Mian Zhong & Milton Lin

How can weak supervisors
control strong models?



Motivation from authors

* Superalignment

The challenge of weak human supervision for complex Al behavior.

* Can we use weak models to elicit strong model abilities?
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Methodology
3
1. Create aweak supervisor =

£33

Small pretrained models (e.g., GPT-2) are fine-tuned on ground truth labels to generate weak
supervision for the task

2. Train strong models with weak supervision

Strong models (e.g., GPT-4) are fine-tuned using the weak labels from the supervisorin (1). In (3) we
evaluate the generalization ability of the strong model, defined as weak-to-strong performance.

3. Compare with Strong Ceiling Performance
As a baseline, the strong models are also trained using ground truth labels to establish the strong
ceiling performance. The difference in performance between weak and strong supervision is
measured using Performance Gap Recovered (PGR). S




Performance Gap Recovered (PGR)

PGR quantifies how much of the gap between weak performance and strong performance is bridged by
training on weak labels.
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* If PGR=1:

The strong model performs as well as it would with ground truth supervision, achieving the strong
ceiling performance.

* If PGR=0:

The strong model does no better than the weak supervisor

* Intermediate values (0 < PGR < 1):

Represent partial recovery, where the strong model generalizes beyond the weak labels but does not
reach its full potential. A higher PGR means that weak-to-strong generalization is more successful.



Dataset Original Source

° BoolQ Clark et al. (2019)
Eva lu at I O n ta S kS CosmosQA Huang et al. (2019)
DREAM Sun et al. (2019)
ETHICS [Justice] Hendrycks et al. (2020a)
ETHICS [Deontology] Hendrycks et al. (2020a)
ETHICS [Virtue] Hendrycks et al. (2020a)
. .. . ETHICS [Utilitarianism]  Hendrycks et al. (2020a)
* NLP Binary Classification FLAN ANLI R2 Nie et al. (2019); Wei et al. (2021)
GLUE CoLA Warstadt et al. (2019); Wang et al. (2018)
. GLUE SST-2 Socher et al. (2013); Wang et al. (2018)
* R ewa rd M O d e l'l n g HellaSwag Zellers et al. (2019)
MCTACO Zhou et al. (2019)
° C h ess OpenBookQA Mihaylov et al. (2018)
PAWS Zhang et al. (2019)
QuAlIL Rogers et al. (2020)
PIQA Bisk et al. (2020)
QuaRTz Tafjord et al. (2019)
SciQ Welbl et al. (2017)
Social IQa Sap et al. (2019)
o SuperGLUE MultiRC Khashabi et al. (2018); Wang et al. (2019)
&7 SuperGLUE WIC Pilehvar & Camacho-Collados (2018); Wang et al. (2019)
Twitter Sentiment Zhang et al. (2019)
Response A| —» — | A | 58%
—
—
. — =
Response B| —» - 427%




Finding |: strong models consistently outperform
their weak supervisors across tasks.
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[Figure 2] In NLP tasks, fine-tuning GPT-4 on GPT-2-level labels recovers about 50%
of the performance gap between the two models.

In contrast, reward modeling tasks exhibit poor generalization with a much lower
PGR, even with increasing compute.



Why Is weak-to-strong possible”? Conjecture:

* Latent Knowledge and Pretraining:
strong models leverage their pretraining knowledge to perform tasks. Weak
labels serve as a signal to elicit this latent knowledge.

* Same phenomena can be seen in prompting: [5.2.1, figure 7]
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Finding Il: level of generalization depends on
the task.

* Weak-to-strong generalization for reward modeling is poor
compared to NLP.

It typically recovers only about 10% of the performance difference between the weak
supervisor and the ground truth performance.

« Saliency[5.2]is how well a task's relevant knowledge can be

elicited.
But how to measure it? E.g. Linear representation.



Good on NLP/‘, Poor on

o
—

(71dD Jo uonoeuy)
21ndwod Josinladns yeam

J

—_
o

Figure 3 strong ceiling performance weak-to-strong performance
[ g ] ?91- supervision) (weak supervision)
a) 100 b) 100 c
(@) NLP Tasks (b) Chess Puzzles © 72 ChatGPT IL
Reward Modeling
90 Vg 80 / 70
< i S &0 ?
> 80 / § > 60 o > s
] © @ o2
3 / 3 -— | 566
o o O o —o——o
S 70 /’ _o—° S 40 e ——— S 64 /‘/._
: M// 3 / o 0 o : g /A' _—o—o—0—9
60 20 e —— 62
_/. o ._..._/0—0—-4———T
50 i ] 3l 3l 3l T 0 ML BB LLLL ML BB LLLL ALY BELELRLLLLE BLELRLLLL B T 60 T L) L) T T —
10 10 10* 1072 1 10 10°  10* 10 1 108 106 104 102 1
d e) 100 f) 100
(%;100 NLP Tasks ( )/\? Chess Puzzles ()3 ChatGPT
< < < R d Modeli
< 80 < g0 < go{Reward Modeling
® o o o
(0] (] (0]
> 60 é» > 60 e > 60
o o 1) N o
O (&} (&)
1) —&~ ) 1)
5 40 ',/"‘E o o 40 o S 5 40
(@] " S (@)} \ - (@)
= = o = *::3&3:3;
© © —~———o- ©
E O E 0 E 0
S S S " o
$ 20 g 20/ 820
106 104 102 1 106 10 102 1 10¢ 104+ 102 1
strong student compute strong student compute strong student compute

(fraction of GPT4) (fraction of GPT4) (fraction of GPT4)



Does this explain the case of reward model? e

generative fine-tuning to reward modeling tasks improves weak-to-strong generalization, particularly when combined with early
stopping.[5.2.2]
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Finding lll: various methods can significantly
Improve the results.

* Auxiliary confidence loss : Strong models trust its own when
disagreement occurs

* Bootstrapping: Not helpful for NLP/RM

* Early stopping and size (next two slides)



Student-supervisor Agreement

High agreement between the strong and weak models "means" the strong model is imitating the weak
supervisor’s predictions. [5.1.2 Figure 8]

* As strong models grow larger, they agree less with the weak
supervisor, especially when the supervisor is wrong.
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What could be a failure mode? Imitation

strong model may "overfit" to the weak supervisor’s labels, meaning the strong model might imitate the
weak supervisor’s mistakes instead of improving upon them. [5.1]
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[Figure 7] shows how performance (test accuracy) changes over the course of training
(measured in fractions of an epoch). Stopping training before overfitting occurs can improve
performance.



Relating back to the Alignment problem —
limitations of the approach

* The setup cannot fully capture the same type of errors in
superalignment

* Latent knowledge in superalignment
* Our pretraining leakage = overly optimistic performance metrics



Other works

* Weak judge v.s. 2 strong debaters

* Improve the weak supervisor
e Can a non-clinician elicit only appropriate medical advice with LLM? &3
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