram: ab, cd, ee, po
	- o 3gram: abc, pow, ivo, ovq

N-Gram Probability

- Probability of the next token given (n-1) context
	- \circ Bigram: $p(a | b)$
	- Trigram Example: p(a | po)
- N-Gram Probability is used interchangeably with N-Gram
	- Choose the right definition according to context
- In general, n-gram probability is calculated using

$$
P(a_n|a_1a_2\cdots a_{n-1}) = \frac{cnt(a_1a_2\cdots a_{n-1}a_n)}{cnt(a_1a_2\cdots a_{n-1})}
$$

Backoff

- Sometimes n-gram sequence is rare or unseen in training data
- In this case, using less context might be helpful

If $cnt(a_1a_2\cdots a_{n-1}a_n)=0$ but $cnt(a_3\cdots a_{n-1}a_n)=10$, we might want to calculate

$$
P(a_n|a_3\cdots a_{n-1})=\frac{cnt(a_3\cdots a_{n-1}a_n)}{cnt(a_3\cdots a_{n-1})}
$$

Instead of

$$
P(a_n|a_1a_2\cdots a_{n-1})=\frac{cnt(a_1a_2\cdots a_{n-1}a_n)}{cnt(a_1a_2\cdots a_{n-1})}
$$

∞-Gram: definition

$$
P_{\infty}(w_i \mid w_{1:i-1}) = \frac{\text{cnt}(w_{i-(n-1):i-1}w_i \mid \mathcal{D})}{\text{cnt}(w_{i-(n-1):i-1} \mid \mathcal{D})}
$$

- N-grams that are extrapolated to infinity.
- Backoff when the denominator is zero
- An infini-gram is **sparse** when $P_{\infty}(w_i|w_{1:i-1}) = 1$ or some w_i
- An **effective n** of an infini-gram is equal to one plus the length of the prompt's longest suffix that appears in the training data.
	- Given a string, n of the longest n-gram that appeared in the corpus.

• A sorted list of all suffix start indices in a string

Figure 2: Left: the suffix array for a toy string. Right: illustration of the suffix array in the infini-gram index, with $N = 4$ tokens in the dataset.

- Suffixes of "APPLE"
	- APPLE
	- PPLE
	- PLE
	- LE
	- E

- Suffixes of "APPLE"
	- APPLE
	- PPLE
	- PLE
	- LE ^E
	-

● Ordered Suffixes of "APPLE"

○ APPLE

○ E ○ LE ○ PLE ○ PPLE

- Suffixes of "APPLE"
	- APPLE
	- PPLE
	- PLE
	- LE
	- E

- Ordered Suffixes of "APPLE" (index)
	- APPLE [0]
	- \circ E [4]
	- LE [3]
	- PLE [2]
	- PPLE [1]

Suffix Array: [0,4,3,2,1]

Can use binary search to find suffixes (infini-grams)

- Ordered Suffixes of "APPLE" (index)
	- APPLE [0]
	- \circ E [4]
	- LE [3]
	- PLE [2]
	- PPLE [1]

 $w = APPLE$. $w[i]$: suffix after jth index

 $i = [0, 4, 3, 2, 1]$

Want to find bigram that starts with P.

- Ordered Suffixes of "APPLE" (index)
	- APPLE [0]
	- \circ E [4]
	- LE [3]
	- PLE [2]
	- PPLE [1]

 $w = APPLE$. $w[i]$: suffix after jth index

 $i = [0, 4, 3, 2, 1]$

Want to find bigram that starts with P.

Check w[i[2]] = $w[3] = LE$

- Ordered Suffixes of "APPLE" (index)
	- APPLE [0]
	- \circ E [4]
	- LE [3]
	- PLE [2] ○ PPLE [1]

 $w = APPLE$. wij suffix after jth index

 $i = [0, 4, 3, 2, 1]$

Want to find bigram that starts with P.

Check w[i[2]] \rightarrow w[3] = LE

 $LE < P$, check w[i[4]]

- Ordered Suffixes of "APPLE" (index)
	- APPLE [0]
	- \circ E [4]
	- LE [3]
	- PLE [2] ○ PPLE [1]

 $w = APPLE$. wij suffix after jth index

```
i = [0, 4, 3, 2, 1]
```
Want to find bigram that starts with P.

Check w[i[2]] \rightarrow w[3] = LE

 $LE < P$, check w[i[4]]

 $w[1[4]] = w[1] = PPLE$

PPLE > P and is the last index, search for start index if bigram that starts with p

- Ordered Suffixes of "APPLE" (index)
	- APPLE [0]
	- \circ E [4]
	- LE [3]
	- PLE [2] ○ PPLE [1]

 $w = APPLE$. wij suffix after jth index

 $i = [0, 4, 3, 2, 1]$

Want to find bigram that starts with P.

Check wii[2] \rightarrow w[3] = LE

 $LE < P$, check w[i[4]]

 $w[1[4]] = w[1] = PPLE$

PPLE > P and is the last index, search for start index if bigram that starts with p

 $w[i[3]] = w[2] = PLE$

Thus there are two bigrams that start with **P**. Namly **PP** and **PL**

Infini-grams

- Want to find $p(B \mid MA)$
- $p(B \mid MA) = \frac{cnt(MAB)}{ant(MA)}$ $cnt(MA)$ $=\frac{c-b}{d}$ $d - a$
- \bullet Values of a, b, c, d can be found by binary search

Let i_c^s denote the first index from the suffix array where the suffix starts with s. Let i_c^e denote the last index from the suffix array where the suffix array starts with s. Then

$$
P_{\infty}(w|c)=\frac{i_{wc}^e-i_{wc}^s}{i_c^e-i_c^s}
$$

• Indices can be found by binary search

Suffix Array is Efficient

- Space efficient in $O(N)$ (N: size of the corpus)
	- \circ O(N log(N)) But in reality O(N)
- Search Efficient in $O(log(N))$
- Next word prediction with prob > .5 is fast
	- \circ Check the .25, .5, .75 index of the n-gram
	- ∞-grams **agree** with text if the next word prediction from suffix array has probability greater than .5 and matches text.

Suffix Array is (not) Efficient

- Full next-token distribution calculation is slow
	- O(V logN) (V is size of vocab, N is size of corpus)
- argmax (most possible next word prediction) is slow

Demo

● https://huggingface.co/spaces/liujch1998/infini-gram

Train / Test Data

- Train (Reference):
	- Pile-train (380B tokens)
	- RedPajama (1.4T tokens) for some experiments
- Test:
	- Pile-val
	- Pile-test

Decontamination of the Training Data

- Filtering out repeated documents in training and test data
	- Important, because ∞-grams memorizes sparse sequences
- Document-wise filter
- 80% 13-gram overlap

Comparing with Human-Written Text: Setup

- Next-token prediction
- Measure token-wise agreement between the predicted token and humanwritten text
	- \circ A prediction is deemed in-agreement if $p > 0.5$
	- Why agreement? Why not perplexity?
		- Because getting probabilities for every possible token is slow...
		- **■** If the prediction is sparse and wrong, then perplexity = ∞

Human-Written Text: Results

- 47% overall agreement rate
- Larger effective $n =$ higher agreement
	- \circ Effective n: the actual length of context $(+1)$ being used in a prediction
	- \degree 75% agreement for $n = 16$
- Sparse = higher agreement
	- 75% overall sparse agreement

Human-Written Text: against neural LMs

- "∞-grams shines where neural LMs fail"
	- N-gram performance is nontrivial even for tokens in which Llama performs very poorly

Comparing with Machine-Generated Text: Setup

● Generate a sequence with a model, then test for agreement with ∞-grams next-token prediction

Machine-Generated Text: Results

- Impact of decoding methods
	- Greedy: most agreement
	- Nucleus (top-p): most similar distribution to ∞-grams vs. human-written text

Machine-Generated Text: Results

- Impact of model size
	- Claim: increasing model size increases agreement level and slightly increases effective-n
	- What does effective-n mean?
		- Higher effective-n $=$ the generator is more likely to copy verbatim from the training data (if the training and reference data overlap)

Machine-Generated Text: Results

- Curious phenomenon:
	- For greedy decoding, agreement level fluctuates as effective-n increases
	- Not for nucleus or temperature sampling
	- Suspected reason: have something to do with positional embeddings

Can this help LLMs?

- Interpolate the probability of the infini-grams and neural network
	- o Different lambda values for sparse infinigrams
	- o Lambda values optimized on Pile-val

$$
\begin{cases}\nP(y \mid x) = \lambda_1 P_{\infty}(y \mid x) + (1 - \lambda_1) P_{\text{neutral}}(y \mid x) \frac{\text{if } P_{\infty}(y_i \mid x) = 1 \text{ (sparse)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \mid x) \frac{\text{if } 0 < P_{\infty}(y_i \mid x) < 1 \text{ (non-space)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \mid x)\frac{\text{if } 0 < P_{\infty}(y_i \mid x) < 1 \text{ (non-space)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \mid x)\frac{\text{if } 0 < P_{\infty}(y_i \mid x) < 1 \text{ (non-space)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \mid x)\frac{\text{if } 0 < P_{\infty}(y_i \mid x) < 1 \text{ (non-space)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \mid x)\frac{\text{if } 0 < P_{\infty}(y_i \mid x) < 1 \text{ (non-space)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \mid x)\frac{\text{if } 0 < P_{\infty}(y_i \mid x) < 1 \text{ (non-space)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \mid x)\frac{\text{if } 0 < P_{\infty}(y_i \mid x) < 1 \text{ (non-space)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \mid x)\frac{\text{if } 0 < P_{\infty}(y_i \mid x) < 1 \text{ (non-space)}}{P(y \mid x) = \lambda_2 P_{\infty}(y \mid x) + (1 - \lambda_2) P_{\text{neutral}}(y \
$$

Interpolating with neural LMs: Results

- Significant improvements on perplexity
	- \circ 11% to 42%

Interpolating with neural LMs: Results

- Smaller $LMs = more improvement (for models in the same family)$
	- Does not hold across families, some models are already trained on Pile

Interpolating with neural LMs: Results

● More reference context helps

Text generation

• Might harm generation, because the infinigram model may predict completely irrelevant tokens and make the model digress.

Questions

- Isn't this just memorization?
	- (Isn't neural LMs also just memorization of probabilistic distributions of a language?)
- Loss on infinigrams alone?
	- We can use backoff + smoothing to estimate perplexity.