
Infini-gram: Scaling n-gram 

Language Models to a Trillion 

Tokens
The return of n-grams



To Infinity and Beyond!

Infinitely long n-grams with backoff



N-gram

● Sequence of n adjacent symbols in order
○ 1 gram: a, b, c, d

○ 2gram: ab, cd, ee, po

○ 3gram: abc, pow, ivo, ovq



N-Gram Probability

● Probability of the next token given (n-1) context
○ Bigram: p(a | b)

○ Trigram Example: p(a | po)

● N-Gram Probability is used interchangeably with N-Gram
○ Choose the right definition according to context

● In general, n-gram probability is calculated using



Backoff

● Sometimes n-gram sequence is rare or unseen in training data

● In this case, using less context might be helpful



● N-grams that are extrapolated to infinity.

● Backoff when the denominator is zero

● An infini-gram is sparse when for some 𝑤𝑖

● An effective n of an infini-gram is equal to one plus the length of the prompt’s 

longest suffix that appears in the training data.
○ Given a string, n of the longest n-gram that appeared in the corpus.

∞-Gram: definition



Suffix Array

● A sorted list of all suffix start indices in a string 
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Suffix Array

● Suffixes of “APPLE”
○ APPLE

○ PPLE

○ PLE

○ LE

○ E

● Ordered Suffixes of “APPLE” (index)

○ APPLE [0]

○ E [4]

○ LE [3]

○ PLE [2]

○ PPLE [1]

Alphabetical 

ordering

Suffix Array: [0,4,3,2,1]

Can use binary search to find suffixes (infini-grams)
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N-Gram Search  

● Ordered Suffixes of “APPLE” (index)
○ APPLE [0]
○ E [4]
○ LE [3]
○ PLE [2]
○ PPLE [1]

w = APPLE.       w[j] suffix after jth index

i = [0, 4, 3, 2, 1]

Want to find bigram that starts with P.

Check w[i[2]] -> w[3] = LE

LE < P, check w[i[4]]

w[I[4]] = w[1] =  PPLE

PPLE > P and is the last index, search 

for start index if bigram that starts with p

w[i[3]] = w[2] = PLE

Thus there are two bigrams that start 

with P. Namly PP and PL



Infini-grams

…                     …                    …                                                  

index:

● Want to find 𝑝 𝐵 𝑀𝐴)

● 𝑝 𝐵 𝑀𝐴) =
𝑐𝑛𝑡(𝑀𝐴𝐵)

𝑐𝑛𝑡(𝑀𝐴)
= 

𝑐 −𝑏

𝑑 −𝑎

● Values of 𝑎, 𝑏, 𝑐, 𝑑 can be found by binary search
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● Indices can be found by binary search



Suffix Array is Efficient

● Space efficient in O(N). ... (N: size of the corpus)
○ O(N log(N)) But in reality O(N)

● Search Efficient in O(log(N))

● Next word prediction with prob > .5 is fast
○ Check the .25, .5, .75 index of the n-gram

○ ∞-grams agree with text if the next word prediction from suffix array has probability greater 

than .5 and matches text.



Suffix Array is (not) Efficient

● Full next-token distribution calculation is slow
○ O(V logN) (V is size of vocab, N is size of corpus)

● argmax (most possible next word prediction) is slow



Demo

● https://huggingface.co/spaces/liujch1998/infini-gram



Train / Test Data

● Train (Reference): 
○ Pile-train (380B tokens)

○ RedPajama (1.4T tokens) for some experiments

● Test: 
○ Pile-val

○ Pile-test



Decontamination of the Training Data

• Filtering out repeated documents in 

training and test data
• Important, because ∞-grams memorizes 

sparse sequences

• Document-wise filter

• 80% 13-gram overlap



Results



Comparing with Human-Written Text: Setup

● Next-token prediction

● Measure token-wise agreement between the predicted token and human-

written text
○ A prediction is deemed in-agreement if p > 0.5

○ Why agreement? Why not perplexity?

■ Because getting probabilities for every possible token is slow…

■ If the prediction is sparse and wrong, then perplexity = ∞

The cat sat on the ____

mat   

desk 
bed
⋮

(p=0.6)

(p=0.2)
(p=0.05)
⋮

I have a pet ____

dog   

cat 
snake
⋮

(p=0.3)

(p=0.25)
(p=0.05)
⋮



Human-Written Text: Results

● 47% overall agreement rate

● Larger effective n = higher agreement
○ Effective n: the actual length of context (+1) 

being used in a prediction

○ 75% agreement for n = 16

● Sparse = higher agreement
○ 75% overall sparse agreement



Human-Written Text: against neural LMs

● “∞-grams shines where neural LMs fail”
○ N-gram performance is nontrivial even for tokens in which Llama performs very poorly



Comparing with Machine-Generated Text: Setup

● Generate a sequence with a model, then test for agreement with ∞-grams 

next-token prediction



Machine-Generated Text: Results

● Impact of decoding methods
○ Greedy: most agreement

○ Nucleus (top-p): most similar distribution to ∞-grams vs. human-written text

(Human)



Machine-Generated Text: Results

● Impact of model size
○ Claim: increasing model size increases agreement level and slightly increases effective-n

○ What does effective-n mean? 

■ Higher effective-n = the generator is more likely to copy verbatim from the training data 

(if the training and reference data overlap)



Machine-Generated Text: Results

● Curious phenomenon: 
○ For greedy decoding, agreement level fluctuates as effective-n increases

○ Not for nucleus or temperature sampling

○ Suspected reason: have something to do with positional embeddings 



Can this help LLMs?

● Interpolate the probability of the infini-grams and neural network
o Different lambda values for sparse infinigrams

o Lambda values optimized on Pile-val

1 1

2 2

if P∞(yi|x) = 1   (sparse)

if 0 < P∞(yi|x) < 1   (non-sparse)



Interpolating with neural LMs: Results

● Significant improvements on perplexity
○ 11% to 42%



Interpolating with neural LMs: Results

● Smaller LMs = more improvement (for models in the same family)
○ Does not hold across families, some models are already trained on Pile



Interpolating with neural LMs: Results

● More reference context helps



Text generation

● Might harm generation, because the infinigram model may predict completely 

irrelevant tokens and make the model digress.



Questions

● Isn’t this just memorization? 
○ (Isn’t neural LMs also just memorization of probabilistic distributions of a language?)

● Loss on infinigrams alone?
○ We can use backoff + smoothing to estimate perplexity.
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