
Stealing Part of a
Production Language Model

Mahler Revsine and Tianwei Zhao

This isn’t a paper…… …… it’s a heist!

$100,000

$100,000,000

We aren’t robbing a bank…

…or stealing a painting…

… this is a heist of an LLM!

Security is tight

But we have a plan

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Our approach: model stealing attacks

● Aim to recover functionality of a
black-box model

● Optimize for accuracy or fidelity
● Early work computed gradients of

ReLU-based neural networks to
recreate model weights

● Production quality LLMs are too big,
complex, and secure

● Recent work demonstrates stealing
final layer of models with public
pretrained encoder layer

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Meet the team

The mastermind The hacker The secret agent

SVD

Matrix rank

Number of linearly independent rows or columns

Dimension of the vector space of its rows or columns

Rank can be less than the matrix dimension

Rank = 2

Column 3 == column 1 + column 2
Row 2 == row 3

Singular Value Decomposition (SVD)

Matrices can be thought of as
transformations

SVD breaks down a matrix into
these 3 components

All matrix transformations are
made of 3 components:
1. a rotation
2. a stretching
3. another rotation

SVD formula: M = U 𝚺 V*

M is any m x n matrix

U is an m x m matrix

- Rotation in m-dimensional space

𝚺 is an m x n matrix

- Projection from m- to n-dim. space

V* is an n x n matrix

- Rotation in n-dimensional space

SVD formula: M = U 𝚺 V*

M is any m x n matrix

U is an m x m matrix

- Rotation in m-dimensional space

𝚺 is an m x n matrix

- Projection from m- to n-dim. space

V* is an n x n matrix

- Rotation in n-dimensional space

3 nonzero values
on diagonal =
rank of 3

The floor plan

gθ(p) produces an h-dimensional output vector
- h is the hidden dimension
- LLaMA uses hidden dimension between 4096 and 8192

W converts this into an l-dimensional probability vector
- 1 element per token in the vocabulary
- GPT-4 has a 100,000 token vocab
- W is an l x h “embedding projection matrix”

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

The first heist

Assume the API returns logits (log probabilities) for every token of the vocab

Under these conditions, we can recover the model’s hidden dimension

1. Query the model n times
with random inputs

2. Combine all n queries into
a matrix Q (e.g 3,000
queries x 100,000 tokens)

3. Perform SVD on Q
4. The model’s hidden

dimension == index of
largest difference between
consecutive singular values

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

The first heist, visualized

LLM
with

hidden
dim. h

Input 1: “what is 1 + 1”
Input 2: “this is a test”

Input n: “write a poem”

…
… …

…

…

tokens in vocab
l

queries
n

Q ∈ R l x n

Get singular
values

[10, 9, … 3.1, 3, 0.000001, 0.0000008, …]

Biggest change at i = 2048
Hidden dimension h = 2048

1 2

20
47

20
48

20
49

20
50

Why does this work?

LLM hidden dimension is a bottleneck;
outputs cannot have greater rank than
the weights that produce them

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Pythia 1.4B hidden rank heist

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Stealing other model ranks

The attack is successful on every
attempted model

The attack is “wrong” on GPT-2
Small because the model actually
has a smaller rank than expected

- Linearly dependent weights

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Can we steal the entire output linear layer?

… in theory, yes!
Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Stealing the output linear layer

We know that SVD output
matrix U * 𝚺 equals the
linear layer W * some affine
transformation matrix G

Solve the least squares
system for G to
approximate W

Report distance between
real and calculated W

RMS of a random
model is 2 * 10-2,

500x higher

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Let’s be more realistic…

The above attack makes a significant assumption:

The adversary can directly observe the complete logit vector for each input.

In practice, this is not true.

No production model we are aware of provides such an API.

Instead, for example, they provide a way for users to get the top-K token log

probabilities.

Then, what can we do?

We use Logit Bias !

What is logit bias?

Logit bias is an optional API
parameter that modifies the likelihood
of specified tokens appearing in a
model generated output.

Cited from: https://help.openai.com/en/articles/5247780-using-logit-bias-to-alter-token-probability-with-the-openai-api

The second heist

Suppose that the API returned the top 3 logits. Then we could recover the
complete logit vector for an arbitrary prompt by cycling through different 3 token
sets with logit bias and measuring the top 3 logits each time.

Not Prob! Log Prob!!!

Most production model APIs return logprobs (the log of the softmax output of the
model), for numerical stability and to simplify the cross-entropy loss.

When we apply a logit bias B to the i-th token and observe that token’s logprob,
we get the value:

The second heist

Since we can observe 3 logprobs, we can compare the reference token R to 2
tokens per query, by adding a large bias that pushes all 2 tokens into the top 3
(along with the reference token).

“Reference” token

For token i with bias B:

For the reference token R without bias:

Compute the difference between y_i and y_R:

The ultimate heist!

Place two further restrictions on the logit bias API:

Only can see the most likely token’s logprob (Top-1).

Each logit bias B is constrained to be in {−1, 0}.

Solution:

Query the model twice.

Once without logit bias, and once with a logit bias of −1 for token t.

Then the top token will be slightly more likely with a bias of −1.

How “slight” depending on the value of tokent’s logprob.

Even can attack model without logprob access!

So, what is the cost?

Bits of precision: The average number
of bits of agreement between the true
logit vector and the recovered logit
vector.

Queries per logit: The average
number of queries required to recover
one full logit vector.

Theoretical improvements are not
always practical.

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

It works!

1. Use 4-logprob attack, because it is most query efficient and most precise method.

2. The RMS between a randomly initialized model and the actual weights is 2·10^−2

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Protect the bank!

Prevention

Remove logit bias.

Replace logit bias with a block-list.

Architectural changes.

Post-hoc altering the architecture.

Mitigation

Logit bias XOR logprobs.

Noise addition.

Rate limits on logit bias.

Detect malicious queries.

We can do something to defend the attack.

Long way to go…

Extending this attack beyond a single layer, finding methods that can be used for
nonlinear layers.

Removing the logit bias assumption, other API parameters could give alternative
avenues for learning logit information.

Exploiting the stolen weights, the stolen embedding projection layer might improve
other attacks against the model.

We have seen the sunrise

While there appear to be no immediate practical

consequences of stealing one layer of a production

language model.

It represents the first time that any precise information

about a deployed transformer model has been stolen.

 07/11/2022 Colorado Louisville

We have seen the sunrise

“Adversarial ML had somewhat of a bad reputation for a few years. It seemed like none
of the attacks we were working on actually worked in practice.

 …

This paper shows—again—that all the work the adversarial ML community has been
doing over the past few years can directly transfer over to this new age of language
models we’re living in.”

Cited from: https://not-just-memorization.github.io/partial-model-stealing.html

