JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Reviewing the Foundations
CSCI 601-771 (NLP: Advances in Self-Supervised Models)

https://self-supervised.cs. jhu.edu/fa2024/

Language Modeling:

Definitions and History

The

The cat

The cat sat

The cat sat on

The cat sat on ?

The cat sat on the mat.

P(mat [The cat sat on the)

next word

Probability of Upcoming Word

— N

next wo context or prefix

P(Xt‘){11 rry t—})

LMs as a Marginal Distribution

next

= Directly we train models on “marginals”: word context
//\

P(X¢| X1/ - Xe-1)

Language
“The cat sat on the [[IS&]” » Mgde’g

&3 loHNS H
L

11

LMs as Implicit Joint Distribution over Language

= While language modeling involves learning the marginals, we are
implicitly learning the full/joint distribution of language.

o Remember the chain rule:
P(Xy, ..., Xt) = P(X) TTi21 P(X; | X1, Xo .., X))

* Language Modeling £ learning prob distribution over language
sequence.

12

Doing Things with Language Model

* What is the probability of ... "l like Johns Hopkins University”

“like Hopkins | University Johns”

13

Doing Things with Language Model

* What is the probability of ... "l like Johns Hopkins University”

“like Hopkins | University Johns”

= LMs assign a probability to every sentence (or any string of words).

P("l like Johns Hopkins University EOS”) =10

P(“like Hopkins | University Johns EOS”) =10-1>

&3 loHNS H
L

14

Doing Things with Language Model (2)

next word context

//R

P(X¢| X1/ - Xe1)

= While LMs show "“typicality”, this may be a proxy indicator to other properties:
o Grammaticality, fluency, factuality, etc.

= We can rank sentences.

P("/ like Johns Hopkins University. EOS”) > P("l like John Hopkins University EOS”)
P("/ like Johns Hopkins University. EOS”) > P("University. | Johns EOS Hopkins like”)
P("JHU is located in Baltimore. EOS”) > P("JHU is located in Virginia. EOS”)

15

Doing Things with Language Model (3)

= Can also generate strings! T

next word context

P(X¢| X1/ - Xe1)

= Let's say we start "Johns Hopkins is
= Using this prompt as an initial condition, recursively sample from an LM:

E-N
=y

L

N oy s w NP

Sample from P(X| "Johns Hopkins is) —"located”

Sample from P(X|"Johns Hopkins is located”) —"at”

Sample from P(X|'Yohns Hopkins is located at”) —“the"”

Sample from P(X|Johns Hopkins is located at the”) —“state”

Sample from P(X| "Johns Hopkins is located at the state”) —"“of”

Sample from P(X| "Johns Hopkins is located at the state of”) —“Maryland”
Sample from P(X| "Johns Hopkins is located at the state of Maryland”) —“EOS”

16

Why Care About Language Modeling?

= Language Modeling is a subcomponent superset of many tasks:
o Summarization
o Machine translation
o Spelling correction
o Dialogue etc.

= Language Modeling is an effective proxy for language understanding.

o Effective ability to predict forthcoming words requires on understanding of
context/ prefix.

E-N
]
ol

17

You use Language Models every day!

e I'll meet you at the @ >

And now the fun starts

Can't make it~ Addlabel

Add label
alrport .
p ‘J Brian Strope « 2 Brian Strope ~
to me 10 mé
May 1 eta May 17 View details
They finally came through with the Ugh, | took a turn for the worst last night
contract. I won't be able to make it to the party.

Please have a great time without me
| expect the work to start tomorrow.
Sorry for all the delays.

= Oh no! Feel We will Sorry to
No worries, Great news, That - a ; ; A
hat's gre: otte miss yo 2
thanks for g better miss you ear that
news
the update!
- LN -»
- 7N = teply al F r
Repl Rey rward

18

You use Language Models every day!

19

Summary

= Language modeling: building probabilistic distribution over language.

= An accurate distribution of language enables us to solve many important
tasks that involve language communication.

= The remaining question: how do you actually estimate this distribution?

20

Language Modeling

with Counting

LMs as a Marginal Distribution

next
word

P(X¢| X1,y Xe—1)

context

= Now the question is, how to estimate this distribution.

22

P(X¢| X1, ..., X¢—1)

How do we estimate these probabilities?
Let’s just count!

P(mat | the cat sat on the) =

Count how often
“the cat sat on the mat”
has appeared in the world (internet)!

count(“the cat sat on the mat”)

count(“the cat sat on the”)

Divide that by, the count of
"the cat sat on the”
in the world (internet)!

23

P(X¢| X1, ..., X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(mat | the catsaton the) = count(“the cat sat on the”)

® Q

(=

G‘logle "the bird sat on the mat" %

Q Al @ Images [Videos (& Shopping @ Maps i More Tools

About 1results (0.22 seconds)

It looks like there aren't many great matches for your
search

24

P(X¢| X1, ..., X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(mat | the catsaton the) = count(“the cat sat on the”)

Challenge: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.

25

Language Models: A History

= Shannon (1950): The redundancy and predictability (entropy) of English.

Prediction and Entropy of Printed English
By C. E. SHANNON
(ManuscriptReceived Sept. 15, 1950)

A new method of estimating the cntro‘)y and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known, Results of
experiments in prediction are given, and some properties of an ideal predictor are
developed.

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ..., X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its non-descendants, given its parents.

1°t order approximation:
1 element

—A—
P(mat | the cat sat on the) = P(mat | the)

27
[Predicti E f Pri Endglish. S]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ..., X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its non-descendants, given its parents.

2"d order approximation:
2 elements

—A—
P(mat | the cat sat on the) ® P(mat | on the)

28
[Predicti E f Pri English. S]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ..., X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its non-descendants, given its parents.

3™ order approximation:

3 elements
A

P(mat | the cat sat on the) P(mat | sat on the)

29
[Predicti E f Pri Endglish. S]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ..., X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Then, we can use counts of approximate conditional probability.
Using the 3™ order approximation, we can:

count(“sat on the mat”)

P(mat | the cat sat on the) = P(mat | sat on the) = count(“on the mat)

30

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Understanding Sparsity: A Thought Experiment

= How common are zero-probabilities? ()

= Example: Shakespeare as a text corpus
o The size vocab used by Shakespeare: |V|=29,066
o Shakespeare produced: ~300,000 bigrams
« Out of |[V|”2= 844 million possible bigrams
« (some of them don't make sense, but ok!)

= S50, 99.96% of the possible bigrams are never seen (hence, have zero
entries for bigram counts).

[Slide credit: Mohit lyyer] 31

N-gram Language Models

= Terminology: n-gram is a chunk of n consecutive words:

"\ "\ 1

o unigrams: “cat”, "mat”, “sat”, ...

o bigrams: “the cat”, “cat sat”, "sat on”, ...

o trigrams: “the cat sat”, “cat saton”, “sat on the”, ...
O ” \

four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, ...

= n-gram language model:
n — 1 elements
A

‘4 N\
P(X¢| X1y s Xe—1) = P(Xe| Xe—nigns oo Xe—1)

',“ | : [P _ E f Pri E . S] 32

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Generation from N-Gram Models

* You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Tryfor yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 33

Generation from N-Gram Models

* You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

today the
get probability ;Z:Eany
distribution price
italian
emirate

* Tig¥or yourself: https://nlpforhackers.io/language-models/

0.153
0.153
0.977
0.039
0.039

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

[adopted from Chris Manning] 34

Generation from N-Gram Models

= Now we can sample from this mode:

today the
Sparsity problem: not
N company ©.153 much granularity in the
get pr_obalyhty bank 0.153 probability distribution
distribution price 0.077
italian 0.039 _
emirate ©.039 Otherwise, seems reasonable!

* Tryfor yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 35

Generation from N-Gram Models

* Now we can sample from this mode:

condition on this

today the priée

get probability ggr
distribution it
to
is

* Tig¥or yourself: https://nlpforhackers.io/language-models/

0.308
0.050
0.046
0.046
0.031

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

[adopted from Chris Manning] 3¢

Generation from N-Gram Models

= Now we can sample from this mode:

condition on this

A

today the }ar‘ice of _

e the
get probability 18
distribution oil
its
gold

0.072
0.043
0.043
0.036
0.018

* Tig¥or yourself: https://nlpforhackers.io/language-models/

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

[adopted from Chris Manning] 37

N-Gram Models in Practice

= Now we can sample from this mode:

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

But quite incoherent! To improve coherence, one may consider increasing
larger than 3-grams, but that would worsen the sparsity problem!

* Tryfor yourself: https://nlpforhackers.io/language-models/

[adopted from Chris Manning] 3g

0.00550% —

0.00500% -

0.00450% -

0.00400% -

0.00350% -

0.00300% -

0.00250% -

0.00200% -

0.00150% —

0.00700% -

0.00050%

Pl‘e-com puted N-G rams Google Books Ngram Viewer

democracy
depression

bomb
terrorism

-

0.00000% -

18

00 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

,F,.._‘l, JOHMNS HOPEINS
v

39

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-com putEd N -G rams Google Books Ngram Viewer

0.001000% —

0.000900% —

0.000800% - The United States is (All)
0.000700% -
0.000600% —
0.000500% —
0.000400% -
0.000300% - The United States are (All)

0.000200% -

0.000100% -

0.000000% T T T T T T T T
1780 1800 1820 1840 1860 1880 1900 1920 1940

(click on line/label for focus, right click to expand/contract wildcards)

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

&7 JoHNS HOPKINS
U s 40

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-com putEd N -G rams Google Books Ngram Viewer

Language models can tell us
something about us ...

0.0000110% -

0.0000100% ~

0.0000090% —
0.0000080% ~
0.0000070% -
0.0000060% —
0.0000050% -
0.0000040% -
0.0000030% -
0.0000020% ~

women vote SAII)

0.0000010% - men vote (All

0.0000000% - T T T T T T T T
1780 1800 1820 1840 1860 1880 1900 1920 1940

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

&7 JoHNS HOPKINS
U s 41

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-com putEd N -G rams Google Books Ngram Viewer

0 001204 - Language models can tell us
0 00110%- something about us ...

0.00100% -
0.00090% -
0.00080% —
0.00070% -
0.00060% =

civil war
0.00050% =
0.00040% -. emancipation
0.00030% —
0.00020% —

0.00010% -

0.00000% — T T T T T T T T T T
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

(elick on line/label for focus)

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

[e | ¥ I
e [OHNS HOPEITNS
v

42

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Limits of N-Grams LMs: Long-range Dependencies

= In general, count-based LMs are insufficient models of language
because language has long-distance dependencies:

"The computer which I had just put into the
machine room on the fifth floor crashed.”

43

N-Gram Language Models, A Historical
Highlight [

“Every time | fire a linguist, the performance of iy
the speech recognizer goes up”!! ¥

e Probabilistic n-gram models of text generation [Jelinek+ 19807, ...] 7 \

e Applications: Speech Recognition, Machine Translation Fred Jeiinek
(1932-2010)

532 PROCEEDINGS OF THE IEEE, VOL. 64, NO. 4, APRIL 1976

Continuous Speech Recognition by Statistical
Methods

FREDERICK JELINEK, FELLOW, IEEE

_Abstract—Statistical methods useful in automatic recognition of con- utterance models used will incorporate more grammatical

:?“.:“’mmmg :;m mm:.&mof m“ :odmsela’ s::t;ﬁal speaker and features, and statistics will have been grafted onto grammatical
e param-

eters, and hypothesis nu;ch procedures and likelihood computations of models. Most methods presented here concern modeling of

linguistic decoding. Experimental results are presented that indicate the speaker’s and acoustic processor’s performance and should,

the power of the methods. therefore, be universally useful.

Antoamatic recoonitian of continnous (Englich) eneech ig an
E-N
T

' & . 44

Summary

= Learning a language model ~ learning conditional probabilities over language.
= One approach to estimating these probabilities: counting word co-occurrences.

= Challenges:
o Word co-occurrences become rare for long sequences. (the sparsity issue)
o But language understanding requires long-range dependencies.

= We need a better alternative! ()

= Next: Measuring quality of language models.

oy
ol

45

How Good are

Language Models?

Evaluating Language Models

= Does our language model prefer good sentences to bad ones?
o Assign higher probability to “real” or “frequently observed” sentences
o Than “ungrammatical” or “rarely observed” sentences?

= We test the model’s performance on data we haven't seen.

oy
. |

47

Evaluating Language Models

Setup:

o Train it on a suitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

e Held-Out Test
Training Data Data Data
Counts / parameters from Hyperparameters Evaluate here
here from here

——— count(“on the mat”)

48

Evaluating Language Models: Example

Setup:

o Train it on a suitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

Example:1useabunch of New

York Timesarticlesto builda _ _
bigram probability table should assigna high

probability to held-out text!

Agood Ianguage model Now I'm going to evaluate the
probability of some heldout

datausingourbigramtable

Be Careful About Data Leakage!

Advice from a grandpa(:
- Don't allow test sentences to leak into into training set.
- Otherwise, you will assign it an artificially high probability (==cheating).

Example:1useabunch of New

York Timesarticlesto builda _ _
bigram probability table should assigna high

probability to held-out text!

Agood Ianguage model Now I'm going to evaluate the
probability of some heldout

datausingourbigramtable

S
\Q$’§§§>"'§»
S
*@-ﬁ —~ ;
(SG
i A

eval
count(“on the mat”) ——————)

Evaluating Language Models: Intrinsic vs Extrinsic

o Intrinsic: measure how good we are at modeling language
o Extrinsic: build a new language model, use it for some task (MT,

ASR, etc.)
Google
% Translate
Example: 1 useabunch of New Now I’'m going to evaluate the

YorkTimesarticlesto builda L probability of some heldout
bigram probability table extrinsic datausingourbigramtable

eval

eval
count(“on the mat”) ——————)

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the number of
words:

1
ppl(Wl) ey WTL) — P(Wl, Wo, ..., Wn)_n

= A measure of predictive quality of a language model.
= Minimizing perplexity is the same as maximizing probability

52

oy
ol

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the number of
words:
1

PPIWy, ey W) = P(Wy, Wiy ooy W) T

53

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the number of
words:
1

ppl(Wli ""WTl) — P(Wl, W», ...,Wn)_ﬁ

n
\ P(wy,wy, ..., wy) [L P(w;wy) chainrule
V 1=1

= 2" where

n
1
H = —;Zlogz P(w;|lwy,...,w;_1)
i=1

54

Evaluation Metric for Language Modeling: Perplexity

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ..., w,) = 2%, where H = —— i1 logy P(wilwy, ..., w;iy)

Can be interpreted as
cross-entropy between LM prob
and language prob. Why?

Recap: Definition of cross-entropy
between two distributions:

H(p,q) =

R JOHINS TIOPKINS 55

Evaluation Metric for Language Modeling: Perplexity

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

_ 9H _ _1 n
ppl(wy, ...,w,,) = 2, where H = ——Xi=1108; P(w;|lwy, ..., w;_1)
= Perplexity for n-grams
o Unigrams: H = —; iqlog, P(wy)
o Bigrams: H = —1—11 i=1log, P(w;lw;_y)
o Trigrams: H = —i i=1logy P(wilw;_5,w;_1)

O ...

v : 56

Intuition-building Quizzes (1)

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ...,w,) = 2%, where H = —— i1 logy P(wilwy, ..., w;iy)

= Quiz: let's suppose we have a sentence wy, ..., w, and it’s fixed. Our model
will correctly guess each word with probability 1/5. What is perplexity of
our model?

H = 11 1+ + 1 . = —] .
- nOgZS ngs - OgS

[Intuition: the model is indecisive among 5 choices.

= ppl(D) =5

57

Intuition-building Quizzes (2)

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

ppl(wy, ...,w,) = 2%, where H = _2 * log, P(wi|lwy, .., w4
- 8

= Quiz: let's we evaluate an exact (!!) model of language, i.e., our model
always knows what exact word should follow a given context. What is the
perplexity of this model?

vw € V:P(wilwy) =1 = ppl(D) = 272" %1 =1
7

[Intuition: the model is indecisive among 1 (the right!) choice! J

58

Intuition-building Quizzes (3)

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ...,w,) = 2%, where H = —— i1 logy P(wilwy, ..., w;iy)

= Quiz: let's we evaluate a confused (!!) model of language, i.e., our model
has no idea what word should follow each context—it always chooses a
uniformly random word. What is the perplexity of this model?

1
Yw e V: P(W|W1:i—1) — m

| [Intuition: the model is indecisive among all the vocabulary terms. J

1 1
= ppl(D) = 27»"'°82M = |y
- —]

59

Perplexity: Summary

1
ppl(wy, ...,w,) = 2%, where H = —=Yi=1 logy P(wilwy, ..., w;_y)

= Perplexity is @ measure of model’s uncertainty about next word (aka "average
branching factor”).

o The larger the number of vocabulary, the more options there to choose from.
o (the choice of atomic units of language impacts PPL — more on this later)

= Perplexity ranges between 1 and |V|.

= We prefer LMs with lower perplexity.

Lower perplexity == Better Model

= Training on 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order

Perplexity 170 109

Loweris Note these evaluations are done on data that
better was not used for “counting.” (no cheating!!)

!:1 |- HNS HOPEITINS
- [Mohit lyyer] 61

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

100

75

50

TEST PERPLEXITY

25

Al

Zaremba et al. (2014) - LSTM (large)

2015

B JouNs H

Recurrent.highway networks

2016

AWD-LSTM=+.continuous cache pointer
GL-LWGC + AWD-MoS-LSTM + dynamic eval

GPT-2
2017 2018 2019
Other models Models with lowest Test perplexity

[Language Modellingon Penn Treebank (Word Level)]

BERT-Large-CAS

GPT=3_(Zero-Shot)

2020

62

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

74
4.2
6 —— L=(D/5.4:103)709%5 | 5.6 —— L=(N/8.8:10'3)70076
3.9
4.8
» 5
8 3.6 4.0
- 4
—
8 3:3 3.2
= 8
3.0
24
L= (Cmin/2-3 . 108)—0'050
2 v — r . 2.7 y . v v :
i0-® 1077 10° 102 107! 10! 10° 10° 10° 107 10°
Compute Dataset Size Parameters
59 JoH~Ns H

5 PENRIN [Scaling Laws, Jared Kaplan et al.]

Summary

Language Models (LM): distributions over language

Measuring LM quality: use perplexity on held-out data.

Count-based LMs have limitations.

o Challenge with large N’s: sparsity problem — many zero counts/probs.

o Challenge with small N's: lack of long-range dependencies.

Next: Rethinking language modeling as a statistical learning problem.

64

Beyond Counting:
Language Models as

a Learning Problem

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

blah blah blah blah and our problems turning

Y ! Y)
context words in window target word

v a 66

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

blah—btah—blan—blah and our problems turning

\ Y / L Y d
discard context words in window of size 4 target word
== B {
&

67

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

and our problems turning

context words in window of size 4 target word

@ lons 68

A Fixed-Window Neural LM

= Given the embeddings of the context, predict a target word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

= Training this model is basically optimizing its parameters 0 such that it assigns
high probability to the target word.

Probs over vocabulary

of neural network mat |

table |
000 OOO OOO
f(| | [eo0] [oo0] — O) =) e |

[Trainableparameters] O i B

Iookup embeddlngs | ant :|
and our problems turnlng into chair |22
context words in window of size 4 ta rget word

g JoHns H y [Bengio et al. 2003] 69

A Fixed-Window Neural LM

= Tt will also lay the foundation for the future models (recurrent nets, transformers, ...)
= But first we need to figure out how to train neural networks!

How do you build Probs over vocabulary
: i Trainable parameters R]
this function? of neural network mat I

table I

000 ooo ooo
f(| | [o00] [e00] — O)mp i
Iookupembeddmgs ant :|
Neural Networks ol;r problems tummg into | chair [

for rescue!

context words in window of size 4 ta rget word

[Bengio et al. 2003] 70

From Counting (N-Gram) to Neural Models

e n-gram models of text generation [Jelinek+ 19807, ...]
e Applications: Speech Recognition, Machine Translation

&, “Shallow” statistical/neural language models (2000’s) [Bengio+ 1999 & 2001, ...]

NeurlPS 2000 A Neural Probabilistic Language Model

Yoshua Bengio; Réjean Ducharme and Pascal Vincent
Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal
Montréal, Québec, Canada, H3C 317
{bengioy,ducharme,vincentp} @iro.umontreal.ca
E-N

& OIS TIOPKINS 71

Summary

Language Modeling (LM), a useful predictive objective for language
= Perplexity, a measure of an LM’s predictive ability

= N-gram models (~1980 to early 2000'),
o Early instances of LMs

o Difficult to scale to large window sizes

= Shallow neural LMs (early and mid-2000’s),

o These will be effective predictive models based on feed-forward networks

= Recurrent neural LMs (2010s),

o Compact models used recursively

oy
ol

72

Self-Attention

« blisobtained based on the

Self-Attention whole input sequence.

* can be parallelly computed.

bt p2 p3 b* pt| |p2z| B3| |p*
I] [[f f I I
4 NN \ 4 B
— = = » Self-Attention Layer
1 J) U 5
| | | | | |
51 X2 X3 o X1 2 3 X

Idea: replace any thing done by RNN with self-attention.

“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014; [adopted from Hung—yyhe7é1]
“Attention is All You Need” Vaswani et al. 2017

RNN vs Transformer

Transformer layer 3
Transformer layer 2
Transformer layer 1

<(o000} .,.W,TQQL,, H.‘.TQQQTI!

AI_OOQLW .”..q.‘_..TooL ,H....._.._ooooTI ’

Ai_oooof _._.__M,,.._Tooou

was terribly exciting

Al_ooooww.;.._ TQQL_W_._ (0000)<

Al_oooow..._._ _oooow__,,___,__. (e00@|a— .m

AIT..&.,m W_Hoooo% ”...ToooTlm

<« (ee0e) [(000e) (o000}~
TT...I....I....TIW
i....I....I....Tlm
<« (e000) [(e0ee) [(e0ee) §
«(0o0e)(s0ce) {0000)—
<«[oe0e) [(eeee) [(evee)

75

¢ OHMNS HOPEINSG

7

=
-

Attention

» Core idea: build a mechanismto focus (“attend”) on a
particular part of the context.

{ o=
o
=
o
— k3] 82 < 8 (/[\)/\
v 3 e £ 3 3 © 2 € O7F
—_— > -— . O = (2] o @ — ©
£ © =T 0 0 O = a c o P = £ 0 = > g w o
F3d3sScaoad .al oo 3 £ »©3 20 E c E o vV Vv
, - - ’
y
/ |
N
1
|
i | n .
(0] = = 0 B 2 o0 c O O @ (2] [0l e)] = 2= A A
Sg3ed8F E2£8388" "¢ s & - ES ww
= [7) = ® © == - 17 c O g
c @ i » = 8
o .Qw E 8‘ A
= v
a
@

W e [Attention Is All You Need, Vaswani et al. 2017]

76

https://arxiv.org/abs/1706.03762

Defining Self-Attention

= Terminology:
o Query: to match others
o Key: to be matched
o Value: information to be extracted

Q7 JOHNS HOPKINS [Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

77

https://arxiv.org/abs/1706.03762

Defining Self-Attention |Ananalogy ...

= Terminology:

o Query: to match others [1TT]
o Key: to be matched [TT] vauess
o Value: information to be Query #3 [TT] vaues
[TT]
it
I:l:l:l value #1
Q
& JorNs HOPKINS [Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

value #4

10qou

1snwi

78

Aago

https://arxiv.org/abs/1706.03762

Defining Self-Attention

= Terminology:

o Query: to match others value #4

o Key: to be matched value #3

o Value: information to be dussit 50% value #2

[T 1]
it
300/0 value #1
o
(o
S
Q

W JOHNS HOPKINS [Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

Ishwi

79

Aaqo

https://arxiv.org/abs/1706.03762

Query #9

W

30%

q: query (to match others)
q; = Wix;

k: key (to be matched)
ki = kai

v: value (information to be extracted)
Vi = vai

value #4

‘ value #3

50% value #2 ‘

Aaqo

} value #1

Ishwi

10qo.

80

q: query (to match others)
q; = Wix;

k: key (to be matched)
ki = kai

v: value (information to be extracted)
Vi = vai

82

q1 ki vq

q: query (to match others)
q; = Wx;

k: key (to be matched)
ki = kai

v: value (information to be extracted)
Vi = vai

q3 k3 V3 Qs ks V4

())
())
A

sat on

a1 = q" - ki/\/ q: query (to match others)
| d k: ke
\) : key (to be matched)
v: value (information to be extracted)
Scaled dot product

How much
should “The”

(04 (04 (04 (04
attend to other 1,1 1,2 1,3 1,4
positions?

d1 k1 Vq A2 Ky Vp q3 k3 v3 g Ky V4
@) O O)

T_E_1 LQ
A a a A

' 00000 | - 00000 | . 00000 | ' 00000 |
X1 X2 X3 X4

The cat sat on

84

How much
should “The”
attend to other
positions?

exp(z;)
D j exp(zj)

Q1,1 @12 11,3 4

t t t f
Softmax J

| I I |

a1,1 a1,2 ®1,3 01,4

%) q3 k3

U3

JLNI]

t t 1

. 00000 | ' 00000 00000
X1 X2 X3
The cat sat

85
Representation of "The” given the attention weights

t t
$oftmax |
I I
a3 a1,4
: \

91 ki V1 922 k, v, q3 k3 U3 Qa kg4 V4
(0] (0] (0] (0]
(0] O (0] (0]

. 00000 | . 00000 | ' 00000 | . 00000 |
X1 X2 X3 X4

hardmaru
o - @hardmaru

Se If'Atte nti 0 I1 The most important formula in deep learning after 2018

I

| Self-Attention

\ What is self-attention? Self-attention calculates a weighted
= Can write it in matrix form: average of feature representations with the weight propor-

tional to a similanity score between pairs of representations.
Formally, an input sequence of n tokens of dimensions d,
X € R"™ is projected using three matrices W € RY*%,
= Given input X: Wg € R and Wy € R 10 extract feature repre-
sentations Q, K, and V, referred to as query, key, and value
respectively with di, = d,. The outputs Q, K, V are com-

_ q puted as
Q - wkx Q=XWq, K=XWgk, V=XWy. 1))
K = va So, self-attention can be written as,

V=WYx (QKT)

S = D(Q,K,V) = softmax [¥ | v, @)
_ QKT Vi

Attentlon(x) = softmax V where softmax denotes a row-wise softmax normalization
\/ d function. Thus, each element in S depends on all other ele-

ments in the same row,

9:08 PM - Feb 9, 2021 - Twitter Web App

B 5563 Retweets 42 Quote Tweets 3,338 Likes
B0 JOHNS HOPEING
1"' 1 i

Question

= What would be the output vector for
the word “Thinking™?

(a) 0.5vy + 0.5vo
(b) 0.54v1 + 0.46v9
() 0.88v; +0.12v,

(d) 0.12V1 -|- 0.88V2

.....

Input
Embedding
Queries

Keys

Values

Score

Divide by 8 (Vdi)
Softmax

Softmax

X

Sum

gy JOHNS HOPKINS [Slide credit: Dangi Chen]

Thinking

Machines

87

Self-Attention: Back to Big Picture

= Attention is a powerful mechanism to create context-aware representations
= A way to focus on select parts of the input

bl b? b3 b*

4 4

Self-Attention Layer
4 4 4 4

x x x3 x4

= Better at maintaining long-distance dependencies in the context.

' : [Attention Is All You Need, Vaswani et al. 2017]

88

88

https://arxiv.org/abs/1706.03762

Properties of Self-Attention

Layer Type Complexity per Layer Sequential
Operations

Self-Attention O(n? - d) O(1)

Recurrent O(n - d?) O(n)

= Per-layer statistics; n = sequence length, d = hidden dimension
= Complexity per layer: Quadratic function of n for SA

= Sequential operations: # of operations that must be performed sequentially

o O(1) sequential operations for SA.
o SA layers computes all the operations in parallel across all tokens in the sequence
 Efficient implementations

A : [Attention Is All You Need, Vaswani et al. 2017]

89

https://arxiv.org/abs/1706.03762

Multi-Headed Self-Attention

= Multiple parallel attention layers is quite common.
o Each attention layer has its own parameters.
o Concatenate the results and run them through a linear projection.

Self-Attention Layer

[e 1
£ |

Q7 JOHNS HOPKINS [Attention Is All You Need, Vaswani et al. 2017]

20

90

https://arxiv.org/abs/1706.03762

Multi-Headed Self-Attention

MultiHeadedAttention(x) = Concat(heady, ..., head,) W©

r

I1s 1

head; = Attention(xW/, x W}, xW?)

In practice, we can use a reduced dimension
for each head:

W, WE WP e RY/M
d = hidden dimension
h = # of heads

The total computational cost is similar to that
of a single-head attention with full dimensionality.

E-N
=

o [Slide credit: Dangi Chen]

|
Scaled Dot-Product

Attention

1l

1l

1l

Just concatenate all the heads and apply an output projection matrix.
V K Q

921

Combine with FFN

* Add a feed-forward network on top it to add more expressivity.

* This allows the model to apply another transformation to the contextual
representations (or “post-process” them).

* Usually, the dimensionality of _
the hidden feedforward layer 00|00 00| FEN(x) = f(cWy + b)) W, + b,

is 2-8 times larger than
the input dimension.

Feedforward Net: Refresher \

Hidden
layer

Input
layer

Feed Forward Network

Inputs
Outputs

Multi-Headed
Self-Attention Layer

— ’_*_‘ ’_*_‘ ’_L‘ A fully-connected network
L ' 00 | 00 | 00 \ of nodes and weights. /

oy
. |

How Do We Prevent Vanishing Gradients?

= Residual connections let the model “skip” layers

o These connections are particularly useful for
training deep networks

= Use layer normalization to stabilize the network
and allow for proper gradient flow

[Attention Is All You Need, Vaswani et al. 2017]

Add & Norm

Feed
Forward

A

~> Add & Norm

Multi-Head
Attention

—tr

93

93

https://arxiv.org/abs/1706.03762

Putting it Together: Self-Attention Block

out
Given input x: ~)
Add & Norm
out = LN(¢ + ¢") Feed
Forward
7y
¢ = FFN(c') = f(c'W; + b))W, + b,
’ Add & Norm
¢ =LN(c+x) Multi-Head
Attention
¢ = MultiHeadedAttention(x) At 2
_
_ J

X: input sequence

OIS RIS [Attention Is All You Need, Vaswani et al. 2017] 94

https://arxiv.org/abs/1706.03762

Summary: Self-Attention Block

= Self-Attention: A critical building block of modern language models.

o The idea is to compose meanings of words weighted according some
similarity notion.

= Next: We will combine self-attention blocks to build various architectures
known as Transformer.

95

Transformer

Output
Probabilities

How Do We Make it Deep? (o)

F 3

[Linear]
A

= Stack more layers!

4 I y e ~
~—>| Add & Norm) ~>| Add & Norm |
Feed Feed
m—— Forward Forward
NETWORKS A A
— —
STACK W/} Nx ~—>| Add & Norm } » Nx ~> Add & Norm)
MORE - > Multi-Head Multi-Head
LAYERS Attention Attention
/ \ — 1
e — J — J/
Positional D
Encoding
Input
Embedding
\ s [Attention Is All You Need, Vaswani et al. 2017]

Inputs

https://arxiv.org/abs/1706.03762

books

From Representations to Prediction

To perform prediction, add a classification head
on top of the final layer of the transformer.

= This can be per token (Language modeling)
= Or can be for the entire sequence (only one token)

E-N
L]

L

out € R5%4 (S: Sequence length)
logits = Linear 4 v)(our) = f(out. W) € RV
probabilies = softmax(logits) € R*V

output token
probabilities (logits)

0.19850038 aardvark
0.7089803 aarhus
6356 aaon Pick an output
' token based on
] X its probability
(sample)

The

Output
Probabilities

l Softmax l
\
l Linear l

3

!
Add & Norm
Feed
Forward
Nx (—>| Add & Norm l
Multi-Head
Attention
At
e J
Positional &
Encoding
Input
Embedding

t

Inputs

Transformer-based Language Modeling

Input
recite the
E,. ||\ I.! .Jhl‘\

T
TRANSFORMER
I (.
first law $ | |

Image by http://jalammar.github.io/illustrated-gpt2/

And continue like
that until we reach
EOS or we get tired.

29

http://jalammar.github.io/illustrated-gpt2/

Training a Transformer Language Model

= Goal: Train a Transformer for language modeling (i.e., predicting the next word).
= Approach: Train it so that each position is predictor of the next (right) token.

o We just shift the input to right by one, and use as labels
EOS special token

(goldoutpu) Y = cat sat on the mat </s>

rrr e o

T T T T T T [Slide credit: Arman Cohan]

SV I | 100

Training a Transformer Language Model

= For each position, compute their corresponding distribution over the whole vocab.

(@oldoutpu) Y = cat sat on the mat </s>

Jonla. Joolle. Josle Jada el Jalle

I N N |

TRANSFORMER
ottt
§ Jorns Hons = e cat sat on the mat

v/

101

Training a Transformer Language Model

= For each position, compute the loss between the distribution and the gold output label.

(@oldoutpu) Y = cat sat on the mat </s>

111111

Jonla. Joolle. Josle Jada el Jalle

I N N |

TRANSFORMER

Pt

OHNs HOPKINS X = the cat sat on the mat

am
<2

102

Training a Transformer Language Model

= Sum the position-wise loss values to a obtain a global loss.

(@oldoutpu) Y = cat sat on the mat </s>

t= 1+1+1+7+1+1

Jonla. Joolle. Josle Jada el Jalle

I N N |

TRANSFORMER

Pt

OHNs HOPKINS X = the cat sat on the mat

am
<2

103

_."L&I

Fas

Training a Transformer Language Model

= Using this loss, do Backprop and update the Transformer parameters
(gold output) Y = cat

sat on

LT

l@.@.@@g@

A TT T

\
'S

Well, this is not quite right .

what is the prc;E)Iem with this?
TRANSFO RMER

on the mat

104

Training a Transformer Language Model

I
= The model would solve the task by copying the next token to output (data leakage).
o Does not learn anything useful

(@oldoutpu) Y = cat sat on the mat </s>

trrtr ot

7 Jors Horns X= the cat sat on the mat ros

Training a Transformer Language Model

= We need to prevent information leakage from future tokens! How?

(@oldoutpu) Y = cat sat on the mat </s>

to fof+el101

Jonla. Joolle. Josle Jada el Jalle

o P11ttt

N TRANSFORMER

Pt

OHNs HOPKINS X = the cat sat on the mat

am
<2

106

Attention mask

|
Attention raw scores

o |-0.08 | 1.24 | 069 | -0.98 | 1.43 | -0.6 0.7 0.16 | 093 | 1.28 -1.1
~ [-0.09] -00 | -0.7 | 0.06 | 0.25 | 0.23 | 0.26 | 0.18 | 0.78 | -0.21 | -1.01 | 1.01
o~ [086 | 119 | 1.59 | 0.86 | -0.13 | -0.15 -0.98 | -0.87 1.87 | -0.72
o | 012 |-0.03 |-0.02 | 0.88 | -046 | -0.7 | 0.54 | -0.42 SN -0.38 | 0.04 | -0.84
< | 051 | 017 | 0.13 0.24 |-002 | 1.68 | -0.36 | 0.64 | 0.36 | 0.27 | 0.66
w | 0.24 n 043 | 0.74 031 1.54 | 1.66 | 1.14 | 0.58

o [026 | 01]|093 | 072 |-038| 165 | 047 |-0.96 | -0.17 | -0.9 0.22
~ | -0.55| 0.81 | 0.71 1.7 -0.8 |-1.14 | -032 | 1.78 | -0.7 | -0.04 | 1.54 | 0.81
o | 0.74 | -0.76 | -0.44 | -0.08 m -0.13 | 1.25 184 | 0.3 | 0.57 | 0.74
o [-097 |-0.91| 0.15 | 0.35 | -0.81 | 0.11 | 1.14 1.06 | 1.87 0.5 -0.3
2 [156 | 09 | 039 | 146 | 144 [-1.05| 09 |-0.73| 0.36 |-0.67 | -0.62 | -0.43
= | 032 | 0.74 | 044 | -01 119 | 083 | 0.29 | 2.06 | 0.51 |-0.26 | 1.51 | 0.11

1 2 3 4 5 6 7 8 9 10 11 12

R JOHNS HOPKINS

X

T

—
ﬁ
—
X, X3 Y9 Y,

What we want

Slide credit: Arman Cohan

2 X3 Y,

What we have

Yo

107

Attention mask

N>

0.4.‘4/

L2

Xz

=
OO
see

X

Attention raw scores Attention mask
o |-008| 124 [069 |-098| 143 | -06 | 0.7 | 016 | 093 | 1.28 o anf | oanf | oanf | aing | cinf | <inf | <nf | <inf | -inf | -inf
~ |[-0.09| -0.0 | -0.7 | 0.06 [0.25 [0.23 | 0.26 | 0.18 | 0.78 [-0.21 | -1.01 | 1.01 _ Gnf | oant | oainf | oainf | it | dnf | ane | Ginf | dinf
o~ | 086 | 1.19 | 1.59 | 0.86 | -0.13 | -0.15 PE~qEN -0.98 | -0.87 1.87 | -0.72 . . .))) . .
o~ -inf -inf -inf -inf -inf -inf -inf -inf
« | 012 [-0.03 [-002 | 0.88 |-046 | -0.7 | 0.54 | -0.42 M -0.38 | 0.04 | -0.84)) . .
© -inf -inf -inf -inf -inf -inf -inf -inf
< | 051 | 0.17 | 0.13 [FHN 0.24 | -0.02 | 168 | -0.36 | 0.64 | 0.36 | 0.27 | 0.66 . . .)) ; m
. -+ -inf -inf -inf -inf -inf -inf -inf
w | 024 PREEE 043 | 0.74 | 0.96 -0.31| 1.54 | 1.66 | 1.14 | 0.58 .)
. ﬂ @ -Inf -Inf
© | 026 | -01 | 093 | 0.72 |-0.38 | 1.65 | 047 | -0.96 | -0.17 | -0.9 0.22
w
~ [-0.55 | 0.81 | 0.71 1.7 -0.8 -032 | 1.78 | -0.7 | -0.04 | 1.54 | 0.81
~
o | 0.74 [-0.76 | -0.44 | -0.08 -0.13 | 1.25 1.84 | 03 | 057 | 0.74
[-=]
o |-0.97 |-0.91| 0.15 | 0.35 | -0.81 | 0.11 | 1.14 1.06 | 1.87 | 0.5 -0.3
o
© | 156 | 09 | 039 | 146 | 1.44 |-1.05| 09 [-0.73 | 0.36 | -0.67 | -0.62 | -0.43
o
= | 032)074 | 044 | -01 | 119 | 0.83 | 0.29 | 2.06 | 0.51 | -0.26 | 1.51 | 0.11
1 2 3 4 5 6 7 8 9 10 1 12

557 JOHNS HOPKINS
1ﬁ : 1 i

Slide credit: Arman Cohan

0.30

0.25

0.20

-0.15

-0.10

-0.05

-0.00

108

Attention mask

|
Attention raw scores

o |-0.08 | 1.24 | 069 | -0.98 | 1.43 | -0.6 0.7 0.16 | 093 | 1.28
~ |-009| -00 | -0.7 | 0.06 | 0.25 | 0.23 | 0.26 | 0.18 | 0.78 | -0.21 | -1.01 | 1.01
o~ [086 | 119 | 1.59 | 0.86 | -0.13 | -0.15 -0.98 | -0.87 1.87 | -0.72
o | 012 |-0.03|-0.02| 0.88 |-046 | -0.7 | 0.54 |-0.42 S -0.38 | 0.04 | -0.84
< | 051 | 017 | 0.13 0.24 |-002 | 1.68 | -0.36 | 0.64 | 0.36 | 0.27 | 0.66
w | 0.24 043 | 0.74 031 1.54 | 1.66 | 1.14 | 0.58

o [026 | 01]|093 | 072 |-038| 165 | 047 |-0.96 | -0.17 | -0.9 0.22
~ | -0.55| 0.81 | 0.71 1.7 -0.8 032 1.78 | -0.7 | -0.04 | 1.54 | 0.81
o | 0.74 | -0.76 | -0.44 | -0.08 -0.13 | 1.25 184 | 0.3 | 0.57 | 0.74
o [-097 |-0.91| 0.15 | 0.35 | -0.81 | 0.11 | 1.14 1.06 | 1.87 | 0.5 -0.3
2 [156 | 09 | 039 | 146 | 144 [-1.05| 09 |-0.73| 0.36 |-0.67 | -0.62 | -0.43
= [032] 074 | 044 | -0.1 119 | 0.83 | 0.29 | 2.06 | 0.51 | -0.26 | 1.51 | 0.11

1 2 3 4 5 6 7 8 9 1n

Note matrix multiplication is quite fast in GPU

%5

=

=
II!LIII/ u

=<

Attention mask

S.
__.t: Arman Cohan

-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf
-inf -inf -inf -inf -inf -inf -inf -inf -inf
-inf -inf -inf -inf -inf -inf -inf -inf
-inf -inf -inf -inf -inf -inf -inf -inf
-inf -inf -inf -inf -inf -inf -inf
-inf -inf

0.30

0.25

0.20

-0.15

-0.10

-0.05

-0.00

109

Attention mask

Attention raw score:

oon o Jon [s [o7 [[om0

- ['ass| a0 [oo6 [028 [023 [a0 [oo [ora [021 [i5aAf 100

o fose] 1| 1o | onn [ars|ors [EERNGRR aR

- o[om | ac[ose [ase[@r] os | 2c2

oot

oar

on

o

IF,.._‘. JOHMNS HOPEINS
v

wafafafafe]afe]n

Masked attention raw scores

\4}‘7 7
(X
SET

=

i

o |[-0.08 | -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf
~ [-0.09 | -0.0 -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf
o~ | 086 | 1.19 | 1.59 -inf -inf -inf -inf -inf -inf -inf -inf -inf
) 0.12 | -0.03 | -0.02 | 0.88 -inf -inf -inf -inf -inf -inf -inf -inf
< | 051 | 017 | 0.13 0.24 -inf -inf -inf -inf -inf -inf. -inf
w | 0.24 043 | 0.74 | 0.96 -inf | -inf -inf -inf -inf -inf
o | 026 | -0.1 | 093 | 0.72 |-0.38 | 1.65 | 0.47 | -inf -inf -inf -inf -inf
~ |-0.55]| 0.81 | 0.71 1.7 | 0.8 | -0.32 | 1.78 | -inf -inf -inf -inf
w | 0.74 | -0.76 | -0.44 | -0.08 N 013 | 1.25 1.84 [-inf -inf -inf
L3 -097 015 | 035 [-0.81 | 011 | 1.14 106 | 1.87 | -inf [-inf
e | 1.56 0.9 0.39 | 1.46 | 1.44 0 09 |-0.73 | 0.36 | -0.67 | -0.62 | -inf
= [032 | 0.74 | 0.44 | -0.1 119 | 083 | 029 | 2.06 | 0.51 | -0.26 | 1.51 | 0.1

1 2 3 4 5 6 7 8 9 10 1 12

Slide credit: Arman Cohan

110

The effect is more than just pruning out some of the

Attention maSk wirings in self-attention block.

E— Attention probabilities

— T o 00 [00 |00 |00 |00]| 00| o00]o00]|o00]/|O00
‘un 150 | ose | 13|
[s5[0[[ow [| — 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR ~ 00 [00 | 00 | 00 |00 | 00| 00| o0
e e pra e e o 030
anr|on| o » |om 00 | 107 | 09 | o
2 [1se| oo [o] vio] a5 o0 [om[o o) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
:\on|n:. 0:4 o r.:. n’nl:mlun o] 18 | an 025
< 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.20
oy e o w 00 | 00 | 00 | 00 | 00 [00
P e e e e e e 015
- EE RS © 0.11 0.0 0.0 0.0 0.0 0.0
ttwm——————— softmax
™ .. e | | [| | -0.10
o |0z | o |ous | arz |08 105 | oar | o | et | e | et | i P~ 0‘04 0 00 00 00 00
= - - EEeE 005
|- EECmE - DEae © [044 | 003 | 004 | 006 | 0.02 | 0.06 [NPXH 0.02 [NUEEM 00 | 00 | 00
|un|un|w~ u“|m u:. nfi‘w:l‘v.u am a5 .,:
» 002 | 0.02 | 0.07 | 0.08 | 0.03 | 0.06 bl 0.01 0.16 0 0.0 0.0
=} 011 | 0.06 | i ofii| 0.02 | 0.11 | 0.02 | 0.06 | 0.02 | 0.02 0.0
— | 0.05 | 007 | 0.05 | 0.03 [0.11 | 0.08 | 0.05 [0.06 | 0.03 . 0.04

&1 JOHNS HOPKINS _
¥ o Slide credit: Atmah Cohan* °* ° © & 2 1© ™7 111

Training a Transformer Language Model

= We need to prevent information leakage from future tokens! How?

(@oldoutpu) Y = cat sat on the mat </s>

to fof+el101

Jonla. Joolle. Josle Jada el Jalle

W P11t

N TRANSFORMER

Pt

&7 Jors HOPKINS X = the cat sat on the mat
W i semon 112

How to use the model to generate text?

= Use the output of previous step as input to the next step repeatedly

&Mgggg

TTTTTT

TRANSFORMER
MLt

OHMNS HOPKINS

113

How to use the model to generate text?

I
= Use the output of previous step as input to the next step repeatedly
The probabilities get

revised upon adding a
new token to the input.

Tt

E-i_l.- OHNS HOPKINS the cat sat

114

How to use the model to generate text?

I
= Use the output of previous step as input to the next step repeatedly

&

Q\ «vthe
."

The probabilities get Joda, Jola. Jeola lealla
revised upon adding a

new token to the input.

trrt

) the cat sat on
1|" ||\I! Ihl‘\

115

How to use the model to generate text?

I
= Use the output of previous step as input to the next step repeatedly
The probabilities get

revised upon adding a
new token to the input.

Tt

) the cat sat on
1|" ||\I! Ihl‘\

116

How to use the model to generate text?

I
= Use the output of previous step as input to the next step repeatedly
The probabilities get

revised upon adding a
new token to the input.

Tt

&7 Jorns o the cat sat on the mat

117

[How efficient is

this decoding?
A

Making decoding more efficient

Q = Wix
K = Wkx
V =W'x

Attention () ft (QKT> v
ention(x) = sorkmaxy ——
Vd

4L i»

’ i

Vv

[Slide credit: Arman Cohan]

&3 10HNS HOPEINS
_‘r. o o o 119 119

Making decoding more efficient

Q = Wix
K = Wkx
V =W'x

Attention () ft (QKT> v
ention(x) = sorkmaxy ——
Vd

| 4L lb

g: the next token K l V

previous context

[Slide credit: Arman Cohan]

50

&7 JOHNS HOPKINS 120 -

Making decoding more efficient

Q = qu
K = Wkx
IV =WUx
Attention(x) ft (QKT> V
ention = softmax| ——
Vd
q .
q: the next token Ki= WkX V = WVX
A v "
r 4"/‘ -
/ previous context
EThé Cat Sat on the [Slide credit: Arman Cohan]

& s HOPKINS
W o 121

Making decoding more efficient

Q = Wix
K = Wkx
V= W'x
Attention (X) ft (QKT> 14
ention(x) = sorcmaxy ——
Vd

q |
g: the next token K - NVkX

/ previous context

Sat on the [Slide credit: Arman Cohan]

W i oo 122

Making decoding more efficient

Q = Wix
K = Wkx
IV =W'x
Attention(X) ft (—QKT> %4
ention(X) = softmax
Vd
g |
q: the next token \Vi V= WVX

[Slide credit: Arman Cohan]

& s HOPKINS)
W o 123

Making decoding more efficient

q |

g: the next token

The cat g |

K= WX

previous context

Q = Wix
K = Wkx
V =W'x

. QK"
Attention(x) = softmax| —— |V

v

Vd

V = WX

[Slide credit: Arman Cohan]

124

Making decoding more efficient

Q = Wix
K = Wkx
V=W
Attention(x) = soft (QKT> %
ention(x) = softmax| —
Vd
q | \
q: the next token K = WkX V = WVX
v v
\\ /’
- previous context
The Cat - Onthe [Slide credit: Arman Cohan]

&2 1ouns H 5 =
W o 125

Making decoding more efficient

Q = Wix
K = Wrx
]] V =W'x
= We are computing the Keys and Values many times! OKT
o Let’s reduce redundancy! Attention(x) = softmax <W> 4
g |
g: the next token V — WVX

v

[Slide credit: Arman Cohan]

The cat g

. 3 1) 126

Making decoding more efficient

Q:qu
K = Wkx
V =W'x

= We are computing the Keys and Values many times! OKT
o Let’s reduce redundancy! Attention(x) = softmax <W> 4

Knew = Wix[:, : —1]

g |
q: the next token K Cached V Cached

AN / w

\ZM View = WX[:, : —1]

The Cat Sat on |the [Slide credit: Arman Cohan]

&7 JOHNS HOPKINS 127

Making decoding more efficient

Q:qu
K = Wkx
V =W'x

= Question: How much memory does this K, V cache require?

Attention () ft (QKT> 14
ention(x) = sorkmaxy ——
Vd

Knew = Wix[:, : —1]

g |
q: the next token K Cached V Cached

AN / w

\ZM View = WX[:, : —1]

The Cat Sat on |the [Slide credit: Arman Cohan]

a7 JoHNs HOPKINS 128 -

Summary

= This is a very generic Transformer!

= Next:
o Positional encodings
O ...

129

Encoding
Positional Information

=

Why do we need
positional encoding? _|

00 p! = 5 i
b _Zal"v One issue: the model doesn’t know }

+ : word positions/ordering.
L/
011 —% Q1,2 3?‘.] 13 —% 01— %
t t t t
| $oftmax]
I I I I
1,1 1,2 /aés 1,4
: \
q1 ki M 4z ky v q3 k3 V3 Qa K4 V4
(0] (0] (0] O
(0] (0] (0] O
A I A 1 A 1 A
. 00000 | . 00000 | ' 00000 | . 00000 |
X1 X2 X3 X4

We will discuss
various choices for
these embedding!

001 b' =) a1’
+ i

One issue: the model doesn’t know
word positions/ordering.

t t t t
[$oftmax |

I I | I

1,1 12 1,3 a1,4
d1 1 (%) q3 ks s Kyg Uy

p; are positional
embeddings

CIZ 2

| — 1 | |
Allows model to learn

relative positioning

|

Positional Embeddings: The Flavors

= Absolute encoding: vectors that uniquely encoder each position.

= Relative encoding: the positional encoding for each position is determined based on
its distance from the other positions it is attending to.

| I IS S I

Allows model to learn

[p; are positional relative positioning

embeddings

X4 134

An approach: I

F0.25

Sine/Cosine encoding

r0.00

(sin(i/100002*1/aY)
cos(i/10000%*1/d)

pi

* d
sin(i/10000%2/%)
. Zt-c—l/d
\COS(l/10000 2)/

100 120

Allows model to learn
relative positioning

p; are positional
embeddings

|ooooo\ 00000 ‘00000 |
Pl 60000 | "I 00000 | P*[00000 | P4 50000

Limits of Absolute Positional Encoding

= We can have fixed positional embeddings for each index training position (e.g., 1, 2, 3, ...
1000).

o What happens if we get a sequence with 5000 words at test time?

= We want something that can generalize to arbitrary sequence lengths.

o Approach: encoding the relative positions, for example based on the distance of
the tokens in a local window to the current token.

&) , 136

Relative Positional Encoding

= You can rewrite the statement from the previous slide in the following form:

T
QKij = (Wylxi+pi]) (Welxj+p;]) = x{ W, Wyx; + P;

_ How much attention
= Note, the values of P;; encode the relative of i and j. should position i should

= How should we construct P;;? attend to position j

&) ; 137

Relative Positional Encoding

= There have been various choices:
o T5 models simplify this into learnable relative embeddings P;; such that:
QK;; = x]W," Wyxj + P;;
o DeBERTa learns relative positional embeddings p;_; such that:
QK;; = x{ W, Wyxj + x] W," Wy, B, i+, W, Wyx;

o Tranformer-XL learns relative positional embeddings p;_; and trainable vectors u, v s.t.:

QK;; = xIW, " Wyxj + xI W, Wy p,_ i +u" W, Wy 40" W, "W, B,
o ALIiBi learns learns a scalar m such that:

QK;j = x] W,"Wyxj —m |i — j|

"l " Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2020 138

Relative Encoding via Multiplication:
Rotary Positional Encoding (RoPE)

= Drop the additive positional encoding and make .
it multiplicative.

Token representations
at positions m and n

qkmn = (RQ,m qum)T(RQ,n kan)

= me WqT Rg,m Rg,n Wk x]' : _— Non-rotated query and key

(no position information)

o 8: the size of rotation i R iR
o Ry,,: rotation matrix, rotates a vector it gets o o
multiplied to proportional to 6 and the T\B 0 e sy and e
pOS|t|On |ndeX m. ' : (absolute position information)
= Intuition: nearby words have smaller relative -
rotation. i i
q k =g(x X ,n—m) Getative postion miowretion)
f‘{P_Former: Enhanced Transformer with Rotary Position Embedding (2022) Fi 139

https://colab.research.google.com/github/krasserm/krasserm.github.io/blob/master/notebooks/2022-12-13-rotary-position-embedding.ipynb

Summary

= Encoding positional information in language models is a non-trivial problem.
o We discussed various proposal: learned, absolute, relative encoding, NoPos, etc.

= This is an important literature related to the length generalization of Transformers.

= This is an active research area and likely to change in the coming years.

140

Transformer
Architectural Variants

Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= An encoder-decoder architecture built with attention modules.

(—)
(,(Add & Normalize) L)
: Y Iy : (Linear)
o x 4
% Ty DECODER #2
o : o s 4
% : 3) _ :"(Add & Normalize)
E (Self-Attention) z '
k* ________ y S ——— yy j é (Feed Forward) (Feed Forward)
Of ThoooTThgerneieeiinReiivCt 4
K-»(Add & Normalize) ¢ Add & Normalize)
- , 1 B
% E (Feed Forward) (Feed Forward) E"‘(Encoder-Decoder Attention)
O *vcececccalencccmceaamea—————- ¢ | | Teeeseee F------------------- 3
g »(Add & Normalize) ,-n(Add & Normalize)
- 3 3 ' 1 [}
(Self-Attention) E (Self-Attention)

Ny PP 3 IREEEEEEEE é """"""""" é
T © ®
.'r-;r.‘ JoHNS H x x- [142

Thinking Machines

Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= Computation of encoder attends to both sides.

~=-m—- | |

I I I I I I

I I I I I I

(U (—— ——
Encoder Self-Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

r
Add & Norm J
Feed
Forward
s ™ Add & Norm
ﬂ— :
ol i Multi-Head
Feed Attention
Forward T 7 Nx
—
Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
L Attention Attention
At 4 At 2
C— J . —)
Positional Positional
Encod ¥ ¢ i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

https://arxiv.org/abs/1706.03762

Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= Atany step of decoder, it attends to previous

computation of encoder

Encoder-Decoder Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

Linear

(
Add & Norm J
Feed
Forward
s ™ Add & Norm
[Add & Norm | :
ol i Multi-Head
Feed Attention
~uiward I 7 7 Nx
— e]
Ny Add & Norm
f—>l Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 4 At 2
C— J . —)
Positional @_@ & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

https://arxiv.org/abs/1706.03762

0.0

50

75

10.0

12,5

17.5

Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= Atany step of decoder, it attends to previ

ous

computation of encoder as well as decoder’s

own generations

MaskedDecoder Self-Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

(
Add & Norm J

Feed
Forward
s ™ Add & Norm
[Add & Norm | :
ol i Multi-Head
Feed Attention
Forward N x
Nix Add & Norm
(—>| Add & Norm ! Masked
e Multi-Head
Attention I Attention
L) At 2
_ _ —
Positional @_@ & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

https://arxiv.org/abs/1706.03762

Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= Atany step of decoder, it attends to previous
computation of encoder as well as decoder’s
own generations

= Atany step of decoder, re-use previous
computation of encoder.

= Computation of decoder is linear,
instead of quadratic.

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

Linear

(
Add & Norm J
Feed
Forward
g ~\ Add & Norm
ﬁ— :
Gl el Multi-Head
Feed Attention
Forward T 7 Nx
—
Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 2 At 2
C— J . —)
Positional Positional
Encod ¥ ¢ i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs 146

(shifted right)

https://arxiv.org/abs/1706.03762

Quiz: Enc-Dec Cost

= Goal: We are building an encoder-decoder Transformer for summarizing passages to
summaries.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o OWN)+0WM)

o ON)+0(M)+O0(NM)
o O(N2)+O0(M?*)+ 0(NM)
o O(N%)+0(M?

L ; [Slide: John Canny] 147

Quiz: Enc-Dec Cost

= Goal: We are building an encoder-decoder Transformer for summarizing passages to
summaries.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o O(N)+0oWM) <[No, self attention is all-to-all]
o ON)+0(M)+ O0(NM) and so quadratic.

o O(N2)+O0(M?*)+ 0(NM)

o 0(N?) + 0(M?)

L ; [Slide: John Canny] 148

Quiz: Enc-Dec Cost

= Goal: We are building an encoder-decoder Transformer for summarizing passages to
summaries.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o OWN)+0WM)

o O(N) +0(M) + O(NM) No, self attention is all-to-all
o O(N?)+0(M?*)+ O(NM) and so quadratic in M and N.
o O(N%)+0(M?

L ; [Slide: John Canny] 149

Quiz: Enc-Dec Cost

= Goal: We are building an encoder-decoder Transformer for summarizing passages to
summaries.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o OWN)+0WM)

o O(N) +0(M) + O(NM) No, self attention is all-to-all
o O(N?)+0(M?*)+ O(NM) and so quadratic in M and N.
o O(N%)+0(M?

L ; [Slide: John Canny] 150

Quiz: Enc-Dec Cost

= Goal: We are building an encoder-decoder Transformer for summarizing passages to
summaries.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o ON)+o0o(M)
o ON)+0(M)+O0(NM)
o O(N2)+O0(M?*)+ 0(NM)

o O(N?) +0(M?
<(No, cross attention is missing. J

L ; [Slide: John Canny]

151

Quiz: Enc-Dec Cost

= Goal: We are building an encoder-decoder Transformer for summarizing passages to
summaries.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

oy
. |

©)

O
O
O

O(N) + 0(M)
O(N)+O0(M) + O(NM)
O(N?) +0(M?) + O(NM)
O(N?%) + 0(M*)

Yes. The three terms are respectively the Encoder
self-attention, Decoder self-attention, and Cross
attention.

|

[Slide: John Canny]

152

After Transformer ...

Impact of Transformers

= A building block for a variety of LMs

L

Encoders

Decoders

Encoder-
Decoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context. Wait, how do we pretrain them?

Examples: GPT-3, GPT-4, LaMMA, Mistral
Other name: causal or auto-regressive language model

Nice to generate from; can‘t condition on future words

Examples: T5, Meena
What's the best way to pretrain them?

154
154

Yang et al. Harnessing the Power of
LLMs in Practice: A Survey on
ChatGPT and Beyond, 2023

Evolutionary
Tree

Closed-Source

Flan
uL2 (€]

Flan
15

)g!ae

Switch

LLaMA[#,N

G

|Claud§.

|Jurassic-2}a2!

BardG [GPT-4 6

OPT-IML[0N "
BLOOMZ[%] GalacticaleN]GLM]E
pal{

Sparrod©
BLOOM| %]
OPT[9))

IChinchillaIQ

EI)O Minenvd G
paNG

|Instruct6@@
GLaMG_ [Gopher]©

O |

G
[ERNTE3.9%((v |

Cohere/#®

Jurassic-1jgs

GPT-[®)
GPT-Neo[®]

PT-36

GPT-NeoX[®)

Tadk EG = %
XLNetfc] R — iol5
| Iclosed source i L]
. GPT-2[&)] ol
n%"‘Dec rlo
\' GPT-1 @ T ()
Encoder»Only R ﬂ@
®
Gl =4
oVe g
FastText e moo

=

Few notable models

|

GPT-2

= GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences
from scratch or from a starting sequence

= As it processes each subword, it masks the “future” words and conditions on and
attends to the previous words

output token
probabilities (logits)

0.19850038
0.7089803 s
Decoder #12, Position #1 0.46333563 aaron Pick an output
output vector token based on
| X — its probability
(sample)
The
-0.51006055
‘ DECODER
‘ DECODER
<S>
1 2 . 1024
- i
g JOHNs R 3 157

" Image by Ji . io/i opt2/

http://jalammar.github.io/illustrated-gpt2/

GPT-3: Just Scale

= More layers & parameters

= Bigger dataset

= Longer training

= Larger embedding/hidden dimension
= Larger context window

E;?.” Je HNS HOPKINS 15

[Slide credit: Sbhya Chhabria & Michael Tang]

Model Usage

G P I 4 davinci-002 $0.0020 / 1K tokens

Model Input Output

gpt-4 $0.03 / 1K tokens $0.06 / 1K tokens
= Transformer-based

o Therestis mystery! ©

o If we're going based on costs, GPT4 is ~15-30 times costlier than GPT3. That
should give you an idea how its likely size!

= Note, these language models involve more than just pre-training.
o Pre-training provides the foundation based on which we build the model.
o We will discuss the later stages (post hoc alignment) in a 2-3 weeks.

https://openai.com/pricing 159

https://openai.com/pricing

Other Available [Decoder] LMs

EleutherAl: GPT-Neo (6.7B), GPT-J (6B), GPT-NeoX (20B)
https://huggingface.co/EleutherAI
https://6b.eleuther.ai/

LLaMA, 65B: https://github.com/facebookresearch/l1lama

Mistral and Mixtral:
https://huggingface.co/mistralai/Mistral-7B-Instruct-ve.2

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-veo.1

B3 ToHNs Hiowk

1|_|I| | HMNS FICHPE | NS 160

https://github.com/facebookresearch/llama
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

L M Sys C hatAre na https://Imarena.ai/

Rankx .) . Knowledge
(UB) 4+ Model » Arena Score + 95§ CI + Votes + Organization 4+ License A Cutoff A
1 ChatGPT:40:latest. (2024.-08-08). 1317 +5/-5 20805 OpenAI Proprietary 2823/10

2 1298 +4/-4 23232 Google Proprietary 2023/11

2 Grok-2:-08-13 1293 +7/-6 6686 xAI Proprietary 2024/3

3 GPT-40:2024-05-13 1286 +3/-3 80741 OpenAl Proprietary 2023/10

5 GPT-40-mini-2024-07-18 1275 +5/-4 21621 OpenAI Proprietary 2023/10

5 Glaude. .3.5.Sonnet 1271 +3/-3 51097 Anthropic Proprietary 2024/4

5 Grok-2-Mini-08-13 1268 +7/-7 7266 xAL Proprietary 2024/3

6 Gemindi. Advanced. App..(2024-05-14). 1267 +4/-3 52136 Google Proprietary Online

6 Meta-Llama-3.1-405b-Instruct 1266 +4/-4 22312 Meta Llama 3.1 Community 2023/12

7 GPT-40-2024-08-06 1262 +5/-5 13703 OpenAl Proprietary 2023/10

8 Gemini-1.5-Pro-001 1260 +3/-2 72623 Google Proprietary 2023/11
10 Geminizl.5:Pro-Preview-0409 1257 +3/-3 55604 Google Proprietary 2023/11
10 GPT-4-Turho-2024-04-09 1257 +2/-3 86648 OpenAl Proprietary 2023/12
12 Mistral-lLarge-2407 1250 +5/-5 14793 Mistral Mistral Research 2024/7

12 Athene-70h 1250 +5/-5 13655 NexusFlow CC-BY-NC-4.0 2024/7

14 GPT.-4-1106-preview 1251 +3/-3 93540 OpenAl Proprietary 2023/4

MHMNS HOPEITNS

161

https://lmarena.ai/

Training Transformer LMs:

Empirical Considerations

Pre-training Transformer LMs

= There is so much empirical knowledge/experiences that goes into training these
models.

= Various empirical issues about:
o Preparation/pre-processing data
o Efficient training of models
O ...

oy
ol

163

Remove any:
 References to Javascript

Data Clea n i ng . E « “Lorem ipsum” text — placeholder text commonly used to

demonstrate the visual form of a document

The lemon, Citrus Limon (I.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for

culinary and non-culinary purposes Organic dried lemons from our farm in
throughout the world, primarily for its juice, California.

which has both culinary and cleaning uses. Lemons are harvested and sun-dried for
The juice of the lemon is about 5% to 6% maximum flavor.

citric acid, with a ph of around 2.2, giving it Good in soups and on popcorn.

a sour taste.

The origin of the |

Retain:
» Sentences with terminal
punctuation marks
» Pages with at least 5 sentences,
sentences with at least 3 words

Slide adapted from Colin Raffel 164

Pre-training Data: Experiment

= Takeaway:
o Clean and compact data is better than large, but noisy data.
o Pre-training on in-domain data helps.

Data set Size GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* C4 745GB 83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB 81.46 19.14 78.78 68.04 26.55 39.34 27.21

SV H 165

Pre-training Data Duplicates

g L |

L

There is a non-negligible number of
duplicates in any pre-training data.

% train examples with % valid with

dupintrain dupinvalid dup in train

C4 3.04% 1.59% 4.60%
RealNews 13.63% 1.25% 14.35%
LM1B 4.86% 0.07% 4.92%
Wiki40B 0.39% 0.26% 0.72%

Dataset

Example

Near-Duplicate Example

Wiki-40B

\n_START_ARTICLE_\nHum Award for Most Impact-
ful Character \n_START_SECTION_\nWinners and nomi-
nees\n_START_PARAGRAPH_\nIn the list below, winners are
listed first in the colored row, followed by the other nominees.

-

\n_START_ARTICLE_\nHum Award for Best Actor in a
Negative Role \n_START_SECTION_\nWinners and nomi-
nees\n_START_PARAGRAPH_\nIn the list below, winners are
listed first in the colored row, followed by the other nominees. [...]

LMIB

I left for California in 1979 and tracked Cleveland ’s changes on
trips back to visit my sisters .

I left for California in 1979 , and tracked Cleveland ’s changes on
trips back to visit my sisters .

C4

Affordable and convenient holiday flights take off from your
departure country, "Canada". From May 2019 to October 2019,
Condor flights to your dream destination will be roughly 6 a
week! Book your Halifax (YHZ) - Basel (BSL) flight now, and
look forward to your "Switzerland" destination!

Affordable and convenient holiday flights take off from your depar-
ture country, "USA". From April 2019 to October 2019, Condor
flights to your dream destination will be roughly 7 a week! Book
your Maui Kahului (OGG) - Dubrovnik (DBV) flight now, and look
forward to your "Croatia" destination!

Deduplicating Training Data Makes Language Models Better, 2020

166

Deduplicating Data Improves LMs

= (C4 : the original training data
= C4-NearDup: C4 excluding exact duplicates
= (C4-ExactSubs: C4 excluding near-duplicates

C4 Original Training data

mmm Original
mawm NearDup
mmm ExactSubstr

C4 Duplicates

Training on deduplicated

Evaluation dataset

i e
data almost always leads G UniqUe
| R ——————— e ———
_———
_——
—
0 5 10 15 20 25 30 35

Perplexity

557 JOHNS HOPKINS
1ﬁ : 1 i

Deduplicating Training Data Makes Language Models Better, 2020 167

Convergence

= In practice, your model’s loss should continue
to go down with more training on more data.

= So, the real bottlenecks are:
o (1) compute
o (2) data

= Sometimes training diverges (spikes in the
loss), at which point practitioners usually
restart training from an earlier checkpoint.

E-N i
e JOHNS
-

Train PPL

— LLaMA 7B

LLaMA 13B
—— LLaMA 33B
—— LLaMA 65B

0 200 400 600 800 1000 1200 1400
Billion of tokens

Llama-2
— 7B
— 13B
— 34B

70B

250 500 750 1000 1250 1500 1750 2000
Processed Tokens (Billions)

168

Summary

= There is many empirical knowledge that goes into engineering LMs.
= Here we covered a basic topics about data and architecture engineering.

= Various topics are forthcoming: scaling laws, efficient training, etc.

169

Adaptation via Fine-Tuning

= At this point, we have built a pre-trained model.

Word2Vec
GloVe
Pretraining ULMFit
ELMo
corpus BERT

T5

Pretraining

A 4

Pretrained models

=3 R T
B JOHMNS HOPKIMNS
o T

171

Fine-Tuning for Tasks

= Now we want to “adapt” it for specific tasks with labeled data.

Pretraining

Pretraining

corpus

557 JOHNS HOPKINS
1ﬁ : 1 d

Word2Vec Finetuning Classification

GloVe

ULMFit QA
» [ELMo

BERT

T5 Translation

. Summarization

Pretrained models

172

81

Fine-tuning Pre-trained Models

I
Classiﬁcatiog I [= Whole model tuning:
Hea £ o Run an optimization defined on your
& task data that updates all model
parameters
Language
Model

= Head-tuning:

Embeddi [TTT [T [ITT [TT o Run an optimization defined on your
e task data that updates the parameters

|npUt [CLS] A three-hour cinema master class. Of the mOdeI “head"

55;.’-' r.m\alimmxa 173

https://github.com/allenai/acl2022-zerofewshot-tutorial/

Parameter-efficient Fine-tuning

= In fine-tuning we need to updating and storing all the parameters of the LM
o We would need to store a copy of the LM for each task

= With large models, storage management becomes difficult.
o E.g., A model of size 170B parameters requires ~340Gb of storage
o If you fine-tune a separate model for 100 tasks:
« 340 * 100 = 34 TB of storage!

v ' 174

Parameter-efficient Fine-tuning

I
additive selective
BitFit LN Tuning
Attention Tuning
Diff-Pruning
adapters Fish-Mask LT-SFT

FAR

soft prompts

reparametrization-based

@J:mmllmwm 175
b fig source https://arxiv.org/pdf/2303.15647.pdf

125

LoRA: Low-Rank Adaptation

= Hypothesis: the intrinsic rank of the weight h |
matrices in a large language model is low % ilx %

= Parameter update for a weight matrix is

: Pretrained
decomposed into a product of two low-rank :

: Weights
matrices

W« W+ AW
AW = BA

B e R% A e R, r < min(k,d)

= Aijs initialized with random Gaussian
Initialization, B is initialized to zero

Ef] JOHNS HOPKINS 176

https://arxiv.org/abs/2106.09685

Performance/compactness comparison

[e |

r“i"-l'l | H

88

84

GLUE Score
8

@®
o

78

76

Chmpacters 5!
PHM-Adapter

Compacter =

p: “! b: feiffer-Adapter @

O Adapter—ank dapter 5

Intrinsic-SAID BitFit

AdapterDr

fromptTuning

0.01 0.10 1.00 10.00 100.00
Percentage of the Trained Parameters Per Task (Relative to T5)

65

=]
o

Accuracy
4]
w

a
o

w
A
4
8
¢

@
® &
i 8 =
| O
paaaaal 1 1 ||||||ID| L a3l 1
0.001% 0.01% 0.1%

% of parameters updated

{IA)3 |:| Prompt Tuning
LoRA <] Prefix Tuning
BitFit O Adapter

Layer Norm @ FISH Mask
Compacter O Intrinsic SAID
Compacter++

177

Summary

e Parameter efficient optimization — optimize fewer parameters than the
whole model.
e Space efficiency — fewer parameters to store

e Computation efficiency? Some gains since you're storing less trainable parameters.

&7 . 178

Prompting and
In-Context Learning

In-Context Learning

= Learns to do a downstream task by conditioning on input-output examples!

= No weight update — our model is not explicitly pre-trained to learn from examples
o The underlying models are quite general

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

&7 Jors 180

In-Context learning Results

PhysicalQA

Human
""""""""""""""" Tttt —e— Zero-Shot]

—e— One-Shot
—e— Few-Shot (K=50)

:a To separate egg whites from the yolk
using a water bottle, you should... R —
% __Fine-tuned SOTA _____ ___o—%—

a. Squeeze the water b. Place the water bottle §
bottle and press it and press it against the 3
against the yolk. yolk. Keep pushing, o -
Release, which creates which creates suction
suction and lifts the yolk. and lifts the yolk. 60
50 .- Random Guessing

0.1B 0.4B 0.8B 1.3B 26B 6.7B 13B 175B
Parameters in LM (Billions)

[e |

& JoHNS HOPKINS Brown et al. 2020. “"Language Models are Few-Shot Learne{§"1

https://arxiv.org/abs/2005.14165

ICL as a General-Purpose Few-Show Learning Mechanism

) \/

Any arbitrary task

A few-shot learner

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => protipt
?;—.;?1 -II‘“.IIF: | !|_ H‘.h:.l.‘\..‘x . . .] 182

https://github.com/allenai/acl2022-zerofewshot-tutorial/

In-Context Learning:

= Labelingdatais costly You don’t want to get more data
Emergent, time-sensitive scenarios
o Something new happened—need to react quickly!

» Finetuning can tricky Not enough validation data
Expensive to train, time and memory

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

[ACL 2022 Tutorial Belftagy, Cohan, L ogan IV, Min and Singh; quote credit: Colin Raffel] 183

https://github.com/allenai/acl2022-zerofewshot-tutorial/

In-Context Learning: Intellectually Intriguing

= Potential test for “Intelligent Behavior” e Generalization from few examples

o Fundamental piece of intelligence

What does an LLM “know"?

* InsightsintoLanguage Modeling e What are the biases/limitations of LLMs?

','.:". [OHNS HOPEINS
TR

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

[AC Tutorial B - Mi inah]

184

https://github.com/allenai/acl2022-zerofewshot-tutorial/

=

ICL's is quite sensitive!

|

LM Prompting: Choices of Encoding

&3 loHNS H

L

Prompt

Input: Subpar acting. Sentiment: negative
Input: Beautiful film. Sentiment: positive

Input: Amazing. Sentiment:

[Slide credit: Eric Wallace]

186

LM Prompting: Choices of Encoding

In ||+l C..L\nﬂ'\r ﬂ’\“;nn Cr\n'l-:mf\n'l-- I’\f‘\’\l"\+:\ L

Sentence: Subpar acting. Label: bad
Prompt | In

Sentence: Beautiful film. Label: good

Sentence: Amazing. Label:

w [Slide credit: Eric Wallace] 187

LM Prompting: Choices of Encoding

Prompt

1t CI ll’\lf'\"\lf "\f\'l-;y'\m Cf\lf\'l-:mr\n'l-- V\f\f\l'\‘l-:\ 1L\

In

SE\»«-I- nnnnn Ciilhinar actintna | alaale InaAl
In | Q: What's the sentiment of “Subpar acting”?
In S¢A: negative

S¢

Q: What's the sentiment of “Beautiful film™?
A: positive

Q: What's the sentiment of “Amazing”™?
A

[Slide credit: Eric Wallace]

188

In-

0

|

= Input: Subpar acting. Sentiment: negative
Input: Beautiful film. Sentiment: positive

e Input: Amazing. Sentiment:

. il Subpar acting. | hated the movie.
Beautiful film. | liked the movie.

S Amazing.

— Review: Subpar acting. Stars: 0
Review: Beautiful film. Stars: 5

S Review: Amazing. Stars:

SST-2 Accuracy (%)

©
o

(o]
(=]

~
o

(o))
o

o)l
o

Accuracy Across Formats and Training Sets

Format ID

[Slide credit: Eric Wallace]

ontext Learning: Sensitivity to Encoding

In-context learning is highly sensitive to prompt format (training sets and patterns/verbalizers)

r
o
b

= 1

7

Joums H

g, |

I' \\I

NS, :
Calibrate Before Use: Improving Few-Shot Performance of Language Models.” Zhao et al. 2021]

189

https://arxiv.org/pdf/2102.09690.pdf

What Causes These Variances?

= Here we will provide several factors ...

190

Input: Subpar acting. Sentiment: negative

Majority Lab3| BiaS Prompt | Input: Beautiful film. Sentiment: positive

Input: Amazing. Sentiment:

= Among 4 demonstrations, count how many are “positive”.
= Then check if the model output correlates with the number of “positive” demos.

> H 191

Input: Subpar acting. Sentiment: negative

Majority Lab3| BiaS Prompt | Input: Beautiful film. Sentiment: positive

Input: Amazing. Sentiment:

= Among 4 demonstrations, count how many are “positive”.
= Then check if the model output correlates with the number of “positive” demos.

100
Majority label bias:
6 frequent training answers
Frequency of > : T
Iy dominate predictions.
Positive 37
Predictions
20
0
414 34 2/4 1/4 /4

| Positive Positive Positive Positive Positive

N ["Calibrate Before Use: Improving Few-Shot Performance of Language Models.” Zhao et al. 2021] 192

https://arxiv.org/pdf/2102.09690.pdf

Input: Subpar acting. Sentiment: negative

Recency Bias Prompt | Input: Beautiful film. Sentiment: positive

Input: Amazing. Sentiment:

= Check if the label of the most-recent demo biases the model output.

E-N
L]

) JOHNS HOPKINS 193

Input: Subpar acting. Sentiment: negative

Recency Bias Prompt | Input: Beautiful film. Sentiment: positive

Input: Amazing. Sentiment:

= Check if the label of the most-recent demo biases the model output.

90 Recency bias: examples near end
of prompt dominate predictions
62 _ " -
E 60 Explains variance across
Positive example permutations!
Predictions

12

NPPP PNPP PPNP PPPN

E-N

N7 [Calibrate Before Use: Improving Few-Shot Performance of Language Models.” Zhao et al. 2021] 194

https://arxiv.org/pdf/2102.09690.pdf

Impact of Pretraining Term Frequencies

e Foreach task, identify relevant terms from each instance—numbers and units

e Count co-occurrences of these terms in the pretraining data (term pairs or
triples within a fixed window)

[“Impact of Pretraining Term Frequencies on Few-Shot Reasoning" Razeghi et al. 2022.] 195

https://arxiv.org/abs/2202.07206

Impact of Pretraining Term Frequencies

&S [OHNS

L

accuracy

1.0

0.8

0.6

0.4

0.2

0.0

(9) Arithmetic-Multiplication

Q: What is 24 times 18?

A: 432 &/

Q: What is 23 times 15?
A: 462 XK

106

107

108

In-context learning performance is highly correlated with

term frequencies during pretraining

[“Impact of Pretraining Term Frequencies on Few-Shot Reasoning" Razeghi et al. 2022.]

196

https://arxiv.org/abs/2202.07206

Why Does ICL Emerge?

We don't know!
We have partial empirical explanations.

And some theoretical analogies.

But none of them fully explain ICL.

oy
ol

197

Prompting to Solve
Multi-step Problems

Some Problems Involve Reasoning

/Q: If there are 3 cars in the

parking lot and 2 more cars
arrive, how many cars are in
the parking lot?

A: The answer is 5

-

~

/

Arithmetic Reasoning (AR)

(+ —x=+..)

oy
. |

KQ: Take the last letters of
the words in "Elon Musk"
and concatenate them

A: The answer is nk.

"

~

J

Symbolic Reasoning (SR)

eguipment requires cable?

cabinet

Q: The answer is (c).

KQ: What home entertainment

Answer Choices: (a) radio shack
(b) substation (c) television (d)

~

/

Commonsense Reasoning (CR)

199

Vanilla ICL on Reasoning Problems

: “Elon Musk”
“nkﬂ

: ““B,i,ll Gates” Y
Is

: “Barack Obama”

> O

> O

> O

Input

200

Playground Load a preset... Save View code Share

= Complete
" n 0
: ¥
Q: “Elon Musk Nindel
A: llnkll
text-davinci-003
Q: "Bill Gates"”
Az"ls” Temperature 0
" BerasicObatns Maximum length 256
A: llmall
Stop sequences
! \ Enter sequence and press Tab
\;\ <&,—’ Top P 1
Frequency penalty 0
Presence penalty 0

[Denny Zhou]

Playground Load a preset... v Save

Q: "Elon Musk” ¢
A: “nk"
Q: "Bill Gates"
A:“ls”
Q: “Barack Obama"
A: “ma"
How about adding more examples?
o o D P O 54

[Denny Zhou]

View code Share
= Complete %
Model
text-davinci-003 v
Temperature 0
Maximum length 256

Stop sequences
Enter sequence and press Tab

Top P 1
Frequency penalty 0
Presence penalty 0

Playground

Q: “Elon Musk”
A: “nk”

Q: "Bill Gates”
A: lllsll

Q: "Steve Jobs"
A:"es"

Q: "Larry Page"
A: Ilyell

Q: "Jeff Bezos"
A: "fs"

Q: “Barack Obama"

A:"ma'

)

Load a preset...

3

\\\

-

[Denny Zhou]

Save

(&)

94

View code Share

= Complete

Model

text-davinci-003

Temperature

Maximum length

Stop sequences

256

Enter sequence and press Tab

Top P

Frequency penalty

Presence penalty

CoT: Adding “thought” before “"answer”

Q: “Elon Musk”

A: the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k"
eads to "nk".|so the output is "nk". thought

Q: “Bill Gates”

A: the last letter of "Bill" is "I". the last letter of "Gates" is "s". Concatenating "I", "s" leads
to "Is". so the output is "Is".

Q: “Barack Obama"
A:

&7 JOHNS HOPKINS
w [Denny Zhou] 204

CoT: Adding “"thought” before “"answer”

Q: “Elon Musk”
A: the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k"

leads to "nk".|so the output is "nk".
g thought

Q: “Bill Gates”
A: the last letter of "Bill" is "I". the last letter of "Gates" is "s". Concatenating "I", "s" leads

to "Is". so the output is "Is".

Q: “Barack Obama"
A:

5.._‘1, JOHNS HOPEINS
=) : : [Denny Zhou] 205

CoT: Adding “"thought” before "answer”

(a) Few-shot

@oger has 5 tennis balls. He buys 2 more cans of te®

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

_ /

206

Though each task’s
demonstrations need to be

wy COT tO Any TaSk “engineered” manually! ®
QT Smteqyan T O O

Q: Yes or no: Would a pear sink in Q: The concert was scheduled to be Q: Is the following sentence
water? on 06/01/1943, but was delayed by plausible? "Joao Moutinho caught the
one day to today. What is the date 10 screen pass in the NFC
A days ago in MM/DD/YYYY? championship."
answer is no.
So the
So the answer is 05/23/1943. answer is no.
N

- _J
/(sayCan nstructing arobot))

Human: How would you bring me Q: Take the last letters of the words

J
_

: A coin is heads up. Maybelle flips

something that isn’t a fruit? in “Lady Gaga” and concatenate the coin. Shalonda does not flip the

them. coin. Is the coin still heads up?

Plan: 1. find(energy bar) 2. answer is ya.
pick(energy bar) 3. find(user) 4.

: So the nswer

Qut(energy bar) 5. done(). J K J Q no.)

E":i'; Jc *.nl_lI;; |. OPRINS 207

Multi-Step Prompting: Steps Don’t Have to Be

Correct!

= It is possible even with invalid demonstration:

= Prompting with invalid reasoning steps can ac
with correct reasoning steps.

B Answer Acc.

B Inter. F1
Standard

CoT

Invalid
Reasoning

In-context Demonstration

Inference by LLM

Query

Leah had 32 chocolates and her
sister had 42. If they ate 35, how
many pieces do they have left in
total?

Julie is reading a 120-page book. Yesterday,
she was able to read 12 pages and today, she
read twice as many pages as yesterday. If she
wants to read halt of the remaining pages
tomorrow, how many pages should she read?

Standard

The answer is 39.

The answer is 18. X

CoT

Originally, Leah had 32
chocolates and her sister had 42.
So in total they had 32 + 42 =
74. After eating 35, they had 74
- 35 =39 pieces left in total. The
answer 1s 39.

Julie is reading a 120-page book. Yesterday,
she read 12 pages and today, she read 24
pages. So she read a total of 12 + 24 = 36
pages. Now she has 120 - 36 = 84 pages left.
Since she wants to read half of the remaining
pages, she should read 84 /2 = 42 pages. The
answer 1s 42.

Invalid
Reasoning

Originally, Leah had 32
chocolates and her sister had 42.
So her sister had 42 - 32 = 10
chocolates more than Leah has.
After eating 35, since 10 + 35 =
45, they had 45 - 6 = 39 pieces
left in total. The answer 1s 39.

Yesterday, Julie read 12 pages. Today, she

read 12 * 2 = 24 pages. So she read a total of
12 + 24 = 36 pages. Now she needs to read
120 - 36 = 84 more pages. She wants to read
half of the remaining pages tomorrow, so she
needs to read 84 / 2 = 42 pages tomorrow.
The answer is 42.

208

https://arxiv.org/pdf/2212.10001.pdf

Summary

= Prompting language models is a powerful way to adapt them to our desired tasks.
o We saw prompting via in-context demonstrations
o We also saw various variants and extensions

= They also serve as a gateway to understand the underlying dynamics inside models.

= Lots of activity in this area and room for a lot of research progress.

209

Prompt Engineering

= Reformulating tasks to a language that is

= Question for you: wil

Al

easier to for the models.

o Show demonstrations
Decompose your problem
Ask for rationales (a la CoT)
Check for consistency

O O O O

III

prompt engineering”
be relevant topic in the coming years?

Al 'prompt engineer’ jobs can pay up to
$375,000 a year and don't always require a
background in tech

Britney Nguyen May 1, 2023, 11:34 PM GMT+8

] ad [J Readinapp

The rise of generative Al tools like ChatGPT is creating a hot market for "prompt
engineers" who test and improve chatbot answers. Getty Images

210

Alignment

Things that Generative LMs Can Do

Johns Hopkins University is in . [Trivia]

| put fork down on the table. [syntax]

The woman walked across the street, checking for traffic over shoulder. [coreference]
| went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

What | got from the two hours watching it was popcorn. The movie was . [sentiment]

Thinking about the sequence 1, 1, 2, 3, 5, 8, 13, 21, ___[basic arithmetic]

; 212
Ll [Slide credit: Jesse Mu]

Language Modeling = Following Human Instructions

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION GPT-3
Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

[There is a mismatch between LLM pre-training and user intents. }

E-N
L]

7 JOHNS HIOPKINS 213

Language Modeling = Following Human Instructions

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION Human
A giant rocket ship blasted off from Earth carrying astronauts tothe moon. The
astronauts landed their spaceship on the moon and walked around exploring the
lunar surface. Then they returned safely back to Earth, bringing home moon rocks to

show everyone.

[There is a mismatch between LLM pre-training and user intents. }

o oS 214

[Mis]Alignment in Language Models

= There is clearly a mismatch between what pre-trained models can do and what we
want.

= Addressing this gap is the focus of “alignment” research.
o Making sure it does what its designers intended.
o Making sure its outputs comply with rules.
o Making sure it produces outputs that comply with moral principles.
O

THE ALIGNMENT
PROBLEM

Machine Learning and Human Values

BRIAN CHRISTIAN

op ¢
bobe>erere

E-N
=

o oS 215

[Mis]Alignment in a Broad Sense

= “The result of arranging in or along a line, or into appropriate relative positions; the
layout or orientation of a thing or things disposed in this way” — Oxford Dictionary

216

Alignment Problem is Everywhere!

This is a fundamental problem of human society.
Most things we do in our day-to-day life is an alignment problem.

Example 1: Alignment mechanisms in this class:
o Me giving lectures; You asking questions; You solving homework assignments, ...
Example 2: Alignment mechanisms in our society:
o Law and its enforcement; norms and cultures; markets, democracy, ...

oy
ol

[Slide Credit: Gillian Hadfield]

[Aligning Language Models:
Instruction-tuning

|

Instruction-tuning

= Finetuning language models on a collection of datasets that involve mapping
language instructions to their corresponding desirable generations.

E-N
oy
ol

219

[Weller etal. 2020. Mishraet al. 2021; Wang et al. 2022

= - . . . ; - ’
I n Structl 0 n -tu n I n g Sanh et al. 2022; Wei etal., 2022, Chung et al. 2022, many others]

1. Collect examples of (instruction, output) pairs across many tasks and finetune an LM

Please answer the following question.
What is the boiling point of Nitrogen?

\&

Answer the following question by

reasoning step-by-step. The cafeteria had 23 apples

originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more

The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,

how many apples do they have? Language apples, so they have 3 + 6 = 9.
- / model =
2. EvaIuate onunseen tasks \

I . . Lo — —

inference Qeneralizamon to unseen iasks
Geoffrey Hinton is a British-Canadian

/ computer scientist born in 1947. George

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Washington died in 1799. Thus, they
could not have had a conversation

Give the rationale before answering. together. So the answer is “no”. %0

Scaling Instruction-Tuning

[e |

ROUGE-L

55

50

45

35

30

437

65

54.3 60

51.2
55 543

45.6 50 48.0

ROUGE-L

45 42.1

40 40.1

35

30
60 600 40 400 4000
Number of Training Tasks Number of Model Parameters (Millions)

_— \

with exponential increase in observed tasks and model size.

62.0

Linear growth of model performance

&7 JOHNS HOPKINS

221

https://arxiv.org/abs/2104.08773

Scaling Instruction-Tuning

540B model

60
Instruction finetuning improves performance by //‘—_~———‘
a large margin compared to no finetuning

Increasing the number of finetuning tasks
improves performance

bo
o
|

Normalized average on
held-out tasks (%)
5

Increasing model scale by an order of
magnitude (i.e., 8B — 62B or 62B — 540B)
improves performance substantially for both

62B model

8B model

finetuned and non-finetuned models 0 | , .
0 9 89 282 682 1,836

Number of finetuning tasks
222

[Scaling Instruction-Finetuned | anguage Models, Chung et al. 2022]

https://arxiv.org/abs/2210.11416

oy
. |

Limits of Instruction-Tuning

1. Difficult to collect diverse labeled data

Limited/sparse feedback—usually
considered a curse, but now a blessing.

2. Rote learning (token by token) —

. limited creativity don't give a man fish rather teach him

how to fish by himself”

~

J

3. Agnostic to model’s knowledge —

* may encourage hallucinations The model itself should be involved in
the alignment loop.

223

=

Aligning Language Models:
Reinforcement Learning w/ Feedback

224

Reinforcement Learning: Intuition

[Action here: generating responses/token
YJ environment

agent

7

> -
rewards
—_
zl : (iabser‘vo.ﬁons J A

Reward here: whether humans
liked the generation (sequence
[figure credit] of actions=tokens)

actions

https://www.analyticsvidhya.com/blog/2021/02/introduction-to-reinforcement-learning-for-beginners/

environment

)}

G Oa I agent
o

actions
. rewards / ‘
Task: choose the better next message in a conversation 1 : Goservations

E:_i":”‘ y |I\a|h.1.-h:.\~ 226

environment

Feedback Mechanism oget ,ﬂ/\

actions

—) '
L - A
Scoring interface: Likert scale or rankings CEvations Lok

A A B B

A is better B is better

557 JOHNS HOPKINS
1ﬁ : 1 i

227

Reinforcement Learning: Formalism

An agent interacts with an environment by taking actions s;.

The environment returns a reward r; for the action s;.

Agent uses a policy function pg to choose an action at a given state.

We need to figure out: (1) reward function r, and (2) the policy function pg

Agent
Po(-)
Tt

l"...l-| 105 HHi L i '

g JOHNS HOPKIN [Fig credit: Nate Lambert] 228

St

Agent

Reinforcement Learning T w0
from Human Feedback _._

= Imagine a reward function: R(s; prompt) € R for any output s to a prompt.
= The reward is higher when humans prefer the output.
= Good generation is equivalent to finding reward-maximizing outputs:

B 1o H 5
W e o . . 229
[Slide credit: Jesse Mu]

Agent

Reinforcement Learning T w0
from Human Feedback _._

= Imagine a reward function: R(s; prompt) € R for any output s to a prompt.
= The reward is higher when humans prefer the output.
= Good generation is equivalent to finding reward-maximizing outputs:

A po(s) is a pre-trained model with
S~pg [R (S; prompt)] params 6 we would like to

optimize (policy function)

Expected reward over the
course of sampling from our
policy (generative model)

= On the notation:
o “E” in practice is estimated empirically (i.e., average).
o “"~"indicates sampling from a given distribution.

b [Slide credit: Jesse Mu] 30

Reinforcement Learning
from Human Feedback

Agent
pe(.)

Es~p,[R(S; prompt)]

What we need to do:

o (1) Estimate the reward function R(s; prompt).
o (2) Find the best generative model p, that maximizes the expected reward:

Ea

6 = argmaxgylE;

= q
] H S
ol

S~Pag

[R(8; prompt)]

[Slide credit: Jesse Mu]

-

Imagine a reward function: R(s; prompt) € R for any output s to a prompt.
The reward is higher when humans prefer the output
Good generation is equivalent to finding reward-maximizing outputs:

231

Agent
pa(.)
Tt St

= Obviously, we don’t want to use human feedback directly since that could be & & &
= Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]

Step 1: Estimating the Reward R

50

U JOHNS FIOPKINS 232

Agent
pe(.)

Step 1: Estimating the Reward R ™ @D

= Obviously, we don’t want to use human feedback directly since that could be & & &
= Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]
= Approach 2: ask for pairwise comparisons [Phelps et al. 2015; Clark et al. 2018]

Bradley-Terry [1952] Pairwise comparison of multiple
paired comparisonmodel | provides which can be more reliable

prompt It is like any typical elevator,

I " bt e
Explain "space elevators” to ’ S US s oae
a 6-year-old.
Y \ s, Explain gravity to a 6-year-
Do old. ... ?

S1,52~Po
=

QY JOHINS TIOPKINS 233

Agent
pa(.)
Tt St

Step 1: Estimating the Reward R @D

J(@) = —IE(S+,S—)[log o(R(s*; prompt) — R(s™; prompt))]
“winning” 7 X “losing”
sample sample

R

It is like any typical elevator,

S1
E o " but it goes to space. ... é
xplain “space elevators” to '
a 6-year-old.
Y \ s, Explain gravity to a 6-year-
Po

prompt old. ... @
51,52~ Pe
59 JoH~Ns H

&) JOHNS HOPKINS 234

Tt

Step 1: Estimating the Reward R

Agent
pe(.)

-

J(@) = —IE(S+,S—)[log o(R(s*; prompt) — R(s™; prompt))]

“winning”’ \“Iosing”

sample sample The reward mode_l returns a
scalar reward which should

numerically represent the
R human preference.

It is like any typical elevator,

S1
E A " but it goes to space. ...
xplain "space elevators” to '
a 6-year-old.
Y \ s, Explain gravity to a 6-year-
Po

prompt old. ...

S1,52~Po

R(s,; prompt) = 1.2

R(s;; prompt) = 0.6

235

Scaling Reward Models

o 80y Large enough reward
© .
= trained on large enough
§ Gef data approaching
- human performance.
0 0.70} - /
e
©
9
S 0.65¢
>
0.60 PPy
108 109 1070
Model size [Stiennon et al., 2020]

By s s 236

https://arxiv.org/abs/2009.01325

Agent

Step 2: Optimizing the T w0

Policy Function _._

= Policy function := The model that makes decisions (here, generates responses)

= How do we change our LM parameters 8 to maximize this?

f = argmax, Es~p,[R(S; prompt)]

Explain "space elevators” to a I

prompt 8~pp

R JOHINS TIOPKINS 237

Step 2: Optimizing the
Policy Function

A

Agent
pe(.)

How do we change our LM parameters 6 to maximize this?

0 = argmaxgy E;.,, [R(S; prompt)]

Let’s try doing gradient ascent!

Orp1 < 0+ aVy Egop, [R(S; prompt)]

[How do we

estimate
this expectation?

= Turns out that we can write this “gradient of expectation” to a simpler form.

[Slide credit: Jesse Mu]

-

Policy function := The model that makes decisions (here, generates responses)

238

Agent
pe(.)

Policy Gradient [wiliiams, 1992]

= How do we change our LM parameters 6 to maximize this?

f = argmax, Es~p,[R(S; prompt)]

Let’s try doing gradient ascent!

Orp1 < 0+ aVy, Egp, [R(S; prompt)]

With a bit of math, this can be approximated as Monte Carlo samples from pg(s):

1 < Proof next slide; check it
VoEs—p, [R(s; prompt)] =~ n z R(s;; prompt) Vg log po(sy) | faterin your own time!
=1

Thisis “policy gradient”, an approach for estimating and optimizing this objective.

= QOversimplified. For full treatment of RL see 701.741 course, or Huggingface’s course

- |
£ JoHNs H . 239
Ll [Slide credit: Jesse Mu]

https://ep.jhu.edu/courses/705741-reinforcement-learning/
https://huggingface.co/deep-rl-course/unit0/introduction

Agent

pe(.)
= =]]] T't St
Derivations (check it later in your own time!) _._
= Let's compute the gradient: [Def. of “expectation”] [Gradient distributes over sum]

VoEspy(s)[R(s;p)] = Vg Z pa(S)R(s;p) = Z R(s;p) .Vgpe(s)

= Log-derivative trick Vgpg(s) = py(s) .V4logpy(s) to turn sum back to expectation:
[Log-derivative trick]

VoEsp,s)[R(s; p)] = z R(s; p) pa(s) Vg logpe(s) = Esep,(s)[R(s;0) Vg logpe(s)]
= Approximate this expeétation with Monte Carlo samples from pg(s):

n
1
VoEsp,(s)lR(s; p)] = EZ R(s;p) Vglogpg(s)
£ i=1

7 JOHNS HIOPKINS 240

Policy Gradient [williams, 1992]

Agent
pe(.)

-

n
1
Opr1 < 0 + agz R(s;p) Vg logpe(s)
=1

If R(s; p) is large, we take proportionately large steps to maximize py (s)
If R(s; p) is small, we take proportionately small steps to maximize py(s)

Thisis why it's called “reinforcement learning”:

we reinforce good actions, increasing the chance they happen again.

= q
] H S
ol

[Slide credit: Jesse Mu]

. . _ Note, R(s; p) could be any arbitrary, non-
This gives us the following update rule: differentiable reward function that we design.

241

Putting it Together

= First collect a dataset of human preferences

o Present multiple outputs to human annotators and ask them to rank the output
based on preferability

Output 1
X

, Human annotators
X
Output 1/
X

specify their preferences

Output 2

Policy

Prompt X * I.M

E-N
oy

242

Putting it Together (2)

= Using this data, we can train a reward model
o The reward model returns a scalar reward which should numerically represent

the human preference.

Prompt X

E-N i
e JOH NS

L

L A,

Policy

LM

Output 1
Output 2

Output 1
Output 2

v
X
v
X

—

243

Putting it Together (3)

= We want to learn a policy (a Language Model) that optimizes against the reward
model

Prompt X *

Reinforcement learning update

&7 JoHNS HOPKINS O < 0 + aVy Egrp, [R(3; p)]

244

Putting it Together (4)

= Periodically train the reward model with more samples and human feedback

Output 1
X

Output 1

XN XL

Perlodlcally train
the reward model

* Output * @* R

Reinforcement learning update

Output 2

Prompt X *

557 JOHNS HOPKINS 9t+1 < Qt +a VQtIE§~p9 [R(§; P)] 245

One missing ingredient

= It turns out that this approach doesn't quite work. (Any guesses why?)
o The policy will learn to “cheat”.

Output 1
X

Output 1

XN XL

Perlodlcally train
the reward model

* Output * @* R

Reinforcement learning update

Output 2

Prompt X *

B3 10HnNS HOPK NS 9t+1 «— Qt + VgtIE§~p9 [R(g, p)]

246

One missing ingredient How do you resolve this? @}

= Will learn to produce an output that would get a high reward but is gibberish or
irrelevant to the prompt.

= Note, since R(s;p) is trained on natural inputs, it may not generalize to unnatural inputs.

Output 1
X

v
X
Output 1/
X

Perlodlcally train
the reward model

* Output * @* R

Reinforcement learning update

Output 2

Prompt X *

':“'i;." JOHNS HOPKINS Ori1 < 0+ VQtIE§~p9 [R(S; P)] 247

Regularizing with Pre-trained Model

= Solution: add a penalty term that penalizes too much deviations from the
distribution of the pre-trained LM.

pRL (S) Policy model J
pay a price when ﬁ(s; p) = R(S; p) — ,Blog(—
pRL (8)< pPT(S) p (S) Pre-trained J
model

= Prevents the policy model from diverging too far from the pretrained model.
= This regularization is equivalent to adding a KL-divergence regularization term.

248

RLHF: Putting it All Together isicuanera. 2020;

1. Select a pre-trained generative model as your base: p;” (s)

2. Build a reward model R(s; p) that produces scalar rewards for outputs, trained on a
dataset of human comparisons
PRL(S)>

3. Regularize the reward function: R(s:p) := R(s:p) — Blo
. ()p) ()p) ﬁ g pPT(S)
4. Iterate:

1. Fine-tune the policy p;"(s) to maximize our reward model R(s; p)

n
1 N
Oppq < 6, + aT—lZ R(s;p) Vglogpyt(s)
i=1

2. Occasionally repeat repeat 2-3 to update the reward model.

SV I I 249

Al

GPT3 vs. InstructGPT3 (RLHF-ed)

PROMPT

COMPLETION

Explain the moon landing to a 6 year old in a few sentences.

GPT-3
Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and
sent them back to the earth so we could all see them.

250

GPT3 vs. InstructGPT3 (RLHF-ed)

L

PROMPT

COMPLETION

Write a short poem about a wise frog.

GPT-3
Write a short story in which a character has two different names.

Write a short story in which you try to get something back that you
have lost.

Write a short story in which a character has a bad dream.

InstructGPT

The frog is a symbol of wisdom

He knows all the secrets of the world
He is a master of disguise

And a great teacher of life

He is a symbol of transformation

And the bringer of change

He is the frog who has seen it all
And knows the meaning of it all

251

The overall recipe

Align Align

Pre-train

(instruct-tune) (RLHF)

557 JOHNS HOPKINS
=7] ||I\'\.:|I. PRI 252

The overall recipe %A:
Yann’'s Three-layered cake

Align
(instruct-tune)

Pre-train

=

Failures and Challenges

|

RL Failure: Reward Hacking

= “Reward hacking” is acommon problemin RL

= Goodhart’s law— when a measure becomes a target, it ceases to be a good measure.
(i.e., the proxy ceases to track the actual thing that you care about)

Humanoid: Baseball Pitch - Throw

Throwing a ball to a target.

[https://openai.com/blog/faulty-reward-functions/]

L' G [Concrete Problems in Al Safety, 2016] 255

https://arxiv.org/pdf/1606.06565.pdf

Reward Over-optimization

= Regularizing reward model is a delicate dance balancing: Reward model over-optimization
o Distance to the prior
o Following human preferences . 14
B o8}
J(g) = Eger, [R($; p)] — BDky (6| |7ref) 2
= 0.6}
- The reward might be over-optimized; the reward might ©
be increasing but the actual preferences may degrade. 20.4—
« Why does over-optimization happen? %
o The proxy reward is estimated and there are parts @ 02
of input space that are poorly estimated. i o | . ‘
0 2 5 10 25 T4s 250
KL from supervised baseline
-;‘.il_' I I 256

https://arxiv.org/pdf/2210.10760.pdf

=

Direct Policy Optimization

|

Simplifying RLHF:

Direct Preference Optimization: Your Language Model
is Secretly a Reward Model (Rafailov et al., 2023)

Direct Policy Optimization (DPO)

= DPO directly optimizes for human preferences

o avoiding RL and fitting a separate reward model

= One can use mathematical derivations to simplify the RLHF objective to an equivalent

objective that is simpler to optimize.

RLHF objective

Reinforcement Learning from Human Feedback (RLHF)

x: “write me a poem about

the history of jazz" label. rewards
7~ N\
: :yw > Eyl —> reward model LM policy
S A
preference data maximum sample completions
likelihood

reinforcement learning

DPO objective

Direct Preference Optimization (DPO)

x: “write me a poem about
the history of jazz"

—] o | = > final LM
preference data -
likelihood

Direct Preference Optimization (DPO)

x: “write me a poem about
the history of jazz"

DPO Al Ol‘ithm =l [=] — ei%iim
g =)=

preference data

maximum
n A|gor|thm likelihood
1. Create a preference data
2. Optimize the language model to minimize the DPO objective.

o (Yw | T) _ Blog mo(yi |))]

L To; Tref) = —E(y ~p |logo lo
DPO(0 f) (Z,Yw,y1)~D [& (ﬂ 5 Wref(yw | ZB) 7Tref<yl | £L‘)

259

Direct Preference Optimization (DPO)

x: “write me a poem about
the history of jazz"

DPO Limitations e —

=li— — final LM

—

—

preference data SR

= You're trying to optimize multiple things likelihood
which can potentially override each other.

o (Yw | T) _ Blog mo(yi |))]

L T3 Tref) = —E(g ~p |logo lo
DPO(0 f) (Z,Yw,y1)~D [& (ﬂ 5 Wref(yw | ZB) 7Tref<yl | £L‘)

= In practice, when using DPO practitioners constantly monitor these terms.

SV H 260

I_ Alignment with
Model-Generated (Synthetic) Data

261

RLHF /Instruction-tuning is Data Hungry

= Idea: Use LMs to generate data for aligning them with intents.

o Self-Instruct [\Wang et al. 2022]
« Uses vanilla (not aligned) LMs to generate data ‘ .

« That can then be used for instructing itself.
LM —> Model output

= More related work:
o Unnatural Instructions [Honovich et al. 2022] — Similar to “Self-Instruct”
o Self-Chat [Xu etal. 2023] — “Self-Instruct” extended to dialogue
o RLfrom Alfeedback [Bai et al., 2022],

o Finetuning LMs on their own outputs [Huang et al., 2022; Zelikman et al., 2022]

2 Jorns H 262

https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.09689
https://arxiv.org/pdf/2304.01196.pdf
https://arxiv.org/abs/2204.05862
https://openreview.net/forum?id=NiEtU7blzN
https://arxiv.org/abs/2203.14465

263

Get humans to write "seed” tasks &%

I am planning a 7-day trip to Seattle. Can you make a detailed plan for me?

« Is there anything I can eat for breakfast that doesn’t include eggs, yet
includes protein and has roughly 700-100 calories?

* Given a set of numbers find all possible subsets that sum to a given number.

* Give me a phrase that I can use to express I am very happy.

175 seed
tasks

I

@ , 263

o000

1
I

264

Put them your task bank (@)

I am planning a 7-day trip to Seattle. Can you make a detailed plan for me?

Is there anything I can eat for breakfast that doesn’t include eggs, yet
includes protein and has roughly 700-100 calories?

Given a set of numbers find all possible subsets that sum to a given number.

Give me a phrase that I can use to express I am very happy.

175 seed

task pool

tasks

264

265

Sample and get LLM to expand it

« I am planning a 7-day trip to Seattle. Can you make a detailed plan for me?

« Is there anything I can eat for breakfast that doesn’t include eggs, yet
includes protein and has roughly 700-100 calories?

* Given a set of numbers find all possible subsets that sum to a given number.

Give me a phrase that I can use to express I am very happy.

Pre-trained, but not aligned yet

Create a list of 10 African countries and their capital city?
* Looking for a job, but it’s difficult for me to find one. Can you help me?
* Write a Python program that tells if a given string contains anagrams.

175 seed tasks
task pool

-2

ﬂ

O —
[«
ﬂ--

LM suggests
new tasks 265

266

Get LLM to answers the new tasks

« Task: Convert the following temperature from Celsius to Fahrenheit.
e Input: 4 °C
 Qutput: 39.2 °F

* Task: Write a Python program that tells if a given string contains anagrams.

LM Pre-trained, but not aligned yet

* Input: -
* Qutput:
def isAnagram(strl, str2):

175 seed tasks

task pool

LM suggests LM suggests D
new tasks answers 266

267

Filter tasks

= Drop tasks if LM assigns low probability to them.

= Drop tasks if they have a high overlap with one of the existing tasks in the task pool.
o Otherwise, common tasks become more common — tyranny of majority.

175 seed tasks
task pool

o=
o — .
m u

—
-

LM suggests

=}
answers ‘?,
>
LM suggests LM suggests _
new tasks answers filter out if _ 267
not novel or confident 26

268

Close the loop

= Add the filtered tasks to the task pool.
= Jterate this process (generate, filter, add) until yield is near zero.

175 seed tasks

LM suggests

g- answers u;—"}'a

= — > 1.8 |

o- LM suggests LM suggests _
----- S FIOPKINS new tasks answers filter out if

not novel or confident 268

269

Self-Instructing GPT3 (base version)

= Generate:
o GPT3 (“davinci” engine).
o We generated 52K instructions and 82K instances.
o API cost ~$600
= Align:
o We finetuned GPT3 with this data via OpenAl API (2 epochs). **
o API cost: ~$338 for finetuning

175 seed tasks

Ell—

task I
LM suggests

{s)
answers m_‘;',
LM suggests LM suggests ““"—
new tasks answers filter out if ’
not novel or confident 269

ﬂ'ﬁﬂ-ﬂ

a1
Al

Evaluation on User-Oriented Instructions

“ A correct and satisfying response = B: acceptable response with minor imperfections
C: responds to the instruction but has significant errors m D: irrelevant or invalid response

|
64

100%

75%

50%

25%

0%
%
+ &t Aot
o S

v ks [Self-Instruct: Aligning Language Model with Self-Generated Instructions, Wang et al. 2023] 270

Evaluation on User-Oriented Instructions

“ A correct and satisfying response = B: acceptable response with minor imperfections

C: responds to the instruction but has significant errors m D: irrelevant or invalid response

1 LM pretraining

100% |
64 | l

| vanilla GPT3 (davinci)

75%
| ‘L + instruct-tuning
| GPT3-instruct (davinci-001)

50%
|
|

25% |
| Noisy, but diverse “self-instruct” data ~

0%) thousands of clean human-written data
+ 6?1 E#,w'} @-Q'itﬁ‘
q@'s‘% Gi’f" “\.5.3\19
W e 271

[Self-Instruct: Aligning Language Model with Self-Generated Instructions, Wang et al. 2023]

Summary Thus Far

&, Evidence suggest that we probably can reduce the reliance on human

annotations in the “alignment” stage

® Data diversity seems to be necessary for building successful generalist models.

&, Self-Instruct: Rely on creativity induced by an LLM’s themselves.
® Applicable to a broad range of LLMs.

® Several open-source models utilize “Self-Instruct” data.

(* See dalso concurrent work: Unnatural-Instructions [Honovich et al. 2022] and Self-Chat [Xu et al. 2023])

272

Impact: Learning from AI Feedback

= Open-source models adopted Self-Instruct data generation.
o Alphaca, Zephyr, etc. [Taori et al. 2023; Tunstall et al. 2023]

= LLMs used directly as a reward during alignment, skipping the data generation.
[Lee et al. 2023; many others]

‘ l RLAIF: Scaling Reinforcement Learning from Human Feedback

LM Model output with AI Feedback

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, Sushant Prakash
Google Research
{harrisonlee, samratph, hassan}@google.com

SV I I 273

Training LLMs with LLM Feedback:
The Bottleneck

—

LM —— Model output

Model feedback is a powerful idea, but ...

It has many limitations ...
o It amplifies existing biases.
o It is still confined to the [implicit] boundaries defined by the its prompts.

o LLMs work best in high-data regime. They fail when data is thin.
[Mallen et al. 2022; Razeghi et al. 2022; many others]

Training with self-feedback is unlikely to be the way to
the moon!

accuracy

log-popularity

50

U JOHNS FIOPKINS 274

Brief on “Scaling”

Model Size vs. Accuracy

Normalized Preferred Metric (Avg.)

80

60

40

20

0

Photo credit:PaLM, Chowdheryet.al, 2022

Performance on 58 Tasks 1000

—e— Gopher 5-shot e
——&— Chinchilla 5-shot
GPT-3 0-shot
-#-- GPT-3 1-shot
PaLM 0-shot
—<4— PalM 1-shot = oA~
—<— PalLM 5-shot

=
(=)
o

Megatron-LM (8.3B)

=
o

T5 (11B)

[

GPT-2 (1.5B)

Model Size (in billions of parameters)

BERT-Large (340M)

o
-

T
e @
o — =T ELMo (94M)

108 10° 1010 1011 0.01

Model Parameters (Non-Embedding) S S 2020 2021

Megatron-Turing NLG (530B)

Turing-NLG (17.2B)

2022

Larger LMs = better zeroffew-shot performance

276

“More is Different”

The idea that complex physical systems can behave in
ways that can't be understood by the laws that govern
their microscopic parts.

Anderson also gives an example of "More is Different”
at the molecular level.

o He describes a peculiar broken symmetry that
appears in larger-scale molecules, which seems to
go against a law defined at the smaller scale.

o This broken symmetry is a new effect that
appears when the scale changes.

= Anderson argues that new properties appear at each

level of complexity.

o For example, although chemistry is subject to the
laws of physics, we can't infer chemistry from our
knowledge of physics.

&2 joHns H

L

The reductionist hypoths of

be a topic for controversy among phi- known “"l I“h ‘;‘“|
losophers, but among the great majority
of active scientists I think it is accepted a0 physics, pls

4 August 1972, Volume 177, Number 4047

More Is Different

Broken symmetry and the nature of

the hierarchical structure of science.

P. W. Anderson

is may still

SCIENCE

less relevance they seem to have to the
very real problems of the rest of sci-
ence, much less to those of society.

The constructionist hypothesis breaks
down when confronted with the twin
difficulties of scale and complexity. The
behavior of large and complex aggre-
gates of elementary particles, it turns
out, is not to be understood in terms
of a simple extrapolation of the prop-
erties of a few particles. Instead, at
each level of complexity entirely new
properties appear, and the understand-
ing of the new behaviors requires re-
search which I think is as fundamental
in its nature as any other. That is, it
seems to me that one may array the
sciences roughly linearly in a hierarchy,

= according to the idea: The elementary
" entities of science X obey the laws of

277

Scaling Laws

= Hypothesis: there are fundamental principles that govern effective scaling

= Importance: understanding these “laws” would allow us to find optimal
models for a given data/compute budget.

= Think of Newton’s laws

o Provide the basis for understanding and analyzing the motion of objects
in the physical world

o Can be used to calculate the trajectory of a rocket, the speed of a car,
or the motion of a planet.

278

Constraints of Real World

= Even massive companies have their owr

= Examples of constraints:

constraints.

=
o
o

o The total amount of data
o The total computing budget.
o Time
O

-
o

Model Size (in billions of parameters)

o
-

= Given a set of constraints, how do

L

you choose which LM to train?
o Note, trial and error is wasteful.

GPT-3 (175B)

Megatron-Turing NLG (530B)

Megatron-LM (8.3B) Turing-NLG (17.2B)
uring-| s
5(11B)

GPT-2 (1.58B)

BERT-Large (340M)

ELMo (94M)

2018 2019 2020 2021 2022

279

Quantifying Computation Cost of Models

= How do you compute computational cost of a single-layer NN with one matrix
multiplication?

280

FLOPS

E-N
=

L

Floating point operations per second (FLOPS, flops or flop/s)

o Each FLOP can represent an addition, subtraction, multiplication, or division of
floating-point numbers,

We want to compute the total FLOP of a model (e.g., Transformer)

o Provides a basic approximation of computational costs associated with that
model.

Our models are just a bunch of matrix multiplications.
Let’s estimate the FLOPS of matrix operations... &

281

FLOPS: Matrix Multiplication

Inference FLOPs for multiplying by a matrix W
~ 2 X (batch size) x (size of W)

Training FLOPs for multiplying by a matrix W
~ 6 X (batch size) x (size of W)

(Why? Think about FLOPS for forward and backward separately ...)

282

=

Computing the computational cost of Transformer

|

283

Transformer FLOPs: The Quick Estimate

= The Weight FLOPs Assumption

o The FLOPs that matter the most are weight FLOPs, that is ones performed when
intermediate states are multiplied by weight matrices.

o The weight FLOPs are the majority of Transformer FLOPs
o We can ignore FLOPs for

 Bias vector addition

* layer normalization

* residual connections

* non-linearities

» Softmax

oy
ol

The FLOPs Calculus of Language Model Training, Dzmitry Bahdanau (2022)

284

Transformer FLOPs: The Quick Estimate

= Let N be number of parameters (the sum of size of all matrices)
= Let D be the number of tokens in pre-training dataset.
= The total cost of pre-training on this dataset is:

C~6ND

o We are ignoring the non-matrix operators (normalization, non-
linearities, etc.)

285

Transformer FLOPs

= Given the pre-training data with 400B tokens.

Nlayer | @model | Parameters (IN) | Training FLOPs
4 512 13M 3.0e19 o
p 268 M 10020 Training cost (FLOPs):
10 | 1280 197M 4.7e20
16 | 2048 810M 1.9e21 C ~ 6ND
24 | 3072 2.7B 6.5¢21 = 6 X (400 X% 109)
40 | 5120 13B 3.0e22 x (52 x 10%)
2
64 | 8192 52B 1.2¢23 = 1.24 x 10%3

Table from: A General Language Assistant
as a Laboratory for Alignment, 2021

286

Estimating training time

* This is a very practical question in real world.
* We will use our formula earlier to estimate training time.

* Consider HyperCLOVA, an 82B parameter model that was pre-trained on
150B tokens, using a cluster of 1024 A100 GPUs.

_ Intenswe Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021
T JoHNs Hovk https://arxiv.org/pdf/2109.04650.pdf

287

https://arxiv.org/pdf/2109.04650.pdf

Estimating training time

» Consider HyperCLOVA, an 82B parameter model that 7488
was pre-trained on 150B tokens, using a cluster of 1024 A100 GPUs.

* Training cost (FLOPs):

C ND

6
6 x (150 x 10%) x (82 x 10°%) = 7.3 x 102
G

X
» The peak throughput of A100 GPUs if 312 teraFLOPS or 3.12
x 1014,

* How long Wou'ﬁlmhmcost . 7.3 x1022

Duration = =
cluster throughput 3.12 X1014x 1024

I«

= 2.7 days

_ Intenswe Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021
o Jou https://arxiv.org/pdf/2109.04650.pdf 288

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://arxiv.org/pdf/2109.04650.pdf

Estimating training time

 How long would this take?

model compute cost __ 7.3 X1022
cluster throughput 3.12 x1014x 1024

Duration = = 2.7 days

 According to the white paper, training took 13.4 days. Our estimate is
5 times off (why?), but we did get the order of magnitude right! (i)

_ Intenswe Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021
o o https://arxiv.org/pdf/2109.04650.pdf 289

https://arxiv.org/pdf/2109.04650.pdf

Factors We Did Not Consider

* Note that these estimates can be slightly off in practice

* Theoretical peak throughput is not achievable with distributed training.
(unless your model only does large matrix multiplications).

* We ignored many additional operations like softmax, ReLU/GeLU activations,
self-attention, Layer Norm etc.

* Training divergence and restarting from earlier checkpoints are not uncommon.

= There are various factors that contribute to computation latency
o Communication latency, memory bandwidth, caching, etc.
o See https://kipp.ly/transformer-inference-arithmetic/ for an excellent discussion.

&) , 290

https://kipp.ly/transformer-inference-arithmetic/

Summary

= One can measure the computational cost of training neural networks in terms of
FLOPS.

= Such estimates allow you to estimate the training time of your model, given your
GPU specs.

= What else can we do?

291

I . .
Optimal Scaling

|

Optimal Scaling

oy
ol

A real problem: Your boss gives you a compute budget $$$. What is the best
model you can build with this budget?

We know from the literature that larger models generally lead to better models.
o Does that mean that you should aim to build the largest model possible?

Intuitively, if you choose a model that is too large for your budget, you need to cut
your training cycles that may reduce its quality.

This chapter: principled approach to selecting optimal data/model scaling.

293

Scaling

Experimental Setup:
= Pre-train various models of different sizes

= Plot their validation loss throughout training

[e |

&3 JOHNS HOPKINS
1[’

Validation Loss

3
Optimal
model RN
5 size for Y
compute b
1.5 ———-
10° 10" T 107 10 10°

Compute (PetaFLOP/s-days)

Photo credit: GPT3, Brownet. al., 2020

10

1"

10

10

10
10
10
10
-10°

-10°

294

Parameters

Large model

Scahng Small model reaches lower loss
I plateaus early
. | 1"

* Smaller models don’t have enough capacity 10
to utilize the extra compute. They plateau 10
early.

8 10°
. . = 3
= Larger models are initially slower to train, 2 10° §
. ke &
but with more compute they reachlower s 7 o«
losses. 10
10°
15 10°
0° 10° 10° 10 10° 10"

Compute (PetaFLOP/s-days)

Photo credit: GPT3, Brownet. al., 2020

Er’] Jou II\\HLI.':-\.,\x -

Scaling - Optimal Model Size

= Let's say our compute budget is € = 1072 PetaFLOPs-

*= The idea of “optimal model size for given compute”

= If we have the equations (“laws”) describing the

days.

o The
exactly C.

o If we train a larger model than optimality point,

we won't reach the best performance.

o If we train a smaller model the performance

wouldn’t be optimal

was introduced by Kaplan et. al.

behavior, we can compute it analytically.

= {
T

L

is the one that plateaus at

Validation Loss

| Optimalmodel |

10

10

1"

10

10°
10"
, \
10°
5
15 . : 10
10° 10" 107 10° 10° 10"

Compute (PetaFLOP/s-days)

Photo credit: GPT3, Brown et. al., 2020

296

Parameters

N: number of model parameters

Scaling Laws: Kaplanetal. {0,

= Optimal model size and optimal number of tokens, for a given compute budget

Kaplan et. al. 2020 Nopt &« C%73 Dype & €027

op

Nopt exponent >> Dqt exponent

= Takeaway: grow the model size faster than growing the number of tokens.
o Example: Given 10x compute, increase N by [mask; and D bymaskic

- [ACL 2022 Tutorial Bel han, Logan |V, Min and Singh]

297

https://github.com/allenai/acl2022-zerofewshot-tutorial/

However ...

= In 2022 a Hoffmann et al. from DeepMind showed a different set of scaling laws.

oy
. |

298

N: number of model parameters

Scaling Laws: Hoffmann et al. ¢ o

D: dataset size

= Optimal model size and optimal number of tokens, for a given compute budget

Kaplan et. al. 2020 Nopt &« C%73 Dype & €027

op

Hoffmann et. al., 2021 Nopt & €02 Dopt & €%

Nopt exponent = Dy, exponent
= Compute and tokens should increase at the same rate.
o Example 1: Given 10x compute, grow N by 3.2x and D by 3.2x
o Example 2: Given 100x compute, grow N byMAKland D by [MASK]

r . q
- [ACL 2022 Tutorial Bel han, Logan |V, Min and Singh] 299

https://github.com/allenai/acl2022-zerofewshot-tutorial/

Recap

= We used to train “oversized” and “under-trained” models.

= You should scale your model at the same rate as your data.

= For example, if you get a 100x increase in compute,
o you should make your model 10x bigger and your data 10x bigger.

v ' 300

A Word of Caution

= While we kept referring to these as “law”, one should take them with grain of salt.

= There are various confounding factors here:
o Different optimizer: AdamW vs. Adam vs. others
o Different tokenizers
o Different numerical representation (e.g., bfloat16 vs float32)
O

v ' 301

Is Scale All You Need?

Is Scale All We Need?

= For what purpose?

o For building useful applications Solving these scaling challenges is what will deliver
(answering simple questions, AGI. Research focused on these problems, eg S4 for
translating simple sentences) we greater memory, is needed. Philosophy about symbols

already have good models. Not our isn’t. Symbols are tools in the world and big nets have
focus no issue creating them and manipulating them 2/n

4:50 AM - May 14, 2022 - Twitter for iPhone

o General intelligence: think of an 93 Retwsets 5 Quote Twests 153 Likes
assistant that is always with you,
knows what you want, assists you

with anything you need. _
Do you agree with Nando?

) | 303

Argument: Not Enough Compute

Limitations regarding compute:

= There is simply not enough compute available.
o Models have been increasing 10x every year
o Moore’s law: # of transistors on an IC doubles about every two years.
o There are physical limits to how much faster computers can get.

= Even if we have the compute, scaling the compute will be quite costly.

= Scaling compute is simply infeasible. [QED]
Are you convinced?

v : 304

Rebutting "Not Enough Compute”

= On insufficiency of compute resource:
o Hardware technologies continue to progress at a rapid pace.

o Huang’s law: advancements in GPUs happen at much faster rate than what
Moore predicted.

o S0 much potentials in parallel computing.

= On cost-[in]efficiency of scaling:
o While models like GPT3 cost a lot (monetary or otherwise), their availability
prevent training MANY smaller, mediocre models.

o Therefore, it might be that the net cost of scaling large models is negative.
It is the case within Microsoft according to its CTO, Kevin Scott.

305

Argument: Not Enough Data

oy
ol

Hoffmann et al showed that, to be compute-optimal, model size and training data
must be scaled equally.

It shows that existing LLMs are severely data-starved and under-trained.

Given the new scaling law, even if you pump a billions of params into a model, the
gains will not compensate for more training tokens.

There is simply not enough [language] data. [QED]

Are you convinced?

[Training Compute-Optimal Large Language Models. Hoffmann+ NeurlPS, 2022] 306

Rebutting "Not Enough Data”

= Data is growing exponentially (?)]
I How Many Websites Are There?

Number of websites online from 1991 to 2021

6M —
) World Wide Web Project
M 2.0b Notable website launches 1.88b
7 1.5b
M7 3 YouTube r@
1.0b ! |
YAHOO! Google facebook ‘
2M+ ; f ‘ ‘
0.5b |
] |
\
0.0b . B i
O N N o N 7 T N < S Y 1991* 2000
& & & & F s &S & 2021
* As of August 1, 1991.
i . ** |atest available data for 2019: October 28, for 2020: June 2, for 2021: August 6.
Wiki pedla Size Source: Internet Live Stats

307

Rebutting "Not Enough Data” (2)

= You can harness data from other modalities.

Al

o For example, to get more text data we can build a solid speech processor model
that converts speech to text.

o (aside: more than 80% if internet traffic is video)

SKYQUEST

Global Online Video Platforms Market Drives over 80% of Total Internet Traffic |
Skyquest Technology

o (aside2: is that why OpenAl built Whisper?!)

["Robust speech recognition via large-scale weak supervision." Radford+ 2022]

308

Argument: Scale is Not all You Need Because
of Tail Phenomena

= Tail phenomena will never go away!

Head tasks:
« Translating simple sentences
» Generate rhyming sentence

* Indicating spans of location

Aurendod

309

L

Argument: Scale is Not all You Need Because
of Tail Phenomena

= Tail phenomena will never go away!

Aureindod

Tail tasks:
« Translation while while retaining rhyme scheme.
« Extract all ACL conference chairs since 1990.

» Do literature review summarizing human studies on corona
Virusgs.

Pl = - ——

) tasks

310

Argument: Scale is Not all You Need
Because of Tail Phenomena

0.6 | BLOOM Model
=@ 176B
7.1B
0.5 3B
1.7B
1.1B
== 560M

. o= /

100 10! 102 103 10* 10° 10°
Number of Relevant Pre-training Documents

QA Accuracy
o o o
N w ~

o
=

0.0

Figure 1: Language models struggle to capture the
long-tail of information on the web. Above, we plot
accuracy for the BLOOM model family on TriviaQA
as a function of how many documents in the model’s
pre-training data are relevant to each question.

E};.‘- JOHNS HOPKINS Impact of Pretraining Term Frequencies on Few-Shot Reasoning, Razeghi+ 2022 311
Large Lanquage Models Strugale to Learn Lona-Tail Knowledge, Kandpal+ 2022

Argument: Scale is Not all You Need Because
of Tail Phenomena

= Hence, scale won't solve the tail phenomena. [QED]

Let’'s do a poll!

Head tasks:
« Translating simple sentences
» Generate rhyming sentence

* Indicating spans of location

Auendod

312

Argument: Scale is Not all You Need
Because of Tail Phenomena

= How do you rebut this??

313

Long Context:

Efficiency and Generalization

Transformer LMs and Long Inputs

- - M Attention ti
= Length generalization: Do Transformers s — - e
work accurately on long inputs? 125009 100 {
o We will read papers on this topic. o 5 %
S 75001 S 60
5000 A E 40
2500 A 20 1
0 . . 0 ; ;
5000 10000 15000 5000 10000 15000
seq len seq len
= Efficiency considerations: How efficient i o ——eare pass
are LMs are long inputs? 1501 .
{i; 100 % 300
i\é § 200
50 A
100 +
0 : s 0 : y
5000 10000 15000 5000 10000 15000
= B H seq len seq len

L 315

=

Efficiency via sparsity

|

SEarse Attention Patterns

» The ideaisto makethe attentionoperationsparse
Keys -

=)

« Saland
« Saland

@J'UHN\II:W]M

1 317

https://github.com/allenai/naacl2021-longdoc-tutorial/

Sparse Attention Patterns: Challenge

Ok sparsity is great, but how to efficiently implement this?

Challenge: Arbitrary sparse matrix multiplication is not supported in DL
libraries

A solution: Perform computations in blocks

There are libraries for implementing
blockified sparse matrix multiplication.

o Can be hardware specific il
o Block Sparse (Gray et al., 2017) ' -
o TVM toolkit (Chen et al., 2018)
o CUSPARSE

-

318

https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://www.usenix.org/conference/osdi18/presentation/chen
https://github.com/allenai/naacl2021-longdoc-tutorial/

Pre-specified Sparsity Patterns

= Avarietyof patternshasbeenexploredinthe past work
o Longformer (Beltagy et al., 2020), Sparse Transformer (Child et al., 2019), ...

Slidingwindow Dilated Global Blocked Random
- B i
Sparse Transformer Longformer BigBird BigBird BigBird
Longformer Sinkhom

B3 ToH~s HoOPETNS

- [NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters] 319

https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/1904.10509.pdf
https://github.com/allenai/naacl2021-longdoc-tutorial/

Pre-specified Sparsity Patterns

= Different layers and attention heads can follow
different patterns

= A common setup is to have earlier layers with sparser
attention pattern.
o Longformer (Beltagy et al., 2020)

=2 J5 H 3
O T 320

https://arxiv.org/pdf/2004.05150.pdf

A Notable Adoption: GPT-3

= Sparse patterns also used in GPT-3 (Brown et al., 2020)

2.1 Model and Architectures

We use the same model and architecture as GPT-2 [RWC " 19], including the modified initialization, pre-normalization,
and reversible tokenization described therein, with the exception that we use alternating dense and locally banded sparse
attention patterns in the layers of the transformer, similar to the Sparse Transformer [CGRS19]. To study the dependence
of ML performance on model size, we train 8 different sizes of model, ranging over three orders of magnitude from 125
million parameters to 175 billion parameters, with the last being the model we call GPT-3. Previous work [KMH20]

: ¥
ol

321

https://arxiv.org/pdf/2005.14165.pdf

Summary

= How well do Transformers work on long sequences? Not so well.
= How can we make them more efficient? Induce sparsity.

= We will see papers on other aspects of efficiency:
o Quantization
o Effective use of compute (GPUs)
o Architectural variations
O ...

322

Retrieval-augmented LMs

Retrieval-based Language Models

Itis a language model P(x, | X1, X2, ***, Xp-1) Toronto 052
Ottawa e— (.31
Vancouver s 0.13
Montreal = 0.03

Calgary 1 0.01

The capital city of Ontariois ____

(can be broadly extended to masked language
models or encoder-decoder models)

® ltretrieves from an external datastore (at least during inference time)

Input
Datastore ¥

R S T
\b\\\\)"‘(\\\(‘:&\k wsa::\\?\

(Also referred to semiparametric
and non-parametric models)

557 JOHNS HOPKINS
9 - 324
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]

Why retrieval?

= LLMs can’t memorize all (long-tail) knowledge in their parameters

E-N
=

L

ChatGPT

List 5 important papers authored by Geoffrey Hinton

Geoffrey Hinton is a renowned computer scientist ...
Here are five important papers authored by him:

1. "Learning Internal Representations by Error
Propagation” (with D. E. Rumelhart and R. J.
Williams) - This paper, published in 1986, .. {

2."Deep Boltzmann Machines" (with R.
Salakhutdinov) - Published in 2009, .. /

4."Deep Learning" (with Y. Bengio and A. Courville) -

Published as a book in 20186,... x

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]

325

Why retrieval?

= LLMs can’t memorize all (long-tail) knowledge in their parameters
= LLMs’ knowledge is easily outdated and hard to update

. Who is the CEO of Twitter?
o

Go gle Who is the CEO of Twitter?
. Q Al E News [Z] Images) Shopping [¢] Videos i More
As of my knowledge cutoff in
Sep te m b er 202 1, th e C EO Of About 1,090,000,000 results (0.45 seconds)
“* Twitter is Jack Dorsey.... i b

Linda Yaccarino

Jun 5, 2023~

» The datastore can be easily updated and
expanded - even without retraining!

= T
& JOHNS |
v [Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]

Tools

326

Anatomy of a Neural Retriever

We have a “datastore” that
contains a variety

)) of documents
Given an input, we want to

find the relevant docs / value \
from the datastore
/ value

\
v
I

input

&7 JoHns H - WIKIPEDIA
- The Free Encyclopedia 327

Anatomy of a Neural Retriever

1. Score the input against each key.
2. Return the value for the highest scoring key.

key / value \
/
03 —1 key / value \
input
; 68 | key / value \
key / value \

A similarity function: sim(input, key) — score

gy JoH [Slides: Kelvin Guu] 328

Similarity via Sentence Embeddings

sim(I,M)= Encoder(I) x Encoder(M)

|nputvector

[nwen1vector

BERT

IR

IR

input

[q
] H S
ol

memory

[Slides: Kelvin Guu]

= Advantages:

o Differentiable -- can optimize
with gradient descent.

= Disadvantages:

o Works well for data on which
your LM is pre-trained on.

329

=

Thus far: Data store documents can be
represented as word embeddings.
Now how do we find the most relevant ones?

|

330

Finding Nearest Neighbors

Result

(0.23] (0.20]
3.15 - 2 3.25

argmin ||q — x,||
0.65 w ne{1,2,...N} iz 0.72
-1'43- Often, argmax + inner product is also considered. -1-68-
q =]:RD xX. € RD Don’t care in this talk. x74
n

»N D-dim database vectors: {x, }h_,

»Given a query ¢, find the closest vector from the database

»One of the fundamental problems in computer science
»Solution: linear scan, O(ND), slow ®

[Slides: Yusuke Matsui] 331

Approximate Finding Nearest Neighbors

Result

0.23] - [0.20]

3.15 : _ 2 3.25
argmin || Xy, ||

0.65 w ez 2 0.72

11.43. 11.68.

g € RP x, € RP X74

» Faster search
»Don’t necessarily have to be exact neighbors
» Trade off: runtime, accuracy, and memory-consumption

[Slides: Yusuke Matsui] 332

Approximate NNs: Algorithms, Libraries, Services

Algorithm Library
» Scientific paper

» Math

» Often, by researchers

Service (e.g., vector DB)
» Library + (handling metadata,

serving, scaling, 10, CRUD, etc)
» Usually, by companies

» Implementations of algorithms
» Usually, a search function only
» By researchers, developers, etc

Product Quantization +

Inverted Index (PQ, IVFPQ) _ [Pinecone]
[Jégou+, TPAMI 2011] faiss
[Qdrant]
Hierarchical Navigable

[Milvus]
Small World (HNSW) NMSLIB [jina]
[Malkov+, TPAMI 2019]
. Vald Vertex Al
hnswlib))
ScaNN (4-bit PQ) Matching Engine
[Guo+, ICML 2020]
[ScaNN] [Weaviate]

[Slides: Yusuke Matsui]

Product Quantization +
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]

One library may implement
multiple algorithms

(1 “l benchmarked faiss”
1 “l benchmarked PQ in faiss”

=

Let’s assume that we have our
retrieval engine and data ready _|

335

Retrieval-Augmented LM

= x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.

X — FIFA World Cup 2026 will expand to 48 teams.

¢ World Cup 2022 was ... the increase to [MASK] in 2026.

:
|

k chunks of text FIFA World Cup 2026 i
(passages) will expand to 48 teams. | | | 48

-

Retrieve stage Read stage

Ay JOHMNS HOPKINS
& | - | | 336
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]

Summary

e How do we enable LMs to utilize external knowledge?
e Retrieval-augmented language models

e A retriever is a function, f(input, memory) — score

e What we did not discuss:
e Attribution: Tracing decisions to the source knowledge
How to modify the knowledge
Conflicting knowledge
Editing knowledge
More efficient scaling

337

	Slide 1: Reviewing the Foundations
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Probability of Upcoming Word
	Slide 11: LMs as a Marginal Distribution
	Slide 12: LMs as Implicit Joint Distribution over Language
	Slide 13: Doing Things with Language Model
	Slide 14: Doing Things with Language Model
	Slide 15: Doing Things with Language Model (2)
	Slide 16: Doing Things with Language Model (3)
	Slide 17: Why Care About Language Modeling?
	Slide 18: You use Language Models every day!
	Slide 19: You use Language Models every day!
	Slide 20: Summary
	Slide 21
	Slide 22: LMs as a Marginal Distribution
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Language Models: A History
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Understanding Sparsity: A Thought Experiment
	Slide 32: N-gram Language Models
	Slide 33: Generation from N-Gram Models
	Slide 34: Generation from N-Gram Models
	Slide 35: Generation from N-Gram Models
	Slide 36: Generation from N-Gram Models
	Slide 37: Generation from N-Gram Models
	Slide 38: N-Gram Models in Practice
	Slide 39: Pre-Computed N-Grams
	Slide 40: Pre-Computed N-Grams
	Slide 41: Pre-Computed N-Grams
	Slide 42: Pre-Computed N-Grams
	Slide 43: Limits of N-Grams LMs: Long-range Dependencies
	Slide 44: N-Gram Language Models, A Historical Highlight
	Slide 45: Summary
	Slide 46
	Slide 47: Evaluating Language Models
	Slide 48: Evaluating Language Models
	Slide 49: Evaluating Language Models: Example
	Slide 50: Be Careful About Data Leakage!
	Slide 51: Evaluating Language Models: Intrinsic vs Extrinsic
	Slide 52: Evaluation Metric for Language Modeling: Perplexity
	Slide 53: Evaluation Metric for Language Modeling: Perplexity
	Slide 54: Evaluation Metric for Language Modeling: Perplexity
	Slide 55: Evaluation Metric for Language Modeling: Perplexity
	Slide 56: Evaluation Metric for Language Modeling: Perplexity
	Slide 57: Intuition-building Quizzes (1)
	Slide 58: Intuition-building Quizzes (2)
	Slide 59: Intuition-building Quizzes (3)
	Slide 60: Perplexity: Summary
	Slide 61: Lower perplexity == Better Model
	Slide 62: Lower perplexity == Better Model
	Slide 63: Lower perplexity == Better Model
	Slide 64: Summary
	Slide 65
	Slide 66: LM as a Machine Learning Problem
	Slide 67: LM as a Machine Learning Problem
	Slide 68: LM as a Machine Learning Problem
	Slide 69: A Fixed-Window Neural LM
	Slide 70: A Fixed-Window Neural LM
	Slide 71: From Counting (N-Gram) to Neural Models
	Slide 72: Summary
	Slide 73
	Slide 74: Self-Attention
	Slide 75: RNN vs Transformer
	Slide 76: Attention
	Slide 77: Defining Self-Attention
	Slide 78: Defining Self-Attention
	Slide 79: Defining Self-Attention
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Self-Attention
	Slide 87: Question
	Slide 88: Self-Attention: Back to Big Picture
	Slide 89: Properties of Self-Attention
	Slide 90: Multi-Headed Self-Attention
	Slide 91: Multi-Headed Self-Attention
	Slide 92: Combine with FFN
	Slide 93: How Do We Prevent Vanishing Gradients?
	Slide 94: Putting it Together: Self-Attention Block
	Slide 95: Summary: Self-Attention Block
	Slide 96
	Slide 97: How Do We Make it Deep?
	Slide 98: From Representations to Prediction
	Slide 99: Transformer-based Language Modeling
	Slide 100: Training a Transformer Language Model
	Slide 101: Training a Transformer Language Model
	Slide 102: Training a Transformer Language Model
	Slide 103: Training a Transformer Language Model
	Slide 104: Training a Transformer Language Model
	Slide 105: Training a Transformer Language Model
	Slide 106: Training a Transformer Language Model
	Slide 107: Attention mask
	Slide 108: Attention mask
	Slide 109: Attention mask
	Slide 110: Attention mask
	Slide 111: Attention mask
	Slide 112: Training a Transformer Language Model
	Slide 113: How to use the model to generate text?
	Slide 114: How to use the model to generate text?
	Slide 115: How to use the model to generate text?
	Slide 116: How to use the model to generate text?
	Slide 117: How to use the model to generate text?
	Slide 118
	Slide 119: Making decoding more efficient
	Slide 120: Making decoding more efficient
	Slide 121: Making decoding more efficient
	Slide 122: Making decoding more efficient
	Slide 123: Making decoding more efficient
	Slide 124: Making decoding more efficient
	Slide 125: Making decoding more efficient
	Slide 126: Making decoding more efficient
	Slide 127: Making decoding more efficient
	Slide 128: Making decoding more efficient
	Slide 129: Summary
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Positional Embeddings: The Flavors
	Slide 135
	Slide 136: Limits of Absolute Positional Encoding
	Slide 137: Relative Positional Encoding
	Slide 138: Relative Positional Encoding
	Slide 139: Relative Encoding via Multiplication: Rotary Positional Encoding (RoPE)
	Slide 140: Summary
	Slide 141
	Slide 142: Transformer [Vaswani et al. 2017]
	Slide 143: Transformer [Vaswani et al. 2017]
	Slide 144: Transformer [Vaswani et al. 2017]
	Slide 145: Transformer [Vaswani et al. 2017]
	Slide 146: Transformer [Vaswani et al. 2017]
	Slide 147: Quiz: Enc-Dec Cost
	Slide 148: Quiz: Enc-Dec Cost
	Slide 149: Quiz: Enc-Dec Cost
	Slide 150: Quiz: Enc-Dec Cost
	Slide 151: Quiz: Enc-Dec Cost
	Slide 152: Quiz: Enc-Dec Cost
	Slide 153: After Transformer …
	Slide 154: Impact of Transformers
	Slide 155
	Slide 156
	Slide 157: GPT-2
	Slide 158: GPT-3: Just Scale
	Slide 159: GPT4
	Slide 160: Other Available [Decoder] LMs
	Slide 161: LMSys ChatArena
	Slide 162
	Slide 163: Pre-training Transformer LMs
	Slide 164: Data Cleaning: Example from C4
	Slide 165: Pre-training Data: Experiment
	Slide 166: Pre-training Data Duplicates
	Slide 167: Deduplicating Data Improves LMs
	Slide 168: Convergence
	Slide 169: Summary
	Slide 170
	Slide 171
	Slide 172: Fine-Tuning for Tasks
	Slide 173: Fine-tuning Pre-trained Models
	Slide 174: Parameter-efficient Fine-tuning
	Slide 175: Parameter-efficient Fine-tuning
	Slide 176: LoRA: Low-Rank Adaptation
	Slide 177: Performance/compactness comparison
	Slide 178: Summary
	Slide 179
	Slide 180: In-Context Learning
	Slide 181: In-Context learning Results
	Slide 182: ICL as a General-Purpose Few-Show Learning Mechanism
	Slide 183: In-Context Learning: Practically Useful
	Slide 184: In-Context Learning: Intellectually Intriguing
	Slide 185
	Slide 186: LM Prompting: Choices of Encoding
	Slide 187: LM Prompting: Choices of Encoding
	Slide 188: LM Prompting: Choices of Encoding
	Slide 189: In-Context Learning: Sensitivity to Encoding
	Slide 190: What Causes These Variances?
	Slide 191: Majority Label Bias
	Slide 192: Majority Label Bias
	Slide 193: Recency Bias
	Slide 194: Recency Bias
	Slide 195: Impact of Pretraining Term Frequencies
	Slide 196: Impact of Pretraining Term Frequencies
	Slide 197: Why Does ICL Emerge?
	Slide 198
	Slide 199: Some Problems Involve Reasoning
	Slide 200: Vanilla ICL on Reasoning Problems
	Slide 201
	Slide 202
	Slide 203
	Slide 204: CoT: Adding “thought” before “answer”
	Slide 205: CoT: Adding “thought” before “answer”
	Slide 206: CoT: Adding “thought” before “answer”
	Slide 207: Apply CoT to Any Task
	Slide 208: Multi-Step Prompting: Steps Don’t Have to Be Correct!
	Slide 209: Summary
	Slide 210: Prompt Engineering
	Slide 211
	Slide 212: Things that Generative LMs Can Do
	Slide 213: Language Modeling ≠ Following Human Instructions
	Slide 214: Language Modeling ≠ Following Human Instructions
	Slide 215: [Mis]Alignment in Language Models
	Slide 216: [Mis]Alignment in a Broad Sense
	Slide 217: Alignment Problem is Everywhere!
	Slide 218
	Slide 219: Instruction-tuning
	Slide 220: Instruction-tuning
	Slide 221: Scaling Instruction-Tuning
	Slide 222: Scaling Instruction-Tuning
	Slide 223: Limits of Instruction-Tuning
	Slide 224
	Slide 225: Reinforcement Learning: Intuition
	Slide 226: Goal
	Slide 227: Feedback Mechanism
	Slide 228: Reinforcement Learning: Formalism
	Slide 229: Reinforcement Learning from Human Feedback
	Slide 230: Reinforcement Learning from Human Feedback
	Slide 231: Reinforcement Learning from Human Feedback
	Slide 232: Step 1: Estimating the Reward R
	Slide 233: Step 1: Estimating the Reward R
	Slide 234: Step 1: Estimating the Reward R
	Slide 235: Step 1: Estimating the Reward R
	Slide 236: Scaling Reward Models
	Slide 237: Step 2: Optimizing the Policy Function
	Slide 238: Step 2: Optimizing the Policy Function
	Slide 239: Policy Gradient [Williams, 1992]
	Slide 240: Derivations (check it later in your own time!)
	Slide 241: Policy Gradient [Williams, 1992]
	Slide 242: Putting it Together
	Slide 243: Putting it Together (2)
	Slide 244: Putting it Together (3)
	Slide 245: Putting it Together (4)
	Slide 246: One missing ingredient
	Slide 247: One missing ingredient
	Slide 248: Regularizing with Pre-trained Model
	Slide 249: RLHF: Putting it All Together [Stiennon et al. 2020]
	Slide 250: GPT3 vs. InstructGPT3 (RLHF-ed)
	Slide 251: GPT3 vs. InstructGPT3 (RLHF-ed)
	Slide 252: The overall recipe 👨‍🍳
	Slide 253: The overall recipe 👨‍🍳: Yann’s Three-layered cake
	Slide 254
	Slide 255: RL Failure: Reward Hacking
	Slide 256: Reward Over-optimization
	Slide 257
	Slide 258: Simplifying RLHF: Direct Policy Optimization (DPO)
	Slide 259: DPO Algorithm
	Slide 260: DPO Limitations
	Slide 261
	Slide 262: RLHF/Instruction-tuning is Data Hungry
	Slide 263: Get humans to write ”seed” tasks ✍️
	Slide 264: Put them your task bank 📦
	Slide 265: Sample and get LLM to expand it
	Slide 266: Get LLM to answers the new tasks
	Slide 267: Filter tasks
	Slide 268: Close the loop
	Slide 269: Self-Instructing GPT3 (base version)
	Slide 270: Evaluation on User-Oriented Instructions
	Slide 271: Evaluation on User-Oriented Instructions
	Slide 272: Summary Thus Far
	Slide 273: Impact: Learning from AI Feedback
	Slide 274: Training LLMs with LLM Feedback: The Bottleneck
	Slide 275
	Slide 276: Model Size vs. Accuracy
	Slide 277: “More is Different”
	Slide 278: Scaling Laws
	Slide 279: Constraints of Real World
	Slide 280: Quantifying Computation Cost of Models
	Slide 281: FLOPS
	Slide 282: FLOPS: Matrix Multiplication
	Slide 283
	Slide 284: Transformer FLOPs: The Quick Estimate
	Slide 285: Transformer FLOPs: The Quick Estimate
	Slide 286: Transformer FLOPs
	Slide 287: Estimating training time
	Slide 288: Estimating training time
	Slide 289: Estimating training time
	Slide 290: Factors We Did Not Consider
	Slide 291: Summary
	Slide 292
	Slide 293: Optimal Scaling
	Slide 294: Scaling
	Slide 295: Scaling
	Slide 296: Scaling - Optimal Model Size
	Slide 297: Scaling Laws: Kaplan et al.
	Slide 298: However …
	Slide 299: Scaling Laws: Hoﬀmann et al.
	Slide 300: Recap
	Slide 301: A Word of Caution
	Slide 302
	Slide 303: Is Scale All We Need?
	Slide 304: Argument: Not Enough Compute
	Slide 305: Rebutting “Not Enough Compute”
	Slide 306: Argument: Not Enough Data
	Slide 307: Rebutting “Not Enough Data”
	Slide 308: Rebutting “Not Enough Data” (2)
	Slide 309: Argument: Scale is Not all You Need Because of Tail Phenomena
	Slide 310: Argument: Scale is Not all You Need Because of Tail Phenomena
	Slide 311: Argument: Scale is Not all You Need Because of Tail Phenomena
	Slide 312: Argument: Scale is Not all You Need Because of Tail Phenomena
	Slide 313: Argument: Scale is Not all You Need Because of Tail Phenomena
	Slide 314
	Slide 315: Transformer LMs and Long Inputs
	Slide 316
	Slide 317: Sparse Attention Patterns
	Slide 318: Sparse Attention Patterns: Challenge
	Slide 319: Pre-speciﬁed Sparsity Patterns
	Slide 320: Pre-speciﬁed Sparsity Patterns
	Slide 321: A Notable Adoption: GPT-3
	Slide 322: Summary
	Slide 323
	Slide 324: Retrieval-based Language Models
	Slide 325: Why retrieval?
	Slide 326: Why retrieval?
	Slide 327: Anatomy of a Neural Retriever
	Slide 328: Anatomy of a Neural Retriever
	Slide 329: Similarity via Sentence Embeddings
	Slide 330
	Slide 331: Finding Nearest Neighbors
	Slide 332: Approximate Finding Nearest Neighbors
	Slide 333
	Slide 334
	Slide 335
	Slide 336: Retrieval-Augmented LM
	Slide 337: Summary

