JOHNS HOPKINS

UNIVERSITY

VoxPoser: Composable 3D Value Maps
for Robotic Manipulation with Language Models

Johns Hopkins University - Fall 2024
CS 601.771 Advances in Self-supervised Models

Marvin Gao

December 3, 2024 1

Leverage knowledge from LLM/VLM to make the physical world
working

Demonstrate the
reasoning ability
g based on the massive
»" human knowledge

("

N
2

JOHNS HOPKINS

UNIVERSITY December 3, 2024

Why?

~ Algarithms for Sensor-Based Robotics
EN.601.463 (01)

School
Whiting School of Engineering

Level
Upper Level Undergraduate

Credits
3.00

Department
EN Computer Science

V' Robot Devices, Kinematics, Dynamics, and

Control
EN.530.646 (01)

School
Whiting School of Engineering

Level
Graduate

Credits
4.00

Department
EN Mechanical Engineering, EN Robotics

Enrollment Limit
18 students

JOHNS HOPKINS

UNIVERSITY

Fall 2024 Homewood TTh 3:00PM - 4:15PM Leonard, Simon 3.00 [open |
Campus

Description

This course surveys the development of robotic systems for navigating in an environment from an algorithmic perspective. It will cover
basic kinematics, configuration space concepts, motion planning, and localization and mapping. It will describe these concepts in the
context of the ROS software system, and will present examples relevant to mobile platforms, manipulation, robotics surgery, and
human-machine systems.

This section may be cross-listed with other sections in the same course. Sections are cross-listed to enrich student learning and
enhance collaboration opportunities.
> Textbook Vendor

Fall 2024 Homewood TTh 10:30AM - 11:45AM Kim, Jin Seob 4.00 Waitlist
Campus Only

Description

Graduate-level introduction to the mechanics of robotic systems with emphasis on the mathematical tools for kinematics and dynamics
of robotic systems. Topics include the geometry and mathematical representation of rigid body motion, manipulator kinematics
including forward and inverse kinematics of articulated robot arms, differential kinematics, manipulator dynamics and control.
Additional special topics such as trajectory generation, actuation, and design issues will be considered as time permits.

This section may be cross-listed with other sections in the same course. Sections are cross-listed to enrich student learning and
enhance collaboration opportunities.

> Textbook Vendor

Schedule

* 08-26-2024 to 12-06-2024 | TTh 10:30 AM - 11:45 AM | Lecture
* 08-26-2024 to 12-06-2024 | None | Lab

The classical algorithms work for many
applications.

However, if the tasks become complex:

1. Complex Pipeline: Given a natural
language description task, the robot
needs to parse the command the execute
the tasks;

2. Complex Tasks: Computer Vision,
Perception, Navigation, Motion Planning,
Language Understanding ...

3. open-set of instructions and open-set of
objects

December 3, 2024

Many Challenges

 LLMs and VLMs are trained by texts and images.

 For Robotics:

 Representation Space (Configuration Space)

* The positions of robot components are
usually represented by a configuration
space-

e Multi-Mode Observation
* Include the data of positions,
« world frames, forces,

Joint 3

* etc
« Action Space
» Action Space is variable for different tasks.

UNIVERSITY

JOHNS HOPKINS

Previous Approaches Question:

* Pre-defined motion primitives: How do we use the
e liftArm() LLMs/VLMs knowledge to
« moveToLeft() complete the robotics
» closeGripper() tasks, such as "turn on the
. lamp", "Open the top

drawer. Please also watch
out for that vase! ", given

* Use LLMs/ VLMs to compose new programming. an open set of instructions

« Limitation: and an open set of objects
* Heavily depends on human-defined rules Wi?:hc.)u:t human-defined
 How many primitives do we need to define as primitives?

the problems become challenging?
« cannot be adapted to different environments
« cannot sophistically control the robot

Keywords: Embodied Al,
physical intelligence

JOHNS HOPKINS

UNIVERSITY

Large Vision

Some Terms Language Language

Model Model
Voxel = Volume x Element Code

Affordance map: The volume
elements that the robot can take
action.

Constraint Map: The volume
elements that the robot cannot take
action.

3D Value Map
End-Effort: The part of a robotic e

high high
system that directly interacts with the e e of
environment. VoxPoser

JOHNS HOPKINS

UNIVERSITY

Robot Kinematics

* Question? How to move the end effort from position A to
position B.

« The robot’s end effort x = (xx, xy, xz) is determined by joint
angles, q = [q1, q2, .. gN].
 Therefore, x = f(g). P of
f
+ dx/dt=dffdq* dq/dt Oz,

» df/dqis a matrix, and the elements are the partial values 1
each joint. Mathematically, this matrix is named the
“Jacobian Matrix”.

* For a simpler example with two joints:

* - We can get the Jacobian Matrix by the combination info of
the joints.

* -'Then, dx/ dt is the velocity because the x 1s a vector.

aq (d_f)‘l* dx

* - Therefore, — = i3 P

dt

JOHNS HOPKINS

UNIVERSITY

Mz(x2,y2)

O(0,0)

2

1. Forward Kinematics

Calculate the position of the end-effector [3:, y] based on the current joint angles 6+, 05:
x = Ly cos(6y) + Ly cos(6y + 65)
y = Ly sin(0y) + Ly sin(6y + 63)

2. Jacobian Derivation
The Jacobian J relates joint velocities to end-effector velocities:

Oz Oz
__ | 08 00
J=1% %

06, a6,
For the 2-joint robot, substituting the partial derivatives:

—Ly sin(6y) — Lysin(0; + 63) —Lysin(6y + 63)

J= Ly cos(0y) + Lycos(61 +602) Lacos(6y + 62)

Problem Setting

///

« Given the language, [; , such as "Open the top drawer. Please also watch out for that vase:
Ttask: How will the state fit to the
task

Tcontrol: The time or energy cost
when executing the actions.

as a

task description.

We need a trajectory 1] for robot r and instruction [;.

Each waypoint: [x, y, z, vx, vy, vz, gripper_action[0/1]]

lllllllllll

Johns Hopkins Univérsity,
r’? RRRRRRRR
4 T [sEssex
o 4

Baltimore

We formulate an optimization problem defined as follows:

mm {Fta,sk (Tz, l;) ‘l‘ fcont'rol()} SU'bjen,

T;: environment states during the task execution

Fi 4k the cost of the sequential states for task i
F.ontror : the cost the trajectory

nnnnnnnnnnnnnnn

¥ &Ry JOHNS HOPKINS

UNIVERSITY December 3, 2024

A complete example — Stepl

« Task: put the sweeter fruit in the tray that contains the bread.
« Stepl: using planner prompt let LLM learn and decompose the task into several sub-tasks.

objects = ['blue block', 'yellow block', ‘mug']

Query: place the blue block on the yellow block, and avoid the mug at all time.
composer("grasp the blue block while keeping at least 15cm away from the mug")
composer(“"back to default pose")

composer("move to Scm on top of the yellow block while keeping at least 15cm away from t
composer("open gripper")

done

objects = ['airpods', 'drawer']

Query: Open the drawer slowly.

composer("grasp the drawer handle, at 0.5x speed")

composer("move away from the drawer handle by 25cm, at 0.5x speed")

composer("open gripper, at 0.5x speed”)
done planner prompt.txt

JOHNS HOPKINS

UNIVERSITY

A complete example — Step?2

» For each decomposed sub task, the composer_prompt will let LLM with context learning and get
corresponding affordance and avoidance maps.

Query: move to the back side of the table while staying at least Scm from the blue block.

movable = parse_query_obj('gripper')
affordance_map = get_affordance_map('a point on the back side of the table')
avoidance_map = get_avoidance_map('Scm from the blue block')

execute(movable, affordance_map=affordance_map, avoidance_map=avoidance_map)

Query: move to the top of the plate and face the plate.
movable = parse_query_obj('gripper')

affordance_map = get_affordance_map('a point 18cm above the plate')
rotation_map = get_rotation_map('face the plate')

execute(movable, affordance_map=affordance_map, rotation_map=rotation_map)

Query: drop the toy inside container.
movable = parse_query_obj('gripper')
affordance_map = get_affordance_map('a point 15cm above the container')

gripper_map = get_gripper_map('close everywhere but open when on top of the container')
execute(movable, affordance_map=affordance_map, gripper_map=gripper_map,

composer_prompt.txt

UNIVERSITY

JOHNS HOPKINS

A complete example — Step3

« Generate getting affordance and avoidance maps by LLM context learning.

Query: a point 18cm in front of [10, 15, 68].

Query: 10cm from the bowl.
affordance_map = get_empty_affordance_map() avoidance_map = get_empty_avoidance_map()
16cm in front of so we add to x-axis
x = 10 + cm2index(10, 'x')

y = 15
z = 60
affordance_map(x, v, z] = 1

bowl = parse_query_obj('bowl')
set_voxel_by_radiuvs(avoidance_map, bowl.position, radius_cm=10, value=1)

ret_val = avoidance_map

- i # Query: 28cm near the mug.
ret_val = affordance_map f :
avoidance_map = get_empty_avoidance_map()

: . . mug = parse_query_obj('mug')
Query: a point on the right side of the table. : : -)
set_voxel_by_radius(avoidance_map, mug.position, radius_cm=208, value=1)
affordance_map = get_empty_affordance_map()
- ret_val = avoidance_ma
table = parse_query_obj('table') = -~Hap
(min_x, min_y, min_z), (max_x, max_y, max_z) = table.a:

S r : 26 '
center._x, center.y, center.z = table.position # Query: 20cm around the mug and 10cm around the bowl.

right side so y = max_y avoidance_map = get_empty_avoidance_map()

X = center_x mug = parse_query_obj('mug')

y = max_y get affordance map.txt set_voxel_by_radius(avoidance_map, mug.position, rad: get avoidance map.txt
z = center_z - - bowl = parse_query_obj('bowl') - -
affordance_map[x, y, z] = 1 set_voxel_by_radius(avoidance_map, bowl.position, radius_cm=10, value=1)

ret_val = affordance_map ret_val = avoidance_map

UNIVERSITY

JOHNS HOPKINS

A complete example — Step4

» Generating query objection code by LLM context learning.

objects = ['handlel', 'handle2', 'eggl’', 'egg2', 'plate']

Query: topmost handle.

handlel = detect('handlel')

handle2 = detect('handle2')

if handlel.position[2] > handle2.position[2]:
top_handle handlel

else:
top_handle = handle2

ret_val = top_handle

objects = ['vase', 'napkin box', 'mask’']
Query: table.

table = detect('table')

ret_val = table

View #1 View #2 |

Constraint Maps

(b) Motion Planning

objects = ['brown line', 'red block', ‘monitor']
Query: brown line.

brion-Line =i datectCihromistines) _ Next Slides will demonstrate how to get the trajectory.
ret_val = brown_line parse_query_obj.txt

JOHNS HOPKINS

UNIVERSITY

costmap = target_map =* .config.target_map_weight + obstacle_map * .config.obstacle_map_weight
costmap normalize_map(costmap)

_costmap = costmap.copy()

How to get the path?

stop_criteria = ._get_stop_criteria()

path, current_pos = [start_pos], start_pos

ADS: argmln COSt map print(f'[planners.py | {get_clock_time(milliseconds=)}] start optimizing, start_pos: {start_pos}')

i range(.config.max_steps):
all_nearby_voxels = ._calculate_nearby_voxel(current_pos, object_centric=object_centric)
After getting the path,

nearby_score = _costmap[all_nearby_voxels[:, 0], all_nearby_voxels[:, 1], all_nearby_voxels[:, 2]]

steepest_idx = np.argmin(nearby_score)

use rObOt].C mOtlon next_pos = all_nearby_voxels[steepest_idx]

. . _costmap[current_pos[0].round().astype(int),
klnematlcs can make current_pos[1].round().astype(int),

current_pos[2].round().astype(int)] += 1

the JO]_ntS mOV]_ng path.append(next_pos)

current_pos = next_pos
stop_criteria(current_pos, _costmap, .config.stop_threshold):

raw_path = np.array(path)

JOHNS HOPKINS

UNIVERSITY 13

Efficient Dynamics Learning with Online Experiences

* VoxPoser can get trajectories directly from observation and LLMs/LVMs.

* Can VoxPoser learn where the target is in the next observation?

« Step 1: Given obs and target (x, v, z)s by VoxPoser Affordance and Avoidance map, getting
the moving distance and directions. These distances and directions are generated with
random sampling. (Because the robot cannot move its end-effort to the target in a single
step, it needs to move it gradually)

 Step 2! Based on the moving distance samplings and directions, we can get the moving
directions if is matched with the current target and observation. E.g ., if the gripper
direction 1s +1, and the target position — contact position > 1, it means the direction 1s
correct. Otherw1se the gripper direction is wrong, and we should i 1ignore this motion.

» Step 3: Calculate the next observations by the moving distances after filtering.

» Step 4: VoxPoser can predict the trajectory even without really applying the moving
actions.

¥ &Ry JOHNS HOPKINS

UNIVERSITY December 3, 2024

EXxperiment Setting

 LLMs: GPT-4, which generates code

recursively.

 VLMs: OWL-V1T, open-vocab detector,

which provides the location by giv ing an

object name.
 Environment: RLBench.

 Evaluation Metrics: Success Rate 1n real

world.

JOHNS HOPKINS

UNIVERSITY

Experiment Results

U-Net Language Models
LLM + Prim. [75] * VoxPoser yy,in/Test Category MP [50] Prim. [75] MP (Ours)

Task ~ Static Dist. Static Dist. “groaA™ OpiectInt. 21.0% 41.0% 64.0%
Move & Avoid 0/10 0/10 910 810 SISA Composition 53.8% 43.8% 77.5%

setUp Table - 7/10- 010 9710 = 7110 grya™ Opiectnt. 3.0% 46.0% 60.0%

Close Drawer 0/10 0/10 10/10 7/10 oo
Open Bottle 5/10 0/10 7710 5/10 SIUA Composition 3.8% 25.0% 58.8%

Sweep Trash 0/10 0/10 9/10 8/10 UIUA ObjectInt. 0.0% 17.5% 65.0%
Total 24.0% 0.0% 88.0% 70.0% UIUA Composition 0.0% 25.0% 76.7%

Table 2: Success rate in simulated domain. “SI” and “UI”
are seen and unseen instructions. “SA” and “UA” are seen
and unseen attributes. VoxPoser outperforms both base-
lines across 13 tasks from two categories on both seen and
unseen tasks and maintains similar success rates.

Table 1: Success rate in real-world domain. Vox-
Poser performs everyday manipulation tasks with
high success and is more robust to disturbances
than the baseline using action primitives.

JOHNS HOPKINS

UNIVERSITY December 3, 2024

Efficient Dynamics Learning with Online Experiences

Zero-Shot

* Get Planning directly from
observation

No Prior
* Dynamic Models predict
next observation without
1nitial trajectories

With Prior
* Dynamic Models predict
next observation with k
zero-shot trajectories.

JOHNS HOPKINS

UNIVERSITY

Zero-Shot No Prior w/ Prior

Task Success Success Time(s) Success Time(s)

Door 6.7%+449 58.3+44% TLE 88.3%+1.61%142.3+224
Window 3.3% +33% 36.7%ﬂ:1.7% TLE 80.0%+29% 137.0+75
Fridge 18.3%+33%70.0%+29% TLE 91.7%+44% 71.0+44

Table 3: VoxPoser enables efficient dynamics learning by
using zero-shot synthesized trajectories as prior. TLE (time
limit exceeded) means exceeding 12 hours. Results are re-
ported over 3 runs different seeds.

December 3, 2024

Error Breakdown

* “Dynamics error” refers to errors made
by the dynamics model

. U-Net + MP
« “Perception error” refers to errors

made by the perception module

LLM + Prim.

» “Specification error” refers to errors
made by the module specifying cost or
parameters for the low- level motion (mefcr:;;; -
planner or primitives.

0.00% 25.00% 50.00% 75.00% 100.00%

* VoxPoser achieves lowest I Dynamics Error [Perception Error Specification Error No Error
“specification error” due to its
generalization and flexibility

JOHNS HOPKINS

UNIVERSITY

Limitation and Future

U-Net + MP

* 1. It relies on external perception modules, which
holistic visual reasoning or understanding<«f{ine- "**"

e 2. Prompt Engineering.

* 3. More of perception:
. p p . o . 0.00% 25.00% 50.00% 75.00% 100.00%
 the implementation of detect() in source code: g ppamctror B Pacertonfror - Speciiontion Eror 8 No Enor

first _generation_ only=

scene_obj scene_objs:

scene_obj.get_name() internal_names: How to locate objects

exposed_name = exposed_names[internal_names.index(scene_obj.get_name())]

.[jame2ids[exposed_name] = [scene_obj.get_handle()] . . <L
A eYnTaed o, = LeornR-on).get in 3D space is critical and
.1dZname[scene_obj.get_handLe()] = exposed_name

child scene_obj.get_objects_in_tree():
.name2ids[exposed_name].append(child.get_handle()) an open problem.

.id2name[child.get_handle()] = exposed_name

JOHNS HOPKINS

UNIVERSITY

=

Review

Prompt Engineering: Demonstrate the code
generation for the robot motion planning.

 LLMs and VLMs: Generate corresponding
code that drives the whole framework.

* Use Voxel Map and Value Optimization to
remove the dependency of the primitive
operations.

* Predict the next observation by random
sampling motions.

JOHNS HOPKINS

UNIVERSITY

14 ’,'.», =" e
n on the lamp”

“open the vitamin bot
‘ t=4

7 ,‘\" & ‘\ Dl
] \; 5 4 i -
d

“take out the bread from the toaster and put it flat on the wooden plate”

December 3, 2024

* Leverage LLMs / VLMs to provide

instructions for robotics problems.

* Recursive code generated by prompt

engineering and LLMs.

* Perception is critical for improving the
robotics success rate in such problem

settings.

* Physical intelligence is fast-forwarding

because of the foundation model’s success. InS]_ g htS

The future may be exciting.

JOHNS HOPKINS

UNIVERSITY

JOHNS HOPKINS

UNIVERSITY

Thanks!

Marvin Gao

	幻灯片 1: VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models
	幻灯片 2: Leverage knowledge from LLM/VLM to make the physical world working
	幻灯片 3: Why?
	幻灯片 4: Many Challenges
	幻灯片 5: Previous Approaches
	幻灯片 6: Some Terms
	幻灯片 7: Robot Kinematics
	幻灯片 8: Problem Setting
	幻灯片 9: A complete example – Step1
	幻灯片 10: A complete example – Step2
	幻灯片 11: A complete example – Step3
	幻灯片 12: A complete example – Step4
	幻灯片 13: How to get the path? Ans: argmin cost map After getting the path, use robotic motion kinematics can make the joints moving
	幻灯片 14: Efficient Dynamics Learning with Online Experiences
	幻灯片 15: Experiment Setting
	幻灯片 16: Experiment Results
	幻灯片 17: Efficient Dynamics Learning with Online Experiences
	幻灯片 18: Error Breakdown
	幻灯片 19: Limitation and Future
	幻灯片 20: Review
	幻灯片 21: Insights
	幻灯片 22: Thanks!

