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This isn’t a paper…… …… it’s a heist!



$100,000

$100,000,000

We aren’t robbing a bank…

…or stealing a painting…

… this is a heist of an LLM!



Security is tight

But we have a plan
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Our approach: model stealing attacks

● Aim to recover functionality of a 
black-box model

● Optimize for accuracy or fidelity
● Early work computed gradients of 

ReLU-based neural networks to 
recreate model weights

● Production quality LLMs are too big, 
complex, and secure

● Recent work demonstrates stealing 
final layer of models with public 
pretrained encoder layer
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Meet the team

The mastermind The hacker The secret agent

SVD



Matrix rank

Number of linearly independent rows or columns

Dimension of the vector space of its rows or columns

Rank can be less than the matrix dimension

Rank = 2

Column 3 == column 1 + column 2
Row 2 == row 3



Singular Value Decomposition (SVD) 

Matrices can be thought of as 
transformations

SVD breaks down a matrix into 
these 3 components

All matrix transformations are 
made of 3 components:
1. a rotation
2. a stretching
3. another rotation



SVD formula: M = U 𝚺 V*

M is any m x n matrix

U is an m x m matrix

- Rotation in m-dimensional space

𝚺 is an m x n matrix

- Projection from m- to n-dim. space

V* is an n x n matrix

- Rotation in n-dimensional space



SVD formula: M = U 𝚺 V*

M is any m x n matrix

U is an m x m matrix

- Rotation in m-dimensional space

𝚺 is an m x n matrix

- Projection from m- to n-dim. space

V* is an n x n matrix

- Rotation in n-dimensional space

3 nonzero values 
on diagonal = 
rank of 3



The floor plan

gθ(p) produces an h-dimensional output vector
- h is the hidden dimension
- LLaMA uses hidden dimension between 4096 and 8192

W converts this into an l-dimensional probability vector
- 1 element per token in the vocabulary
- GPT-4 has a 100,000 token vocab
- W is an l x h “embedding projection matrix”
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The first heist

Assume the API returns logits (log probabilities) for every token of the vocab

Under these conditions, we can recover the model’s hidden dimension

1. Query the model n times 
with random inputs

2. Combine all n queries into 
a matrix Q (e.g 3,000 
queries x 100,000 tokens)

3. Perform SVD on Q
4. The model’s hidden 

dimension == index of 
largest difference between 
consecutive singular values
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The first heist, visualized

LLM
with 

hidden 
dim. h

Input 1: “what is 1 + 1”
Input 2: “this is a test”

Input n: “write a poem”

…
… …

…

…

# tokens in vocab
l

# queries
n

Q ∈ R l x n

Get singular 
values

[ 10, 9, … 3.1, 3, 0.000001, 0.0000008, … ]

Biggest change at i = 2048
Hidden dimension h = 2048
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Why does this work?

LLM hidden dimension is a bottleneck; 
outputs cannot have greater rank than 
the weights that produce them
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Pythia 1.4B hidden rank heist

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).



Stealing other model ranks

The attack is successful on every 
attempted model

The attack is “wrong” on GPT-2 
Small because the model actually 
has a smaller rank than expected

- Linearly dependent weights
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Can we steal the entire output linear layer?

… in theory, yes!
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Stealing the output linear layer

We know that SVD output 
matrix U * 𝚺 equals the 
linear layer W * some affine 
transformation matrix G

Solve the least squares 
system for G to 
approximate W

Report distance between 
real and calculated W

RMS of a random 
model is 2 * 10-2,

500x higher
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Let’s be more realistic…

The above attack makes a significant assumption: 

The adversary can directly observe the complete logit vector for each input.  

In practice, this is not true. 

No production model we are aware of provides such an API. 

Instead, for example, they provide a way for users to get the top-K token log 

probabilities. 



Then, what can we do?

We use Logit Bias !

What is logit bias?

Logit bias is an optional API 
parameter that modifies the likelihood 
of specified tokens appearing in a 
model generated output. 

Cited from: https://help.openai.com/en/articles/5247780-using-logit-bias-to-alter-token-probability-with-the-openai-api



The second heist

Suppose that the API returned the top 3 logits. Then we could recover the 
complete logit vector for an arbitrary prompt by cycling through different 3 token 
sets with logit bias and measuring the top 3 logits each time.



Not Prob! Log Prob!!!

Most production model APIs return logprobs (the log of the softmax output of the 
model), for numerical stability and to simplify the cross-entropy loss.

When we apply a logit bias B to the i-th token and observe that token’s logprob, 
we get the value:



The second heist

Since we can observe 3 logprobs, we can compare the reference token R to 2 
tokens per query, by adding a large bias that pushes all 2 tokens into the top 3 
(along with the reference token).



“Reference” token

For token i with bias B:

For the reference token R without bias:

Compute the difference between y_i and y_R:



The ultimate heist!

Place two further restrictions on the logit bias API:

Only can see the most likely token’s logprob (Top-1).

Each logit bias B is constrained to be in {−1, 0}.

Solution:

Query the model twice.

Once without logit bias, and once with a logit bias of −1 for token t. 

Then the top token will be slightly more likely with a bias of −1. 

How “slight” depending on the value of tokent’s logprob.

Even can attack model without logprob access!



So, what is the cost?

Bits of precision: The average number 
of bits of agreement between the true 
logit vector and the recovered logit 
vector.

Queries per logit: The average 
number of queries required to recover 
one full logit vector.

Theoretical improvements are not 
always practical.
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It works!

1. Use 4-logprob attack, because it is most query efficient and most precise method.

2. The RMS between a randomly initialized model and the actual weights is 2·10^−2
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Protect the bank!

Prevention

Remove logit bias.

Replace logit bias with a block-list.

Architectural changes.

Post-hoc altering the architecture.

Mitigation

Logit bias XOR logprobs.

Noise addition.

Rate limits on logit bias.

Detect  malicious  queries.

We can do something to defend the attack.



Long way to go…

Extending this attack beyond a single layer, finding methods that can be used for 
nonlinear layers.

Removing the logit bias assumption, other API parameters could give alternative 
avenues for learning logit information.

Exploiting the stolen weights, the stolen embedding projection layer might improve 
other attacks against the model.



We have seen the sunrise

While there appear to be no immediate practical 

consequences of stealing one layer of a production 

language model.

It represents the first time that any precise information 

about a deployed transformer model has been stolen.

                   07/11/2022 Colorado Louisville



We have seen the sunrise

“Adversarial ML had somewhat of a bad reputation for a few years. It seemed like none 
of the attacks we were working on actually worked in practice. 

                                                            … 

This paper shows—again—that all the work the adversarial ML community has been 
doing over the past few years can directly transfer over to this new age of language 
models we’re living in.”

                                                

Cited from: https://not-just-memorization.github.io/partial-model-stealing.html


