
Scaling LLM Test-Time Compute Optimally can
be More Effective than Scaling Model Parameters

Johns Hopkins University - Fall 2024

CS 601.771 Advances in Self-supervised Models

September 23, 2024 1

Elena Kote, Marvin Gao

Click to add text

Question Definition

For humans, it’s natural to think

longer on difficult problems.

How to introduce this capability into LLMs?

Benefits:

-💪: Improve the performance on the testing phases

-⏰：Decrease the cost in training and pre-training phases;

-💰：Is possible to use extra, even spare, computation resource in
testing steps to increase overall performance?

Let’s Think it Deeper

• 1. Not only about better performance on reasoning and

inference;

• 2. The model will not need to be very large because of

the improvement in testing steps, and we can deploy

smaller size model in devices but reach the same, even

better performance;

• 3. It’s a path towards a general self-improvement

LLMs without / weakly-with human supervision.

Someone has already started

Methods

• 1. Verify the correctness of individual steps
using a process-based reward model.

• 2. Improving the proposal distribution.

• What to know: test-time compute-optimal
scaling strategy

ground truth
given `q`

model
predict

Updated Policy

compute
budget

output_2 output_3 output_4

Verify/ Refine Verify/ Refine Verify/ Refine

By Search

Use Model to Revise it directly

Efficiency Comparison: FLOPs

• comparison between a smaller model
 with additional test-time compute and
 pretraining a 14x larger model.

• scaling up test-time computation can be
more preferable to scaling up pretraining,
but not for all problems;

• For more difficult prompts, it will be less
efficient when applying test time scaling
up.

pretraining
FLOPs

inference FLOPs

Improve Accuracy by a Revisor

ORM: Offline Reward Model

Evaluate outputs after whole rollout

PRM: Process Reward Model

Evaluate outputs in each step

Which is better for becoming a revisor?

Experiment Settings and Methods

ground truth
given `q`

Updated Policy

Steps

OR

Steps

Search
Algorithms

Difficulty of q: assign q to one of five
difficulty levels. Use this as input to

get optimal parameters settings.
Getting from a LLM

• Dataset: MATH benchmark, which consists
of high-school competition level math
problems.

• Models: PaLM 2-S*

•Method ½: Scaling Test-Time
Compute Via Verifiers

Step1: Training Process Reward Model:
supervise PRMs without human labels, using
estimates of per-step correctness obtained
from running Monte Carlo rollouts from each
step in the solution, corresponding to value
estimated.

Step2: Score a set of solutions using PRM.

PRM Search
Methods

Rollout

Process Reward Model

Select By Verifier and
Proceed

Test-time Scaling for
Search with Verifiers
• Sweep various search settings

and hyperparameters
• Results

• Smaller budget: beam search
better

• Greater budget: best-of-n
• Lookahead underperforms for

all budgets

Comparing search methods by question
difficulty

• Four bars are increasing test-time
compute

• Easy (1-2) : best of N better
• Beam over-optimizes, exploits PRM signal

• Medium (3-4): beam better
• Intuition

• On easy questions verifier will mostly be
correct, by further optimizing we amplify
spurious features thus degrading

• On difficult questions model less likely to
sample correct answer, search helps find
it

Most powerful search methods underperform with high
budget on easy questions

• Search causes model to generate
low-information repetitive steps
at end of solution

• Over-optimizing search can result
in overly-short 1 or 2 step
solutions

Comparing against baselines

• In both high and low
generation budgets
compute-optimal scaling can
outperform Best-of-N by using
4x less compute

• Curves for oracle and
PRM-predicted difficulty bins
generally overlap

Modifying the Proposal
Distribution

• Parallel Sampling

• Sequential Revision
• Correct answer correlated to incorrect answers
• Rollout generation

• Sample in parallel at high temperature
• Pair up post-hoc
• Use character edit distance as correlation metric

Combining the two
strategies
• Each has its pros and cons so

why not find a balance

• Parallel
• A global search process
• Give different approaches of

solving/answering something

• Sequential
• Local refinement process

Easier questions better with full sequential revision
Harder questions better with combo of sequential -
parallel

Compute-Optimal Revisions vs baseline

• Can still outperform
best-of-n by using up to 4x
less compute

Exchanging Pre-Training and Test-Time Compute

Pretrain with X FLOP-s

Run Y FLOP-s on inference

Increase budget by factor of M

N model parameters

D number of tokens used or generated

X = 6ND pretrain
Y = 2ND inference

Smaller model’s inference compute can
match larger pretrained model by a
factor of

R = Dinference / Dpretrain

M + 3 (Dpretain / Dinference) (M-1)

• Very difficult questions or high D_inf => more budget towards pretraining
• Easier questions or lower D_inf => more budget towards test-time compute

R = 22 R = 0.79 R = 0.16
R = D_inf / D_pretrain

Takeaways

Difficult of Prompts and Compute Budgets have strong effect
on test time optimal efficacy

Simple methods like search and revisions can scale very well on
certain types of prompts

There are a bunch of hyperparameters and variables that need to
be accounted for, to get the optimal model

Utilize any resource you can use: By properly using test time
computation resources, we can improve the end-2-end
performance. (By a factor of 4)

OpenAI o1-preview

- Produces a long internal
chain of thought before
responding

- Through RL recognizes and
corrects its mistakes

- Tries different approach
when current isn’t working

- Chain of thought reasoning
robustly teaches human
values and principles

Thanks!

September 23, 2024 23

Elena Kote, Marvin Gao

