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Llama 3 Herd of Models
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e On engineering Llama Models

e Integrates image, video, speech capabilities, natively supports
multilinguality, coding, reasoning, and tool usage.

e Not MoEs or some amalgamation of Llamas! Use a standard dense
Transformer.

e Training Data: 15T / Scale: 8B - 405B

e This presentation is on pre-training only
o The paperis 92 pages long!



https://llama.meta.com/

Pre-Training

1. Curation and Filtering of a large-scale training corpus

2. The development of a model architecture and corresponding scaling laws for
determining model size

3. The development of techniques for efficient pre-training at a large scale

4. Development of a pre-training recipe
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Data Acquirement
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Part 1, Pre-training Data

Source

e Much of data obtained from web

e Maybe some Meta APP databases fq Ce oo
Goal

To obtain a high-quality language model

Obtained multilingual data on general knowledge, code, and reasoning
Improved the data quality

Removed some inappropriate text

Determined the proportion of different data sources




Filtering, Cleaning and Deduplication

Removal of safety filtering

Removed sites that is likely to contain unsafe content, and personal identification info

Text extraction and cleaning

They created HTML parser to remove boilerplate and retrieve content only.

Got rid of markdown markers since it was harmful

expensive!!

Deduplication
Removal of duplicate, old versioned url

Global minhash document-level deduplication

Line level Remove lines that appeared more than 6 times in each bucket of 30M documents




Heuristic Filtering

e Deduplication using n-gram coverage
o Deduplicates items too long according to line-level deduplication
o “Dirty Words” counting to remove adult websites
o Kullback-Leibeler divergence to filter documents with excessive outlier tokens




Model-based Quality Filtering

e Fasttext to recognize text referenced by Wikipedia
e Trained a quality classifier DistilRoberta to generated quality scores for each

documents
Quality classifier
Unlabeled training set of labeled training set of
cleaned - Llama 2 > cleaned

Web documents Web documents




Code and Reasoning Data & Multilingua Data
Code

e Trained a DistilRoberta model based on data annotation of Llama2 for extraction of web pages
related to code and math.

e Shares different token distribution from other sites.
o Required domain specific HTML extraction, text features, and heuristics for filtering

Multi-language

e Used fasttext based language identification to categorize 176 languages

e Build custom document-level and line-level deduplication within data for each language
e Used language-specific filters.




Limitations

e No mention of the actual Data they used. (maybe issues on intellectual

property)
e Doesn't specify webpage but the data extraction methods point towards

majority web scraping.




Concoction

e Developed a classifier to categorize the types of information and downsample
the categories which is not important like entertainment

e Performed scaling law experiments in small models to predict patterns on
large models.

summary

e 50% - general knowledge
e 42% - code and reasoning !!!
e 8% -multilingual




Annealing

e Upsampled high-quality data with a very low learning rate near the end of
training, for example in reasoning and math area

e Using in judging the value of specific domain datasets
o assign 30% weight to new dataset and the remaining 70% weight to the default data mix
o It can be evaluated whether the datasets has impacts on pre-training




Model



Model Architecture(Compared to Llama 2)

e Grouped query attention(GQA) with 8 key-value heads
e Used attention mask to prevents self-attention between differents
documents




Grouped query attention(GQA)

e Divide query heads into G=8 groups(each group has n=4/8/12 queries), each
of which shares a single key head and value head.

e Construct each group key and value head by mean-pooling all the original
heads within that group.

Mult-head Grouped-query Multi-query e Higher model quality than MPA
- 0000000 00 OO | e Faster than MHA
o ::::: U U U D D e Reduces size of kv-cache
-{0000000 00000000 DOG0OOD

[ Ainslie, Lee-Thorp, Jong, Zemlyanskiy, Lebron, Sangha’23 ]



Attention mask

e Significant for continued pre-training on very long sequences

Doc1: 3k Doc2: 4k Doc3: 1k

o




Model Architecture

e Used a vocabulary with 128K tokens. Combined 100K tokens from the
tiktoken3 tokenizer with 28K additional tokens to better support non-English

languages
o tokenizer improves compression rates on a sample of English data from 3.17 to 3.94
characters per token

e Increased the RoPE(position encoding method) base frequency
hyperparameter to 500,000 to better support longer contexts.




Model Architecture

8B 70B 405B
Layers 32 80 126
Model Dimension 4,096 8192 16,384
FFN Dimension 14,336 28,672 53,248
Attention Heads 32 64 128
Key/Value Heads 8 8 8
Peak Learning Rate 3x107% 15x107% 8x10°°
Activation Function SwiGLU
Vocabulary Size 128,000
Positional Embeddings RoPE (6 = 500, 000)




Scaling Laws

Prev scaling laws (Hoffmann et al., 2022; Kaplan et al., 2020):
e predict only next-token prediction loss rather than benchmark
e Scaling laws can be noisy and unreliable because they are developed based
on pre-training runs conducted with small compute budgets




Scaling Laws

e Established a correlation between the compute-optimal model’s negative
log-likelihood on down-stream tasks and the training FLOPs.

e Correlated the negative log-likelihood on downstream tasks with task
accuracy, utilizing both the scaling law models and older models trained with

higher compute FLOPs. (eg,Llama 2)




Scaling Laws  optimization
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ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]




Scaling Laws
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Figure 4 Scaling law forecast for ARC Challenge. Left: Normalized negative log-likelihood of the correct answer on the
ARC Challenge benchmark as a function of pre-training FLOPs. Right: ARC Challenge benchmark accuracy as a
function of the normalized negative log-likelihood of the correct answer. This analysis enables us to predict model
performance on the ARC Challenge benchmark before pre-training commences. See text for details.
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Infrastructure, Scaling and Efficiency



Engineering Challenges of Training a 405B Parameter Model

e With 405 billion parameters storing the model weights in full precision (32-bit)
results in 1,620 GB of vram just for the weights

e Optimizers generally use three times the model size of memory. That results
in 4,860 GB of vram

e Training a model of this scale requires 80+ H100 GPUs to for a single
instance

e The modelis trained in batches, meaning weight updates must be
synchronized across batches, layers, tensors across GPUs.

e Training such model requires massive infrastructure and smart parallelization
schemes




Infrastructure



Compute

e 16k H100 80GB GPUs

o 400 million dollars on GPU alone
e Server rack consists of eight GPUs and two CPUs

e Training Jobs were scheduled via MAST, Meta's global scale training
scheduler




Storage and Network

e Tectonic (Meta's general purpose distributed file system)
o 240PB of storage, 7,500 servers
o Each servers have throughput of 2TB/s and peak of 7TB/s
m High burst occurs on checkpoint save
m Important to keep frequent checkpoints due to recovery

Pan Et al., 2021 Battey and Gupta., 2024



https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00660/120911/Automatically-Correcting-Large-Language-Models
https://atscaleconference.com/videos/training-llama-a-storage-perspective/

Network

LLAMA 3

e Llama 405B used RDMA over
Converged Ethernet fabric (RoCE)
e Smaller models in the Llama 3

Advanced
family were trained using Nvidia T nfrastructure .
Quantum?2 Infiniband fabric = & . bt
FEMNE o =
e Both clusters leverage 400Gbps anks
interconnects between GPUs




RoCE base structure

8 GPUs per rack

2 racks per rack host (16 GPUs)

192 rack hosts per pod(3072 GPUs)

8 pods (24K GPUs)

Oversubscription ratio of 1:7

Through load balancing, and congestion control, Llama team tackle the

oversubscription ratio
o  Multiple channels between GPUs for granular flow and load balancing
o Deep Buffer switches in the spine
o Better load balancing (Check their paper!)



https://dl.acm.org/doi/10.1145/3651890.3672233
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4D Parallelism

e Tensor Parallelism
o Chunks weight tensors into different devices
e Context Parallelism
o Divide input content into segments
e Pipeline Parallelism
o Partitions model vertically into stages by layers
e Data Parallelism

o Data parallelism shares the model, optimizer, and gradients




4D Parallelism

Tensor Parallelism
Context Parallelism
Pipeline Parallelism
Data Parallelism




GPU 2 GPU 3 GPU10 GPUMN
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Tensor Para”ellsm inputs weights  outputs

e Splits large tensors to smaller | : .
tensors for modular computation [ L]

X A Y

is equivalent to

Y1l

X Al A2 A3 Y3




Context Parallelism

e Splits context across multiple GPUs.
e Utilizes ring-attention for compute

o  Utilized compute order flexibility of (b) ! 1 ! ,
Blockwise Blockwise Blockwise Blockwise
a-t-t e n-t | on FeedForward FeedForward FeedForward FeedForward
! Queryi ' Blockwise Blockwise Blockwise Blockwise
a : 2/ Attention Attention Attention Attention
R :
- I
2 i/ Qderf2/ ) esalo o = T P W
(o] S A ! ' 1
E _______ Key1 i Key2 Key3 Key4 1
1 ]
S : Query3 1 ot et I,__'_'_'_'_Z P S
1 ]
Pantatas Value1 | Value2 Value3 Value4
1
v : BUsE A T e | T T T TR TR | TET T R
VL LAk 3 compute, send to| | receive from
\_ next device \Erewous dewce/
....................................... >

Key and Value Inner Loop




Pipeline Parallelism

DL model is split data flow parallel :
and distributed 5 # processing .
to workers : T

» EHE
B OO0 B

training data is parameter synchronization
split into batches
that are subsequently fed into the
worker that holds the input layer

1
i
L]
. oo
'Y

Pipeline parallelism. "B" -Backpropagation. Figure adapted from Huang et al. [70].

Ne (O,M]
PPrank0 0 1 2 3 4 0 1 2 3 4 5 [}
PP rank1 0123401
PP rank2 012340
PP rank3 01234

_ Time Stage 0-3 forward Stage 4-7 forward B stage 0-3 backward B stage 4-7 backward



Standard data parallel training

Data Parallelism

e Trains models across different data
e Uses Fully Sharded Data Parallelism
(FSDP)

o  Synchronize updates using model,
optimizer, and gradients shard.

o  Synchronized update happen every Fully sharded data parallel training
training step




Training Stability

e Achieved 90% effective

o e . Component Category Interruption Count % of Interruptions

traln I ng tl me Faulty GPU GPU 148 30.1%
GPU HBM3 Memory GPU 72 17.2%
o 7 8 % were d ue to h a rd ware Software Bug Dependency 54 12.9%
Network Switch/Cable Network 35 8.4%

1 : Unplanned
ISSuUes Host Maintenance T 32 7.6%
. . GPU SRAM Memory GPU 19 4.5%

)
o Used PyTO rCh S bu | |t N N CC L GPU System Processor GPU i 4.1%
NIC Host 7 1.7%
1 1 NCCL Watchdog Timeouts Unknown T 1.7%
ﬂlght recorder to mon Itor Silent Data Corruption GPU 6 1.4%
GPU Thermal Interface + Sensor GPU 6 1.4%
o,

e There was a 1-2% throughput SSD Host 3 07%
Power Supply Host 3 0.7%
1 1 1 Server Chassis Host 2 0.5%
Varlatlon based On tlme Of day 10 Expansion Board Host 2 0.5%
. . Dependency Dependency 2 0.5%
o Result of higher midday e e g a8
System Memory Host 2 0.5%

temperature

Table 5 Root-cause categorization of unexpected interruptions during a 54-day period of Llama 3 405B pre-training. About
78% of unexpected interruptions were attributed to confirmed or suspected hardware issues.




Training Recipe



Training Recipe

e Initial pre-training

e Long-context pre-training

e Annealing




Initial Pre-training

e Used linear warm up of 8,000 steps with peak learning rate of 8e-5.
e Used cosine learning rate schedule decay to 8e-7 over 1,200,000 steps

e Used lower batch size early in training to improve training stability

o 4M sequences of 4096 tokens up until 252M tokens
o 8M sequences of 8192 tokens until 2.87T tokens
o Finally train on 16M batch size

e Increased percentage of non-English data and mathematical data for initial
pre-training.




Long Context Pre-Training

e Trained on long sequences to support context windows of 128K tokens

e Measured model performance on short-context evals and
needle-in-a-haystack task

e Gradually increased 8K context to 128K context window

e 800B training tokens used in long context pre-training
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context length in characters
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Annealing

e During the final 40M tokens of training, the learning rate is linearly decreased

to zero.
e The final pretrained model weights are obtained by averaging over model

checkpoints during this period.
e During this period, data mix was enhanced by including text from upsampled

data sources of high quality
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Pretrained Model Evaluation



Pretrained Model Results

Standard Benchmarks

Robustness to changes in multiple-choice question setups

adversarial evaluations

the extent to which our evaluations are impacted by contamination of training
data




Standard Benchmarks

Win nearly all types of tasks!!
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Model Model
Llama 2 7B B Llama 2 70B

Llama 3 8B B Llama 3 70B
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Gemma 7B
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Standard Benchmarks

Math and Reasoning
GSMS8K MATH ARC-C DROP WorldSense

i iti I

Llama 3 8B 57.2+27 20.3 1.1 79.7 +23 59.5 +1.0 45.5 +0.3 4O5B IS ve ry com petltlve among LM "

Mistral 7B 52.5 +2.7  13.1 09 78.2 +24  53.0 +1.0 44.9 +o0.3

Gemma 7B 46.4 +2.7 243 +12 78.6 +24 56.3 +1.0 46.0 +o0.3

Llama 3 70B 83.7 +2.0 414 +14 929 +15 79.6 +o.s 61.1+0.3

Mixtral 8x22B 88.4 +1.7 41.8 +14| 91.9 +16 | 77.5 +0.8 51.5 +0.3

Llama 3 405B 89.0 1.7 53.8+14) 96.1 +1.1 | 84.8 +07 63.7 +o3 General

GPT-4 92.0 +15 - 96.3 +1.1 80.9 +o0.8 -

Nemotron 4 340B _ _ 94.3 +1.3 _ MMLU MMLU-Pro AGIEval BB Hard

Gemini Ultra 88.99+1.71_53.2:14 - 8242 +0s - Llama 3 8B 66.7 371 47.8 119 64.2 412
Mistral 7B 63.6 32.5 42.7 +1.9 56.8 +1.2
Gemma 7B 64.3 35.1 46.0 +1.9 57.7 +1.2
Llama 3 70B 79.3 53.8 64.6 t19 81.6 +tos
Mixtral 8 x22B 77.8 51.5 61.5 +1.9 79.5 +1.0
Llama 3 405B 85.2 61.6 71.6 +1.8 |85.9 +os
GPT-4 86.4 - — —
Nemotron 4 340B 81.1 - — 85.4 +0.9
Gemini Ultra 83.7 - - 83.6 +0.9




Robustness to changes in MCQ setups

Label variants Few-shot label bias
Llama 3 8B 100 ABCD == BBCC
90 == Llama 3 70B = AADD e AAAA

=== Llama 3 405B
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Adversarial evaluations

similar performance

Size Caleg‘ory ) Size Categvory ‘
§ T % Pasieoncs O TR X Camtin i
® 4058 = Mathematical reasoning ® 4058 = Mathematical reasoning
1.0 1.0
- e g 08 .. the adversarial performances are substantially
go.e %o.e lower than the non-adversarial performances
5o . 5o o for math and question answering
<02 <02
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Non-adversarial score Non-adversarial score

Results for pre-trained models Results for post-trained models




Contamination of training data impact

Method:

e Consider an example of a dataset D to be contaminated if a ratio 7p of its tokens are part of an
8-gram occurring at least once in the pre-training corpus.
o Select 7p separately for each dataset, based on which value shows the maximal significant
estimated performance gain across the three model sizes.




Contamination of training data impact

Contam. Performance gain est.

8B T70B  405B Both h|gh

AGIEval 98 85 19.9 16.3

BIG-Bench Hard 95 26.0 360  41.0

BoolQ 96 4.0 47 3.9

CommonSenseQA 30 0.1 08 0.6

DROP — -~ = -

GSMSK 4 0.0 0.1 1.3

HellaSwag 85 148 148 143

HumanEval - - - -

MATH 1 00 -01 -0.2

MBPP - - - -

T P — Other Detection methods needed
NaturalQuestions 52 1.6 0.9 0.8 \

OpenBookQA 21 30 33 2.6 .

[PiQA 55 85 79 81 | Seems no impact
QuaC 99 24 11.0 6.4

RACE - — = —~

SiQA 63 20 23 26

[SQuAD 0 00 00 00 [——

Winogrande 6  -01 -01 0.2 Maybe Iarger n

WorldSense 73 3.1 -04 3.9




Discussions



