DoRA: Weight-Decomposed Low-Rank
Adaptation




Motivation

e Parameter efficient finetuning is great!
- |t lets us finetune efficiently
- And has no overheads during inference

e Butthere’sagap between FT and LoRA

- Thisis attributed to fewer trainable
parameters

- Butis that all there is to say about this?

e Maybe LoRA has certain patterns of updates
that are different from FT...
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Figure 1: Our reparametriza-
tion. We only train A and B.



Contributions

e Introduce DoRA, which achieves a performance closer to FT
e Weight decomposition analysis
- Discover learning patterns for FT and LoRA that explains the difference in

performance

e Empirical results supporting the above



LoRA : Recap

e Weight matrix has an intrinsic low rank

pre-trained weight matrix W, € R***, LoRA models the
weight update AW € R4** utilizing a low-rank decompo-
sition, expressed as BA, where B € R?%" and A € R"** :

. . . Weights
represent two low-rank matrices, with 7 < min(d, k). Con-

sequently, the fine-tuned weight W’ can be represented as: W € R4xd
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Figure 1: Our reparametriza-
tion. We only train A and B.



DoRA

e Let'sdecompose the weight matrix into its

magnitude and direction

e Decomposition: W:m”VH
Vlle

e Train magnitude separately

e Directionis trained using LoRA

- More parameters
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Figure 1. An overview of our proposed DoRA, which decomposes
the pre-trained weight into magnitude and direction components
for fine-tuning, especially with LoRA to efficiently update the
direction component. Note that || - || denotes the vector-wise
norm of a matrix across each column vector.



Inspiration: Weight Normalization

e (Salimans & Kingma, 2016)

e Reparametrizationin this way
- Magnitude and direction

e Training from scratch



Weight decomposition Analysis

Decomposition:  w=m—— — W],
il = e
AMIET — Z:,:l |mg'i‘t — mg|
Magnitude and directional difference: . k t
ADt — Zn:l(]‘ — COS(VFT’E >W(?))
o k

VL-BART model finetuned on 4 image-text tasks
Only query/value weight matrix in self-attention
Different checkpoints
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Figure 2. Magnitude and direction updates of (a) FT, (b) LoRA, and (c) DoRA of the query matrices across different layers and intermediate
steps. Different markers represent matrices of different training steps and different colors represent the matrices of each layer.



Discussion

e FTslightly negative slope
- Hypothesis: pretrained weights already know a lot. It's enough to just
change one thing

e LoRA has a consistently positive slope
- LoRA cannot learn more nuanced adjustments

e DoRA also has a negative slope...
- ..yay?



Further motivation DoRA

e Allows directional adaptation with LORA and magnitude learning
separately

- Instead of together as in LoRA

e Canbe merged with pretrained weights before inference - no overhead
latency



Gradient Analysis

e Canbeshown thatif directional update is
lower, then magnitude update is higher
(given difference norm is the same)

e Thisis good for stability and optimization

e Summary of proof:

- Ifdirectional update is lower, cosine
similarity of gradient and weight matrix is
lower

- Butif gradient norm is the same, then this
means that magnitude update is higher
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Training overhead

° Vr\:g don't like to backpropagate to more o V +AV . W, + BA
fnings SV AV~ wo + BAJl.

e Thisdenominator is extra — let’signore it

e [t will still have actual norm, but won'’t
receive gradients

m V/vlT _m , _ /
VV’E:W(I_HV’H%)VW'[' — VviL= 5V L where C = ||V,
. /
v, - YWk V!

1Vlle



Experiments - Commonsense Reasoning

Datasets

Dataset Domain # train # test
MultiArith Math - 600 N er
AddSub Math - umber
GSMS8K Math 8.8K Number
AQuA Math Option
SingleEq Ma - 508 Number
SVAMP - 1,000 Number
(W CS 94K 3,270 Yes/No
PIQA CS 16.1K 1,830 Option
SIQA CS 33.4K 1,954 Option
HellaSwag CS 399K 10,042 Option
WinoGrande CS 63.2K 1,267 Option
ARC-e CS 1.IK 2,376 Option
ARC-c CS 23K 1,172 Option
OBQA CS 5.0K 500 Option

Table 2: Details of datasets being evaluated. Math:
arithmetic reasoning. CS: commonsense reasoning.

_ / BoolQ

question
string

do iran and afghanistan speak the same
language

answer
bool

true

passage
string

Persian (/'p3:r3sn, -Jen/), also known by
its endonym Farsi (,.,ls farsi (fo:r'si:) (
listen)), is one of the Western Iranian
languages within the Indo-Iranian branch of
the Indo-European language family. It is
primarily spoken in Iran, Afghanistan
(officially known as Dari since 1958), and
Tajikistan (officially known as Tajiki since
the Soviet era), and some other regions
which historically were Persianate societies
and considered part of Greater Iran. It is
written in the Persian alphabet, a modified
variant of the Arabic script, which itself
evolved from the Aramaic alphabet.



Experiments - Commonsense Reasoning

Model  PEFT Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. DoRA outperforms all baselines
ChatGPT - - 731 854 685 1785 66.1 80.8 799 748 770 .
Prefix 0.11 643 768 739 421 721 729 540 606 646 across LLaMA variants )
Series 0.99 630 792 763 679 757 745 571 724 708 (7B/13B/2-7B/3-8B), with
LoRA 0.83 689 807 774 781 78.8 778 613 748 747 o )
DoRA' (Ours) 0.43 700 826 797 832 80.6 806 654 716 715 (+3.7% vs. LoRA, surpassing
DoRA (Ours) 0.84 697 834 786 872 81.0 819 662 792 784 ChatGPT)
Prefix 0.03 653 754 721 552 68.6 795 629 680 684
Series 0.80 718 83 792 881 82.4 825 673 818 795
[T ag PRl 2.89 725 849 798 921 84.7 842 712 824 814 On LLaMA-13B, DoRA matches
d LoRA 0.67 721 835 805 905 83.7 828 683 824 805 . .
DoRAT (Ours) 0.35 725 853 799  90.1 82.9 827 697 836 808 Pa.rallel adapter’s accuracy while
DoRA (Ours) 0.68 724 849 815 924 84.2 842 696 828 8LS using 75% fewer parameters and
LoRA 0.83 698 799 1795 836 82.6 798 647 810 776 no extra inference overhead
LLaMA2-7B DoRA! (Ours) 0.43 720 831 799  89.1 83.0 845 710 812 805
DoRA (Ours) 0.84 718 837 760  89.1 82.6 83.7 682 824 797
LoRA 0.70 708 852 799 91.7 84.3 842 712  79.0 808 Do RA'I' (using half para meters)
LLaMA3-8B DoRA' (Ours) 0.35 745 888 803 955 84.7 90.1 79.1 872 85.0 . o
DoRA (Ours) 0.71 746 893 799 955 85.6 90.5 804 858 852 still beats LoRA by 1-4.2% across

all models



Experiments - Commonsense Reasoning
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Figure 3. Magnitude (a) and direction (b) difference of
LoRA/DoRA and the pre-trained weight of the query matrices
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Pre-trained weights were found to contain
sufficient task knowledge - the authors
hypothesized that subtle updates are
optimal

Their analysis on LLaMA2-7B revealed an
interesting pattern: DoRA maintains closer
proximity to pre-trained weights vs. LoRA

This explains DoRA's effectiveness: its
fine-grained update mechanism enables
precise adjustments while preserving
model knowledge



Experiments - Image/Video-Text Understanding

Table 2. The multi-task evaluation results on VQA, GQA, NVLR?
and COCO Caption with the VL-BART backbone.

Method # Params (%) VQAvz GQA NVLR?> COCO Cap Avg.

FT 100 66.9 567 737 1126 713 DoRA no_t only outperformed L,ORA
LoRA 5.93 652 536 719 1153 765 (+1% on image tasks, +2% on video
DoRA (Ours) 5.96 65.8 547 731 1159 77.4 tasks)’ but also matched full ﬁne-tuning
accuracy with just a fraction of
Table 3. The multi-task evaluation results on TVQA, How2QA, trainable parameters

TVC, and YC2C with the VL-BART backbone.

Method # Params (%) TVQA How2QA TVC YC2C Avg.

FT 100 76.3 73.9 457 154 875
LoRA 5.17 75.5 72.9 446 1409 835
DoRA (Ours) 5.19 76.3 74.1 458 1454 854




Experiments - Visual Instruction Tuning

Table 4. Visual instruction tuning evaluation results for LLaVA-
1.5-7B on a wide range of seven vision-language tasks. We directly

Despite LoRA already outperformin
use checkpoints from (Liu et al., 2023a) to reproduce their results. full f[|) :] e-tuning, D ORX S tl: IIF?sh owe dl &
. ; o
Method # Params(%) Avg. iolnlsc';t;':;rgs_'r';s (+0.7% over LoRA,
. (o]
FT 100 66.5
LoRA 4.61 66.9

DoRA (Ours) 4.63 67.6




Experiments -

Compatibility of DoRA with other LoRA variants

Table 5. Average scores on MT-Bench assigned by GPT-4 to the
answers generated by fine-tuned LLaMA-7B/LLaMA2-7B.

Model PEFT Method # Params (%) Score

LoRA 231 5.1
DoRA (Ours) 233 55

LN VeRA 0.02 43
DVoRA (Ours) 0.04 5.0

LoRA 231 5.7

DoRA (Ours) 2.33 6.0

LLAMIAZTE VeRA 0.02 5.5
DVoRA (Ours) 0.04 6.0

Test DoRA's compatibility with VeRA by
combining DoRA's directional updates
with VeRA's low-parameter,
shared-matrix approach for efficiency.

Outperforms LoRA and VeRA on
LLaMA-7B and LLaMA2-7B (10K Alpaca
dataset).



Experiments -

Robustness of DoRA towards different rank settings

LLaMA-7B

Avg. Accuracy

4 8 16 32 64
rank r

Figure 5. Average accuracy of LoRA and DoRA for varying ranks
for LLaMA-7B on the commonsense reasoning tasks.

DoRA consistently outperforms LoRA at all ranks.
Significant gap at lower ranks:

e Forr=4,DoRA achieves 61.89% accuracy vs.
LoRA’s 39.49%.

e Forr=8,DoRAreaches 77.96% accuracy vs.
LoRA's 40.74%.



Experiments -

Tuning Granularity Analysis

Table 6. Accuracy comparison of LLaMA 7B/13B with two differ-
ent tuning granularity of DoRA. Columns m and V designate the
modules with tunable magnitude and directional components, re-
spectively. Each module is represented by its first letter as follows:

(Q)uery, (K)ey, (V)alue, (O)utput, (G)ate, (U)p, (D)own.

Model PEFT Method# Params (%) m V  Avg.
LoRA 0.83 - 74.7

LLaMA-7B DoRA (Ours) 0.84 QKVUD QKVUD78.1
DoRA (Ours) 0.39 QKVOGUD QKV 775

LoRA 0.67 - 80.5

LLaMA-13B DoRA (Ours) 0.68 QKVUD QKVUDS8I1.5
DoRA (Ours) 0.31 QKVOGUD QKV 81.3

DoRA can already achieve superior accuracy by
updating only the directional and magnitude
components of the multi-head layers and the
magnitude of the MLP layers.

Method:

e Selective updates: QKV (direction &
magnitude), MLP (magnitude only)

Key Results (Table 6):

e LLaMA-7B: +2.8% accuracy over LoRA

e L|LLaMA-13B: +0.8% accuracy over LoRA

e Efficiency: Uses <50% of LoRA's
parameters



Broader Impacts

100k Orca-Math finetuning results

QDoRA
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Figure 6. Accuracy comparison of LLaMA2-7B/LLaMA3-8B with
QDoRA, QLoRA and FT on Orca-Math (Mitra et al., 2024).

QDoRA: Combines DoRA with QLoRA to improve
memory efficiency in LLM fine-tuning, surpassing
QLoRA by up to 0.23% and outperforming full
fine-tuning with less GPU memory.

Text-to-Image: DoRA achieves more accurate and
personalized results than LoRA, capturing unique
features in generated images (e.g., frames, logos).
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