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Llama 3.1-405b Instruct is Currently the Best Open Source AI



Overview

● On engineering Llama Models
● Integrates image, video, speech capabilities, natively supports 

multilinguality, coding, reasoning, and tool usage.
● Not MoEs or some amalgamation of Llamas! Use a standard dense 

Transformer.
● Training Data: 15T / Scale: 8B - 405B
● This presentation is on pre-training only

○ The paper is 92 pages long!

https://llama.meta.com/

https://llama.meta.com/


Pre-Training

1. Curation and Filtering of a large-scale training corpus
2. The development of a model architecture and corresponding scaling laws for 

determining model size
3. The development of techniques for efficient pre-training at a large scale
4. Development of a pre-training recipe



Data Acquirement



Part 1, Pre-training Data

  Source

● Much of data obtained from web
● Maybe some Meta APP databases  

  Goal

  To obtain a high-quality language model

● Obtained multilingual data on general knowledge, code, and reasoning
● Improved the data quality
● Removed some inappropriate text
● Determined the proportion of different data sources



Filtering, Cleaning and Deduplication
Removal of safety filtering

Removed sites that is likely to contain unsafe content, and personal identification info

Text extraction and cleaning

They created HTML parser to remove boilerplate and retrieve content only. 

Got rid of markdown markers since it was harmful

Deduplication

Removal of duplicate, old versioned url

Global minhash document-level deduplication 

Line level Remove lines that appeared more than 6 times in each bucket of 30M documents 

expensive!!



Heuristic Filtering

● Deduplication using n-gram coverage
○ Deduplicates items too long according to line-level deduplication
○ “Dirty Words” counting to remove adult websites
○ Kullback-Leibeler divergence to filter documents with excessive outlier tokens



Model-based Quality Filtering

● Fasttext to recognize text referenced by Wikipedia
● Trained a quality classifier DistilRoberta to generated quality scores for each 

documents

Llama 2
Unlabeled training set of 

cleaned 
Web documents

labeled training set of 
cleaned 

Web documents

Quality classifier



Code and Reasoning Data & Multilingua Data

● Trained a DistilRoberta model based on data annotation of Llama2 for extraction of web pages 
related to code and math.

● Shares different token distribution from other sites.
○ Required domain specific HTML extraction, text features, and heuristics for filtering

● Used fasttext based language identification to categorize 176 languages
● Build custom document-level and line-level deduplication within data for each language
● Used language-specific filters.

Code

Multi-language



Limitations

● No mention of the actual Data they used. (maybe issues on intellectual 
property)

● Doesn’t specify webpage but the data extraction methods point towards 
majority web scraping.



Concoction

● Developed a classifier to categorize the types of information and downsample 
the categories which is not important like entertainment

● Performed scaling law experiments in small models to predict patterns on 
large models.

summary

● 50% - general knowledge
● 42% - code and reasoning !!!
● 8% - multilingual 



Annealing

● Upsampled high-quality data with a very low learning rate near the end of 
training, for example in reasoning and math area

● Using in judging the value of specific domain datasets
○ assign 30% weight to new dataset and the remaining 70% weight to the default data mix
○ It can be evaluated whether the datasets has impacts on pre-training 



Model



Model Architecture(Compared to Llama 2)

● Grouped query attention(GQA) with 8 key-value heads
● Used attention mask to prevents self-attention between differents 

documents



Grouped query attention(GQA) 
● Divide query heads into G=8 groups(each group has n=4/8/12 queries), each 

of which shares a single key head and value head.
● Construct each group key and value head by mean-pooling all the original 

heads within that group.

[ Ainslie, Lee-Thorp, Jong, Zemlyanskiy, Lebrón, Sangha’23 ]

● Higher model quality than MPA

● Faster than MHA

● Reduces size of kv-cache



Attention mask 

● Significant for continued pre-training on very long sequences

Doc1: 3k Doc2: 4k

X

Doc3: 1k



Model Architecture

● Used a vocabulary with 128K tokens. Combined 100K tokens from the 
tiktoken3 tokenizer with 28K additional tokens to better support non-English 
languages

○ tokenizer improves compression rates on a sample of English data from 3.17 to 3.94 
characters per token

● Increased the RoPE(position encoding method) base frequency 
hyperparameter to 500,000 to better support longer contexts.



Model Architecture

 



Scaling Laws

Prev scaling laws (Hoffmann et al., 2022; Kaplan et al., 2020): 
● predict only next-token prediction loss rather than benchmark
● Scaling laws can be noisy and unreliable because they are developed based 

on pre-training runs conducted with small compute budgets



Scaling Laws
● Established a correlation between the compute-optimal model’s negative 

log-likelihood on down-stream tasks and the training FLOPs.
● Correlated the negative log-likelihood on downstream tasks with task 

accuracy, utilizing both the scaling law models and older models trained with 
higher compute FLOPs. (eg,Llama 2)



Scaling Laws  Optimization 



Scaling Laws

● Experiments on various benchmark make 
sense 

● Training on small scaling law models 
and Llama 2 models



Infrastructure, Scaling and Efficiency



Engineering Challenges of Training a 405B Parameter Model

● With 405 billion parameters storing the model weights in full precision (32-bit) 
results in 1,620 GB of vram just for the weights

● Optimizers generally use three times the model size of memory. That results 
in 4,860 GB of vram

● Training a model of this scale requires 80+ H100 GPUs to for a single 
instance

● The model is trained in batches, meaning weight updates must be 
synchronized across batches, layers, tensors across GPUs.

● Training such model requires massive infrastructure and smart parallelization 
schemes



Infrastructure



Compute

● 16k H100 80GB GPUs
○ 400 million dollars on GPU alone

● Server rack consists of eight GPUs and two CPUs
● Training Jobs were scheduled via MAST, Meta’s global scale training 

scheduler



Storage and Network

● Tectonic (Meta’s general purpose distributed file system)
○ 240PB of storage, 7,500 servers
○ Each servers have throughput of 2TB/s and peak of 7TB/s

■ High burst occurs on checkpoint save
■ Important to keep frequent checkpoints due to recovery

Pan Et al., 2021   Battey and Gupta., 2024   

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00660/120911/Automatically-Correcting-Large-Language-Models
https://atscaleconference.com/videos/training-llama-a-storage-perspective/


Network

● Llama 405B used RDMA over 
Converged Ethernet fabric (RoCE) 

● Smaller models in the Llama 3 
family were trained using Nvidia 
Quantum2 Infiniband fabric

● Both clusters leverage 400Gbps 
interconnects between GPUs



RoCE base structure

● 8 GPUs per rack
● 2 racks per rack host (16 GPUs)
● 192 rack hosts per pod(3072 GPUs)
● 8 pods (24K GPUs)
● Oversubscription ratio of 1:7
● Through load balancing, and congestion control, Llama team tackle the 

oversubscription ratio 
○ Multiple channels between GPUs for granular flow and load balancing
○ Deep Buffer switches in the spine
○ Better load balancing (Check their paper!)

https://dl.acm.org/doi/10.1145/3651890.3672233


Parallelism



4D Parallelism

● Tensor Parallelism
○ Chunks weight tensors into different devices

● Context Parallelism
○ Divide input content into segments

● Pipeline Parallelism
○ Partitions model vertically into stages by layers

● Data Parallelism
○ Data parallelism shares the model, optimizer, and gradients



4D Parallelism

● Tensor Parallelism
● Context Parallelism
● Pipeline Parallelism
● Data Parallelism





Tensor Parallelism

● Splits large tensors to smaller 
tensors for modular computation



Context Parallelism

● Splits context across multiple GPUs.
● Utilizes ring-attention for compute

○ Utilized compute order flexibility of 
attention



Pipeline Parallelism



Data Parallelism

● Trains models across different data
● Uses Fully Sharded Data Parallelism 

(FSDP)
○ Synchronize updates using model, 

optimizer, and gradients shard. 
○ Synchronized update happen every 

training step



Training Stability

● Achieved 90% effective 
training time

● 78% were due to hardware 
issues

● Used PyTorch’s built in NCCL 
flight recorder to monitor

● There was a 1-2% throughput 
variation based on time of day

○ Result of higher midday 
temperature



Training Recipe



Training Recipe

● Initial pre-training

● Long-context pre-training

● Annealing



Initial Pre-training

● Used linear warm up of 8,000 steps with peak learning rate of 8e-5.
● Used cosine learning rate schedule decay to 8e-7 over 1,200,000 steps
● Used lower batch size early in training to improve training stability

○ 4M sequences of 4096 tokens up until 252M tokens
○ 8M sequences of 8192 tokens until 2.87T tokens
○ Finally train on 16M batch size

●  Increased percentage of non-English data and mathematical data for initial 
pre-training.



Long Context Pre-Training

● Trained on long sequences to support context windows of 128K tokens
● Measured model performance on short-context evals and 

needle-in-a-haystack task
● Gradually increased 8K context to 128K context window
● 800B training tokens used in long context pre-training



Annealing

● During the final 40M tokens of training, the learning rate is linearly decreased 
to zero.

● The final pretrained model weights are obtained by averaging over model 
checkpoints during this period.

● During this period, data mix was enhanced by including text from upsampled 
data sources of high quality



Pretrained Model Evaluation



Pretrained Model Results

● Standard Benchmarks
● Robustness to changes in multiple-choice question setups
● adversarial evaluations
● the extent to which our evaluations are impacted by contamination of training 

data



Standard Benchmarks
Win nearly all types of tasks!!



Standard Benchmarks

405B is very competitive among LM!! 



Robustness to changes in MCQ setups

405B model shows high 
robustness in answer order 
changes 

Label variants

Answer order

Few-shot label bias 

Prompt format



Adversarial evaluations

Results for pre-trained models Results for post-trained models 

the adversarial performances are substantially 
lower than the non-adversarial performances 
for math and question answering

similar performance 



Contamination of training data impact
Method:  

● Consider an example of a dataset D to be contaminated if a ratio       of its tokens are part of an 
8-gram occurring at least once in the pre-training corpus. 

○ Select        separately for each dataset, based on which value shows the maximal significant 
estimated performance gain across the three model sizes. 



Contamination of training data impact

Other Detection methods needed

Seems no impact

Maybe larger n

Both high



Discussions


