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Question Definition 

For humans,  it’s natural to think

longer on difficult problems. 

How to introduce this capability into LLMs? 

Benefits: 

-💪: Improve the performance on the testing phases 

-⏰：Decrease the cost in training and pre-training phases; 

-💰：Is possible to use extra, even spare, computation resource in 
testing steps to increase overall performance? 



Let’s Think it Deeper

• 1. Not only about better performance on reasoning and 

inference; 

• 2. The model will not need to be very large because of 

the improvement in testing steps, and we can deploy 

smaller size  model in devices but reach the same, even 

better performance; 

• 3. It’s a path towards a general self-improvement 

LLMs without / weakly-with human supervision. 



Someone  has already started 



Methods  

• 1. Verify the correctness of individual steps 
using a process-based reward model. 

• 2. Improving the proposal distribution. 

• What to know:  test-time compute-optimal 
scaling strategy 
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Efficiency Comparison: FLOPs 

• comparison between a smaller model
    with additional test-time compute and              
    pretraining a 14x larger model. 

• scaling up test-time computation can be 
more preferable to scaling up pretraining, 
but not for all problems; 

• For more difficult prompts, it will be less 
efficient when applying  test time scaling 
up. 

pretraining  
FLOPs

inference FLOPs



Improve Accuracy  by a Revisor

ORM: Offline Reward Model

Evaluate outputs after whole rollout

PRM: Process Reward Model 

Evaluate outputs in each step 

Which is better for becoming a revisor? 



Experiment Settings and Methods

ground truth 
given `q`

 
Updated Policy

Steps
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Steps

Search 
Algorithms

Difficulty of q:  assign q to one of five 
difficulty levels. Use this as input to 

get optimal parameters settings. 
Getting from a LLM



• Dataset: MATH benchmark, which consists 
of high-school competition level math 
problems. 

• Models: PaLM 2-S*

•Method ½: Scaling Test-Time 
Compute Via Verifiers

Step1: Training Process Reward Model:   
supervise  PRMs without human labels, using 
estimates of per-step correctness obtained 
from running Monte Carlo rollouts from each 
step in the solution, corresponding to value 
estimated. 

Step2:  Score a set of solutions using PRM. 



PRM Search 
Methods

Rollout

Process Reward Model

Select By Verifier and 
Proceed



Test-time Scaling for 
Search with Verifiers
• Sweep various search settings 

and hyperparameters
• Results

• Smaller budget: beam search 
better

• Greater budget: best-of-n
• Lookahead underperforms for 

all budgets



Comparing search methods by question 
difficulty

• Four bars are increasing test-time 
compute

• Easy (1-2) : best of N better
• Beam over-optimizes, exploits PRM signal

• Medium (3-4): beam better
• Intuition

• On easy questions verifier will mostly be 
correct, by further optimizing we amplify 
spurious features thus degrading

• On difficult questions model less likely to 
sample correct answer, search helps find 
it



Most powerful search methods underperform with high 
budget on easy questions

• Search causes model to generate 
low-information repetitive steps 
at end of solution

• Over-optimizing search can result 
in overly-short 1 or 2 step 
solutions



Comparing against baselines

• In both high and low 
generation budgets 
compute-optimal scaling can 
outperform Best-of-N by using 
4x less compute

• Curves for oracle and 
PRM-predicted difficulty bins 
generally overlap



Modifying the Proposal 
Distribution

• Parallel Sampling

• Sequential Revision
• Correct answer correlated to incorrect answers
• Rollout generation

• Sample in parallel at high temperature
• Pair up post-hoc
• Use character edit distance as correlation metric



Combining the two 
strategies
• Each has its pros and cons so 

why not find a balance

• Parallel
• A global search process
• Give different approaches of 

solving/answering something

• Sequential
• Local refinement process



Easier questions better with full sequential revision
Harder questions better with combo of sequential - 
parallel



Compute-Optimal Revisions vs baseline

• Can still outperform 
best-of-n by using up to 4x 
less compute



Exchanging Pre-Training and Test-Time Compute

Pretrain with X FLOP-s

Run Y FLOP-s on inference

Increase budget by factor of M

N model parameters

D number of tokens used or generated

X = 6ND pretrain
Y = 2ND inference

Smaller model’s inference compute can 
match larger pretrained model by a 
factor of 

 

R = Dinference / Dpretrain

M + 3  (Dpretain / Dinference) (M-1)



• Very difficult questions or high D_inf => more budget towards pretraining
• Easier questions or lower D_inf => more budget towards test-time compute

R = 22 R = 0.79 R = 0.16
R = D_inf / D_pretrain 



Takeaways 

Difficult of Prompts and Compute Budgets have strong effect 
on test time optimal efficacy 

Simple methods like search and revisions can scale very well on 
certain types of prompts

There are a bunch of hyperparameters and variables that need to 
be accounted for, to get the optimal model

Utilize any resource you can use: By properly using test time 
computation resources, we can improve the end-2-end 
performance. (By a factor of 4)



OpenAI o1-preview

- Produces a long internal 
chain of thought before 
responding 

- Through RL recognizes and 
corrects its mistakes

- Tries different approach 
when current isn’t working

- Chain of thought reasoning 
robustly teaches human 
values and principles



Thanks!
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