Stealing Part of a
Production Language Model

Mahler Revsine and Tianweil Zhao

Stealing Part of a Production Language Model

Nicholas Carlini! Daniel Paleka? Krishnamurthy (Dj) Dvijotham! Thomas Steinke ! Jonathan Hayase 3
A. Feder Cooper ! Katherine Lee! Matthew Jagielski! Milad Nasr! Arthur Conmy' Itay Yona '
Eric Wallace* David Rolnick® Florian Tramer >

This isn’t a paper...... | | ... it's a heist!

$100,000,000

We aren’t robbing a bank...
...or stealing a painting...

... this is a heist of an LLM!

OpenAl Aims for a $150 Billion

Valuation

The ChatGPT maker is closing in on another mega funding
round as investors bet the boom in artificial intelligence has

plenty of room to grow.

Security is tight

Little is publicly known about the inner workings of today’s
most popular large language models, such as GPT-4, Claude
2, or Gemini. The GPT-4 technical report states it “contains
no [...] details about the architecture (including model size),
hardware, training compute, dataset construction, training
method, or similar” (OpenAl et al., 2023). Similarly, the
Pal.M-2 paper states that “details of [the] model size and
architecture are withheld from external publication” (Anil
et al., 2023). This secrecy is often ascribed to “the competi-
tive landscape” (because these models are expensive to train)
and the “safety implications of large-scale models” (OpenAl
et al., 2023) (because it is easier to attack models when more
information is available). Nevertheless, while these models’
weights and internal details are not publicly accessible, the
models themselves are exposed via APIs.

Contributions. We introduce an attack that can be applied
to black-box language models, and allows us to recover
the complete embedding projection layer of a transformer
language model. Our attack departs from prior approaches
that reconstruct a model in a bottom-up fashion, starting
from the input layer. Instead, our attack operates top-down
and directly extracts the model’s last layer. Specifically,
we exploit the fact that the final layer of a language model
projects from the hidden dimension to a (higher dimen-
sional) logit vector. This final layer is thus low-rank, and by
making targeted queries to a model’s API, we can extract
its embedding dimension or its final weight matrix.

But we have a plan

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

N9
In this paper we ask: how much information can an adver- | g

' . sary learn about a production language model by making
queries to its API? This is the question studied by the field ’

’ of model stealing (Tramer et al., 2016): the ability of an ad- .

4

: versary to extract model weights by makmg querles its API

7y W
\’vq o W 7
9.0 & 5l e -

Our approach: model stealing attacks

e Aim to recover functionality of a

black-box model)
1. Accuracy: the stolen model f should match the perfor-

Optlmlze for accuracy or fidel Ity mance of the target model f on some particular data
o E ar|y work Computed gradients of domain. For example, if the target is an image clas-
sifier, we might want the stolen model to match the

RelLU-based neural networks to target’s overall accuracy on ImageNet.

recreatg model Yvelghts 2. Fidelity: the stolen model f should be functionally
e Production qual|ty LLMs are too big, equivalent to the target model f on all inputs. That is,

complex, and secure for any valid input p, we want f(p) ~ f(p).
e Recent work demonstrates stealing

final layer of models with public

pretrained encoder layer

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Meet the team

Nicholas Carlini
Research Scientist, Google
DeepMind

The mastermind

7

<

O
=
)

S
o5
W = =
O =N
- O W

The hacker The secret agent

Matrix rank

Number of linearly independent rows or columns
Dimension of the vector space of its rows or columns

Rank can be less than the matrix dimension

Rank = 2

Column 3 == column 1 + column 2
Row 2 ==row 3

o O -
—_ = O
—

Singular Value Decomposition (SVD)

Matrices can be thought of as

transformations
All matrix transformations are
made of 3 components:

1. arotation
2. a stretching

3. another rotation
e SVD breaks down a matrix into

these 3 components

?
&

M=U-X-V*

SVD formula: M=U X V*

M is any m x n matrix

M=U 2 V

U is an m x m matrix Mx N mxm mxn NxnN
- Rotation in m-dimensional space 1

¥ is an m x n matrix

- Projection from m- to n-dim. space U U*

I
3

V*is an n x n matrix 1

- Rotation in n-dimensional space 1

<
=
Il

5

SVD formula: M=U X V*

M is any m x n matrix
U is an m x m matrix
- Rotation in m-dimensional space
X is an m x n matrix
- Projection from m- to n-dim. space
V*is an n x n matrix

- Rotation in n-dimensional space

Consider the 4 x 5 matrix

S O O N

[0 -1 0 O
u— |1 0 0 o0
0 0 0 -1

[0 0 -1 0

Q0 0 0 0

s_ |0 0 0 0
0 0 0 0

0 0 0 0 0
0 =)
-v02 0 0
vi=| 0 -1 0
0 0 0

| -v08 0 0

3 nonzero values
on diagonal =
rank of 3

We study models that take a sequence of tokens drawn from
a vocabulary X as input. Let P (X’) denote the space of
probability distributions over X'. We study parameterized
models fy : XV — P (X) that produce a probability distri-
bution over the next output token, given an input sequence
of NV tokens. The model has the following structure:

fo(p) = softmax(W - go(p)), (1)

g,(P) produces an h-dimensional output vector

- his the hidden dimension

- LLaMA uses hidden dimension between 4096 and 8192
W converts this into an /-dimensional probability vector

- 1 element per token in the vocabulary

- GPT-4 has a 100,000 token vocab

- Wis an/ x h “embedding projection matrix”

Carlini, Nicholas, et al. "Stealin

Output
Probabilities

Softmax

Linear

Positional D
Encoding

Feed
Forward

4)
Add & Norm

- x
Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

2 2

N

Add & Norm

Multi-Head
Attention

 S—

Add & Norm

Masked
Multi-Head
Attention

. J

\

J

Input
Embedding

!

Inputs

G_

Qutput
Embedding

T

Outputs
(shifted right)

Positional
Encoding

part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Table 1. ‘Summary o APIs

API Motivation

All Logits §4 Pedagogy & basis for next attacks SECU RIT
Top Logprobs, Logit-bias §5 Current LLM APIs (e.g., OpenAl)
No logprobs, Logit-bias §F Potential future constrained APIs

Threat model. Throughout the paper, we assume that the
adversary does not have any additional knowledge about the
model parameters. We assume access to a model fy, hosted
by a service provider and made available to users through 5
a query interface (API) 0. We assume that O is a perfect & 7
oracle: given an input sequence p, it produces y = O (p)
without leaking any other information about fy than what
can be inferred from (p,y). For example, the adversary
cannot infer anything about fy via timing side-channels or
other details of the implementation of the query interface.

- mini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).
s o T 22000 2= - o

The first heist

Assume the API returns logits (log probabilities) for every token of the vocab

Under these conditions, we can recover the model’'s hidden dimension

1. Query the model n times
with random inputs
2. Combine all n queries into

Algorithm 1 Hidden-Dimension Extraction Attack

Require: Oracle LLM O returning logits

1: Initialize n to an appropriate value greater than h _

2: Initialize an empty matrix Q = 0™*! a ma_tr'x Q (e.g 3,000

3: fori = 1ton do queries x 100,000 tokens)
4: p; + RandPrefix() > Choose a random prompt 3. Perform SVD on Q

> Ok 4. The model's hidden

7: A1 > A2 > -+ > Apn < SingularValues(Q) dimension == index of

8: count < arg max; log|| ;|| — log||Aix1|| largest difference between

% eI GOt consecutive singular values

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

tokens in vocab

[
A

4 A\
input 1: “whatis 1+ 1" smeeb [P e I
input 2: “this is a test” - mmmnp [N o) I | / qucrics

n

The first heist, visualized

hidden

Input n: “write a poem” s SN w—) NN

</Biggestchangeati=2048

Get singular Hidden dimension h = 2048

values l

> [10,9, ... 3.1, 3, 0.000001, 0.0000008, ...]

3
0
&

2047
2049
2050

Why does this work?

Intuition. Suppose we query a language model on a large
number of different random prefixes. Even though each
output logit vector is an [-dimensional vector, they all actu-
ally lie in a h-dimensional subspace because the embedding
projection layer up-projects from h-dimensions. Therefore,
by querying the model “enough” (more than A times) we
will eventually observe new queries are linearly dependent
of past queries. We can then compute the dimensionality of
this subspace (e.g., with SVD) and report this as the hidden
dimensionality of the model.

LLM hidden dimension is a bottleneck;
outputs cannot have greater rank than
the weights that produce them

Lemma 4.1. Let Q (p1,...pn) € R™™ denote the matrix
with columns O (p1) ,...,O (pn) of query responses from
the logit-vector API. Then

h > rank (Q (p1,...pn)) -

Further, if the matrix with columns gy (p;) (= 1, ...,n) has
rank h and W has rank h, then

h = rank (Q (p1,...pPn)) -

Proof. We have Q = W - H, where H is a h X n ma-

trix whose columns are gg(p;) (¢ = 1,...,n). Thus,
h > rank (Q) Further, if H has rank A (with the second
assumption), then h = rank (Q). O

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Pythia 1.4B hidden rank heist

103

102

10!
=
3 10° o
= 10-1 1024 queries
© i
s —— 1536 queries

1072 § —— 2048 queries
— 2560 queries

10~ 2
—— 3072 queries

10_4 T T T T T T
0 500 1000 1500 2000 2500 3000
Sorted Singular Values

Figure 1. SVD can recover the hidden dimensionality of a model
when the final output layer dimension is greater than the hidden
dimension. Here we extract the hidden dimension (2048) of the
Pythia 1.4B model. We can precisely identify the size by obtaining
slightly over 2048 full logit vectors.

10!
109 -
1072 -

10-3 3

Difference between
consecuitive singular values

10_4 . T T T T T
2000 2020 2040 2060 2080
Sorted Singular Values

Figure 2. Our extraction attack recovers the hidden dimension by
identifying a sharp drop in singular values, visualized as a spike
in the difference between consecutive singular values. On Pythia-
1.4B, a 2048 dimensional model, the spike occurs at 2047 values.

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Stealing other model ranks

Table 2. Our attack succeeds across a range of open-source models,

at both stealing the model size, and also at reconstructing the output The attack is successful on every
projection matrix (up to invariances; we show the root MSE). attempted model
Model Hidden Dim Stolen Size
GPT-2 Small (fp32) 768 13 £ 1 . .
GPT-2 XL (fp32) 1600 1599 + 1 The attack is “wrong” on GPT-2
Pythia-1.4 (fp16) 2048 2047 + 1 Small because the model actually
Pythia-6.9 (fp16) 4096 4096 + 1 has a smaller rank than expected
LLaMA 7B (fp16) 4096 4096 £ 2

- Linear t weight
LLaMA 65B (fp16) 8192 8192 + 2 inearly dependent weights

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Can we steal the entire output linear layer?
Probabilities
Method: Let Q be as defined in Algorithm 1. Now rewrite
Q = U-X- V' with SVD. Previously we saw that the
number of large enough singular values corresponded to the Feed
. . . . Forwar
dimension of the model. But it turns out that the matrix U I -
actually directly represents (a linear transformation of) the G | | | e
final layer! Specifically, we can show that U -3 =W - G T D e
for some h x h matrix G in the following lemma. — ITM%
Nx | —(Add&Norm) ——
Multi-H‘ead Multi-Hgad
Lemma 4.2. In the logit-API threat model, under the as-) ——
sumptions of Lemma 4.1: (1) The method above recovers % v == o
A hxhes 3 . . Positional o) ¢ Positional
W = W . G for some G € R"*"; (i1) With the addi- Encoding Encoding
tional assumption that gg(p) is a transformer with residual ety Erbe i
connections, it is impossible to extract W exactly. ! !
Inputs Outputs
(shifted right)

... in theory, yes!

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Stealing the output linear layer

Table 2. Our attack succeeds across a range of open-source models,

at both stealing the model size, and also at reconstructing the output
projection matrix (up to invariances; we show the root MSE).

Model

GPT-2 Small (fp32)
GPT-2 XL (fp32)
Pythia-1.4 (fp16)
Pythia-6.9 (fp16)
LLaMA 7B (fpl6)
LLaMA 65B (fp16)

RMS of a random
model is 2 * 1072,
500x higher

Ot 00 = W O

W RMS
4.

104
02
107"
A0
.107°

<1070

We know that SVD output
matrix U * X equals the
linear layer W * some affine
transformation matrix G

Solve the least squares
system for G to
approximate W

Report distance between
real and calculated W

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Let’'s be more realistic...

The above attack makes a significant assumption:

The adversary can directly observe the complete logit vector for each input.

In practice, this is not true.
No production model we are aware of provides such an API.
Instead, for example, they provide a way for users to get the top-K token log

probabilities.

Then, what can we do?

We use Logit Bias !

The word “time" tokenizes to the ID 2435 and the word “ time" (which has a space at
What iS IO |t bias? the start) tokenizes to the ID 640. We can pass these through logit_bias with -100 to
g ' ban them from appearing in the completion, like so:

Logit bias is an optional API

completion = client.chat.completions.create(

parameter that modifies the likelihood model="gpt-3.5-turbo",
o]] messages=[{"role": "system", "content": "You finish user's sentences."},
of specified tokens appearing in a “role": “user", "content": "Once upon a"}]

logit_bias={2435:-100, 640:-100}

model generated output.)

Cited from: https://help.openai.com/en/articles/5247780-using-logit-bias-to-alter-token-probability-with-the-openai-api

The second heist

Suppose that the API returned the top 3 logits. Then we could recover the
complete logit vector for an arbitrary prompt by cycling through different 3 token
sets with logit bias and measuring the top 3 logits each time.

Top-3 Logits

N

7 N

Token_1 Token_2 Token_3 Token_n Token_n+1 Token_n+2

‘ Apply logit bais to Token n, n+1, n+2

Token_n Token_n+1 Token_n+2 Token_1 Token_2 Token_3

Not Prob! Log Prob!!!

Most production model APls return logprobs (the log of the softmax output of the
model), for numerical stability and to simplify the cross-entropy loss.

log(Softmax(z;)) = z; — log(z e’)
J
When we apply a logit bias B to the i-th token and observe that token’s logprob,
we get the value:

yB = 2z + B —log (Zexp(zj) + exp(z; + B))
J71

The second heist

Since we can observe 3 logprobs, we can compare the reference token R to 2
tokens per query, by adding a large bias that pushes all 2 tokens into the top 3
(along with the reference token).

Top-3 Logits
'8 o ™~
Token_1 Token_2 Token_3 Token_n Token_n+1 Token_n+2

‘ Apply logit bais to Token n, n+1, keep
Reference Token_1

Token_1 Token_n Token_n+1 Token_2 Token_3 Token_n+2

“Reference’” token

For token i with bias B: y? = 2,4+ B —log (Z exp(z;) + exp(z; + B))
i#i

For the reference token R without bias: 42 = 2z — log (Z exp(z;) + exp(z; + B))
J#i

Compute the difference betweeny iandy R:

yr — i = (2r —log(x)) — (2 + B — log(*))

—zp— 2, — B

The ultimate heist!

Place two further restrictions on the logit bias API:
Only can see the most likely token’s logprob (Top-1).
Each logit bias B is constrained to be in {-1, 0}.
Solution:

Query the model twice.

Once without logit bias, and once with a logit bias of —1 for token t.
Then the top token will be slightly more likely with a bias of -1.

How “slight” depending on the value of tokent’s logprob.

Even can attack model without logprob access!

So, what is the cost?

Bits of precision: The average number
of bits of agreement between the true
logit vector and the recovered logit
vector.

Queries per logit: The average
number of queries required to recover
one full logit vector.

Table 4. Average error at recovering the logit vector for each of the
logit-estimation attacks we develop. Our highest precision, and
most efficient attack, recovers logits nearly perfectly; other attacks
approach this level of precision but at a higher query cost.

Attack Logprobs Bits of precision Queries per logit
logprob-4 (§5.3) top-5 23.0 0.25
logprob-5 (§E) top-5 11.5 0.64
logprob-1 (§5.4) top-1 6.1 1.0
binary search (§F.1) X 7.2 10.0
hyperrectangle (§F.2) X 15.7 5.4
one-of-n (§F.3) X 18.0 3.7

Theoretical improvements are not

always practical.

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

It works!

Table 3. Attack success rate on five different black-box models

Dimension Extraction Weight Matrix Extraction
Model Size #Queries Cost (USD) RMS # Queries Cost (USD)
OpenAl ada 1024v <2-108 $1 5-100% <2.107 $4
OpenAl babbage 2048 v < 4-10° $2 7-100% <4.107 $12
OpenAl babbage-002 1536 v < 4-106 $2 f <4-108 1+ $12
OpenAl gpt-3.5-turbo-instruct *v o <4:107 $200 f <4-108TF $2,0001*
OpenAl gpt-3.5-turbo-1106 *v o <4-107 $800 f <4-108T $8,0001F

¥ Extracted attack size was exactly correct; confirmed in discussion with OpenAl.
* As part of our responsible disclosure, OpenAl has asked that we do not publish this number.

T Attack not implemented to preserve security of the weights.
* Estimated cost of attack given the size of the model and estimated scaling ratio.

1. Use 4-logprob attack, because it is most query efficient and most precise method.

2. The RMS between a randomly initialized model and the actual weights is 2-10"-2

Carlini, Nicholas, et al. "Stealing part of a production language model." arXiv preprint arXiv:2403.06634 (2024).

Protect the bank!

We can do something to defend the attack.

Prevention Mitigation

Remove logit bias. Logit bias XOR logprobs.
Replace logit bias with a block-list. Noise addition.
Architectural changes. Rate limits on logit bias.

Post-hoc altering the architecture. Detect malicious queries.

Long way to go...

Extending this attack beyond a single layer, finding methods that can be used for
nonlinear layers.

Removing the logit bias assumption, other AP| parameters could give alternative
avenues for learning logit information.

Exploiting the stolen weights, the stolen embedding projection layer might improve
other attacks against the model.

We have seen the sunrise

While there appear to be no immediate practical
consequences of stealing one layer of a production

language model.

It represents the first time that any precise information

about a deployed transformer model has been stolen.

07/11/2022 Colorado Louisville

We have seen the sunrise

“Adversarial ML had somewhat of a bad reputation for a few years. It seemed like none
of the attacks we were working on actually worked in practice.

This paper shows—again—that all the work the adversarial ML community has been
doing over the past few years can directly transfer over to this new age of language
models we’re living in.”

Cited from: https://not-just-memorization.github.io/partial-model-stealing.html

