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Language Modeling: 
Definitions and History



The
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The cat

4



The cat sat
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The cat sat on
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The cat sat on  __?__

7



The cat sat on the mat.
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P(mat |The cat sat on the)

9

context  or prefixnext word
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Probability of Upcoming Word 

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
context  or prefixnext word
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LMs as a Marginal Distribution

▪ Directly we train models on “marginals”: context
next 
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Language 
Model
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LMs as Implicit Joint Distribution over Language 

▪ While language modeling involves learning the marginals, we are 
implicitly learning the full/joint distribution of language. 

o Remember the chain rule: 

P(𝑋1, … , 𝑋𝑡) = P(𝑋1) ς𝑖=1
𝑡 P(𝑋𝑖 |𝑋1, 𝑋2 … , 𝑋𝑖)

▪ Language Modeling ≜ learning prob distribution over language 
sequence. 
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Doing Things with Language Model 

▪ What is the probability of …. “I like Johns Hopkins University”

“like Hopkins I University Johns” 
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Doing Things with Language Model 

▪ What is the probability of ….

▪ LMs assign a probability to every sentence (or any string of words). 

“I like Johns Hopkins University”

“like Hopkins I University Johns” 

P(“I like Johns Hopkins University EOS”)=10-5

P(“like Hopkins I University Johns EOS” )=10-15
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Doing Things with Language Model (2)

▪ We can rank sentences.

▪ While LMs show “typicality”, this may be a proxy indicator to other properties: 

o Grammaticality, fluency, factuality, etc.  

P(“I like Johns Hopkins University. EOS”)    >   P(“I like John Hopkins University EOS”)  

P(“I like Johns Hopkins University. EOS”)    >   P(“University. I Johns EOS Hopkins like”) 

P(“JHU is located in Baltimore. EOS”)   >   P(“JHU is located in Virginia. EOS”) 

contextnext word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
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Doing Things with Language Model (3)

▪ Can also generate strings! 

▪ Let’s say we start “Johns Hopkins is ”

▪ Using this prompt as an initial condition, recursively sample from an LM: 

1. Sample  from P(X | “Johns Hopkins is ”)   →“located”

2. Sample  from P(X | “Johns Hopkins is located”)   →“at”
3. Sample  from P(X | “Johns Hopkins is located at”)   →“the”

4. Sample  from P(X | “Johns Hopkins is located at the”)   →“state”
5. Sample  from P(X | “Johns Hopkins is located at the state”)   →“of”

6. Sample  from P(X | “Johns Hopkins is located at the state of”)   →“Maryland”
7. Sample  from P(X | “Johns Hopkins is located at the state of Maryland”)   →“EOS”

contextnext word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
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Why Care About Language Modeling?

▪ Language Modeling is a subcomponent superset of many tasks: 

o Summarization 

o Machine translation 

o Spelling correction 

o Dialogue etc. 

▪ Language Modeling is an effective proxy for language understanding. 

o Effective ability to predict forthcoming words requires on understanding of 
context/prefix.
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You use Language Models every day! 
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You use Language Models every day! 
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Summary 

▪ Language modeling: building probabilistic distribution over language. 

▪ An accurate distribution of language enables us to solve many important 
tasks that involve language communication. 

▪ The remaining question: how do you actually estimate this distribution? 
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Language Modeling 

with Counting
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LMs as a Marginal Distribution

▪ Now the question is, how to estimate this distribution. 

context
next 
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)



P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?  
Let’s just count! 

P(mat | the cat sat on the) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)

23

Count how often 
”the cat sat on the mat” 

has appeared in the world (internet)! 

Divide that by, the count of 
”the cat sat on the” 

in the world (internet)! 



P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?  
Let’s just count! 

24

P(mat | the cat sat on the) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)



P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?  
Let’s just count! 
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Challenge: Increasing 𝑛 makes sparsity problems worse.
Typically, we can’t have 𝑛 bigger than 5.

Some partial solutions (e.g., smoothing and backoffs) 
though still an open problem. 

P(mat | the cat sat on the) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)
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Language Models: A History

▪ Shannon (1950): The redundancy and predictability (entropy) of English. 

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Shannon (1950) built an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its non-descendants, given its parents.

1st order approximation: 

P(mat | the cat sat on the) ≈ P(mat | the)   

27

1 element

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Shannon (1950) built an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its non-descendants, given its parents.

2nd order approximation: 

P(mat | the cat sat on the) ≈ P(mat | on the)  

28

2 elements

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Shannon (1950) built an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its non-descendants, given its parents.

3rd order approximation: 

P(mat | the cat sat on the) ≈ P(mat | sat on the)  

29

3 elements

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Shannon (1950) built an approximate language model with word co-
occurrences. 

Then, we can use counts of approximate conditional probability. 
Using the 3rd order approximation, we can: 

P(mat | the cat sat on the) ≈ P(mat | sat on the) =
count(“sat on the mat”)

count(“on the mat”)

30
[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf
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Understanding Sparsity: A Thought Experiment

▪ How common are zero-probabilities? 

▪ Example: Shakespeare as a text corpus 

o The size vocab used by Shakespeare: |V|=29,066 

o Shakespeare produced: ~300,000 bigrams 

• Out of |V|^2= 844 million possible bigrams 
• (some of them don’t make sense, but ok!)

▪ So, 99.96% of the possible bigrams are never seen (hence, have zero 
entries for bigram counts).

[Slide credit: Mohit Iyyer] 
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N-gram Language Models 

▪ Terminology: n-gram is a chunk of n consecutive words: 
o unigrams: “cat”, “mat”, “sat”, …

o bigrams: “the cat”, “cat sat”, “sat on”, …

o trigrams: “the cat sat”, “cat sat on”, “sat on the”, …

o four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, …

▪ n-gram language model: 

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1) ≈ P(𝑋𝑡| 𝑋𝑡−𝑛+1, …, 𝑋𝑡−1) 

𝑛 − 1 elements

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf
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Generation from N-Gram Models

▪ You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]
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Generation from N-Gram Models

▪ You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the 

Otherwise, seems reasonable!

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

company 0.153 
bank 0.153 
price 0.077 
italian 0.039 
emirate 0.039
...
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Generation from N-Gram Models

▪ Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

company 0.153 
bank 0.153 
price 0.077 
italian 0.039 
emirate 0.039
...

Otherwise, seems reasonable!
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Generation from N-Gram Models

• Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

of 0.308 
for 0.050 
it 0.046 
to 0.046 
is 0.031
...

condition on this

Otherwise, seems reasonable!
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Generation from N-Gram Models

▪ Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

the 0.072 
18 0.043 
oil 0.043 
its 0.036 
gold 0.018
...

condition on this

Otherwise, seems reasonable!
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N-Gram Models in Practice

▪ Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical! 

But quite incoherent! To improve coherence, one may consider increasing 
larger than 3-grams, but that would worsen the sparsity problem! 

[adopted from Chris Manning]
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Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Language models can tell us 
something about us … 

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Language models can tell us 
something about us … 

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Limits of N-Grams LMs: Long-range Dependencies

▪ In general, count-based LMs are insufficient models of language 
because language has long-distance dependencies:

“The computer which I had just put into the 
machine room on the fifth floor crashed.”
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N-Gram Language Models, A Historical 
Highlight 

● Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation Fred Jelinek 

(1932-2010)

“Every time I fire a linguist, the performance of 
the speech recognizer goes up”!!
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Summary 

▪ Learning a language model ~ learning conditional probabilities over language. 

▪ One approach to estimating these probabilities: counting word co-occurrences.

▪ Challenges: 

o Word co-occurrences become rare for long sequences. (the sparsity issue)  

o But language understanding requires long-range dependencies. 

▪ We need a better alternative! 

▪ Next: Measuring quality of language models. 
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How Good are 
Language Models? 
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Evaluating Language Models 

▪ Does our language model prefer good sentences to bad ones?

o Assign higher probability to “real” or “frequently observed” sentences

o Than “ungrammatical” or “rarely observed” sentences?

▪ We test the model’s performance on data we haven’t seen.
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Evaluating Language Models 

Setup: 

o Train it on a suitable training documents. 

o Evaluate their predictions on different, unseen documents. 

o An evaluation metric tells us how well our model does on the test set.

train
count(“on the mat”)
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Evaluating Language Models: Example

49

train
count(“on the mat”)

eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe 
probabilityof someheldout
datausingourbigramtable

A good language model 
shouldassigna high 

probability to held-out text!

Setup: 

o Train it on a suitable training documents. 

o Evaluate their predictions on different, unseen documents. 

o An evaluation metric tells us how well our model does on the test set.
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Be Careful About Data Leakage! 

Advice from a grandpa : 

- Don’t allow test sentences to leak into into training set. 

- Otherwise, you will assign it an artificially high probability (==cheating). 

50

train
count(“on the mat”)

eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe 
probabilityof someheldout
datausingourbigramtable

A good language model 
shouldassigna high 

probability to held-out text!
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Evaluating Language Models: Intrinsic vs Extrinsic 

o Intrinsic: measure how good we are at modeling language

o Extrinsic: build a new language model, use it for some task (MT, 
ASR, etc.)

51

train
count(“on the mat”)

eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe 
probabilityof someheldout
datausingourbigramtableextrinsic 

eval
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Evaluation Metric for Language Modeling: Perplexity

▪ Perplexity is the inverse probability of the test set, normalized by the number of 
words: 

▪ A measure of predictive quality of a language model. 

▪ Minimizing perplexity is the same as maximizing probability

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛
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▪ Perplexity is the inverse probability of the test set, normalized by the number of 
words: 

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛

Evaluation Metric for Language Modeling: Perplexity
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▪ Perplexity is the inverse probability of the test set, normalized by the number of 
words: 

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛

=
𝑛 1

𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
=

𝑛

ෑ

𝑖=1

𝑛
1

𝐏 𝑤𝑖|𝑤<𝑖

= 2𝐻 , where

chain rule

Evaluation Metric for Language Modeling: Perplexity

𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)
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▪ In practice, we prefer to use log-probabilities (also known as “logits”) 

▪ We can rewrite perplexity formula in terms of log-probs: 

Can be interpreted as 
cross-entropy between LM prob 

and language prob. Why?

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Evaluation Metric for Language Modeling: Perplexity

Recap: Definition of cross-entropy
between two distributions:
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▪ In practice, we prefer to use log-probabilities (also known as “logits”) 

▪ We can rewrite perplexity formula in terms of log-probs: 

▪ Perplexity for n-grams:

o Unigrams: 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏(𝑤𝑖)

o Bigrams:   𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤𝑖−1)

o Trigrams:  𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤𝑖−2, 𝑤𝑖−1)

o …

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Evaluation Metric for Language Modeling: Perplexity
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▪ In practice, we prefer to use log-probabilities (also known as “logits”) 

▪ We can rewrite perplexity formula in terms of log-probs: 

▪ Quiz: let’s suppose we have a sentence 𝑤1, … , 𝑤𝑛 and it’s fixed. Our model 
will correctly guess each word with probability 1/5. What is perplexity of 
our model? 

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

𝐻 = −
1

𝑛
log2

1

5
+ ⋯ + log2

1

5
= −log

1

5
⇒ ppl D = 5

Intuition-building Quizzes (1)

Intuition: the model is indecisive among 5 choices. 
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▪ In practice, we prefer to use log-probabilities (also known as “logits”) 

▪ We can rewrite perplexity formula in terms of log-probs: 

▪ Quiz: let’s we evaluate an exact (!!) model of language, i.e., our model 
always knows what exact word should follow a given context. What is the 
perplexity of this model? 

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Intuition-building Quizzes (2)

∀𝑤 ∈ 𝑉: 𝐏 𝑤𝑖 𝑤1:𝑖−1) = 1 ⇒ ppl 𝐷 = 2−
1

2
𝑛 log2 1 = 1

Intuition: the model is indecisive among 1 (the right!) choice! 
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▪ In practice, we prefer to use log-probabilities (also known as “logits”) 

▪ We can rewrite perplexity formula in terms of log-probs: 

▪ Quiz: let’s we evaluate a confused (!!) model of language, i.e., our model 
has no idea what word should follow each context—it always chooses a 
uniformly random word. What is the perplexity of this model? 

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Intuition-building Quizzes (3)

∀𝑤 ∈ 𝑉: 𝐏 𝑤 𝑤1:𝑖−1) =
1

|𝑉|
⇒ ppl 𝐷 = 2

−
1

𝑛
𝑛 log2

1

𝑉 = |𝑉|

Intuition: the model is indecisive among all the vocabulary terms. 
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Perplexity: Summary 

▪ Perplexity is a measure of model’s uncertainty about next word (aka ”average 
branching factor”). 

o The larger the number of vocabulary, the more options there to choose from. 

o (the choice of atomic units of language impacts PPL — more on this later)

▪ Perplexity ranges between 1 and |V|. 

▪ We prefer LMs with lower perplexity. 

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)
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Lower perplexity == Better Model 

▪ Training on 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

[Mohit Iyyer] 

Note these evaluations are done on data that 
was not used for “counting.” (no cheating!!) 

Lower is 
better
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Lower perplexity == Better Model 

The PPL of modern language models have consistently been going down. 

[Language Modelling on Penn Treebank (Word Level)] 

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
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Lower perplexity == Better Model 

The PPL of modern language models have consistently been going down. 

[Scaling Laws, Jared Kaplan et al.] 
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Summary

▪ Language Models (LM): distributions over language 

▪ Measuring LM quality: use perplexity on held-out data. 

▪ Count-based LMs have limitations. 

o Challenge with large N’s: sparsity problem — many zero counts/probs. 

o Challenge with small N’s: lack of long-range dependencies. 

▪ Next: Rethinking language modeling as a statistical learning problem. 
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Beyond Counting: 

Language Models as 
a Learning Problem
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LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side. 

o Dropping the right context for simplicity -- not a fundamental limitation. 

▪ Discard anything beyond its context window 

intoturningproblemsourand

context words in window target word

blah    blah    blah     blah     
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LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side. 

o Dropping the right context for simplicity -- not a fundamental limitation. 

▪ Discard anything beyond its context window 

intoturningproblemsourand

context words in window of size 4 target worddiscard

blah    blah    blah     blah     
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LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side. 

o Dropping the right context for simplicity -- not a fundamental limitation. 

▪ Discard anything beyond its context window 

intoturningproblemsourand

context words in window of size 4 target word
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A Fixed-Window Neural LM

▪ Given the embeddings of the context, predict a target word on the right side. 

o Dropping the right context for simplicity -- not a fundamental limitation. 

▪ Training this model is basically optimizing its parameters Θ such that it assigns 
high probability to the target word.

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O , Θ)
lookup embeddings

Trainable parameters 
of neural network 

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

𝑓 (
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A Fixed-Window Neural LM

▪ It will also lay the foundation for the future models (recurrent nets, transformers, ...) 

▪ But first we need to figure out how to train neural networks! 

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O , Θ)
lookup embeddings

Trainable parameters 
of neural network 

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

𝑓 (

How do you build 
this function? 

Neural Networks 
for rescue! 
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From Counting (N-Gram) to Neural Models

● n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation

 “Shallow” statistical/neural language models (2000’s) [Bengio+ 1999 & 2001, …]

NeurIPS 2000
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Summary

▪ Language Modeling (LM), a useful predictive objective for language

▪ Perplexity, a measure of an LM’s predictive ability

▪ N-gram models (~1980 to early 2000’s), 

o Early instances of LMs 

o Difficult to scale to large window sizes 

▪ Shallow neural LMs (early and mid-2000’s), 

o These will be effective predictive models based on feed-forward networks 

▪ Recurrent neural LMs (2010s), 

o Compact models used recursively 
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Self-Attention 
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Self-Attention 

74

𝑥4𝑥3𝑥2𝑥1

𝑏4𝑏3𝑏2𝑏1

𝑥4𝑥3𝑥2𝑥1

𝑏4𝑏3𝑏2𝑏1

Self-Attention Layer

• 𝑏𝑖 is obtained based on the 
whole input sequence. 

• can be parallelly computed. 

Idea: replace any thing done by RNN with self-attention. 

RNN

[adopted from Hung-yi Lee]“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014; 
“Attention is All You Need” Vaswani et al. 2017
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RNN vs Transformer
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Attention 

▪ Core idea: build a mechanism to focus (“attend”) on a
particular part of the context. 

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Defining Self-Attention

▪ Terminology: 

o Query: to match others

o Key: to be matched  

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762
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Defining Self-Attention

▪ Terminology: 

o Query: to match others

o Key: to be matched  

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

An analogy …. 

https://arxiv.org/abs/1706.03762
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Defining Self-Attention

▪ Terminology: 

o Query: to match others

o Key: to be matched  

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762
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𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖
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𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

The

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖

O O O O O
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O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

O O O O O

The cat sat           on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖
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The cat sat           on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

𝛼1,𝑖 = ൘𝑞1 ∙ 𝑘𝑖

√𝑑

Scaled dot product
How much 
should “The” 
attend to other 
positions? 
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𝑥1
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The cat sat           on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

How much 
should “The” 
attend to other 
positions? 

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

𝜎 𝑧 𝑖 =
exp 𝑧𝑖

σ𝑗 exp 𝑧𝑗
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The cat sat           on

O
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𝑣2
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𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

Representation of “The” given the  attention weights 

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 = ෍

𝑖

ො𝛼1,𝑖𝑣𝑖
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Self-Attention

▪ Can write it in matrix form: 

▪ Given input 𝐱:

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

86
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Question

▪ What would be the output vector for 
the word “Thinking”?

[Slide credit: Danqi Chen]
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Self-Attention: Back to Big Picture  

▪ Attention is a powerful mechanism to create context-aware representations

▪ A way to focus on select parts of the input

▪ Better at maintaining long-distance dependencies in the context. 

88

𝑥4𝑥3𝑥2𝑥1

𝑏1 𝑏2 𝑏3 𝑏4

Self-Attention Layer

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Properties of Self-Attention 

▪ Per-layer statistics; n = sequence length, d = hidden dimension

▪ Complexity per layer: Quadratic function of n for SA

▪ Sequential operations: # of operations that must be performed sequentially 

o O(1) sequential operations for SA. 

o SA layers computes all the operations in parallel across all tokens in the sequence

• Efficient implementations

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Multi-Headed Self-Attention

▪ Multiple parallel attention layers is quite common. 

o Each attention layer has its own parameters. 

o Concatenate the results and run them through a linear projection. 

90

Self-Attention Layer
Self-Attention Layer

𝑥4𝑥3𝑥2𝑥1

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Multi-Headed Self-Attention

▪ Just concatenate all the heads and apply an output projection matrix.

▪ In practice, we can use a reduced dimension 
for each head: 

▪ The total computational cost is similar to that 
of a single-head attention with full dimensionality. 

[Slide credit: Danqi Chen]

MultiHeadedAttention 𝒙 = Concat head1, … , headh 𝑊O

head𝑖 = Attention(𝒙𝐖𝑖
𝑞

, 𝒙𝐖𝑖
𝑘, 𝒙𝐖𝑖

𝑣)

𝐖𝑖
𝑞

, 𝐖𝑖
𝑘 , 𝐖𝑖

𝑣 ∈ ℝ𝑑/ℎ

𝑑 = hidden dimension
ℎ = # of heads
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Combine with FFN 

Multi-Headed 
Self-Attention Layer

O O O O O O

Feed Forward Network

O O O O O O

• Add a feed-forward network on top it to add more expressivity. 
• This allows the model to apply another transformation to the contextual 

representations (or “post-process” them).

• Usually, the dimensionality of 
the hidden feedforward layer 
is 2-8 times larger than 
the input dimension.

Feedforward Net: Refresher

A fully-connected network 
of nodes and weights. 

FFN 𝐱 = 𝑓 𝑐𝑊1 + 𝑏1 𝑊2 + 𝑏2
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How Do We Prevent Vanishing Gradients?

▪ Residual connections let the model “skip” layers 
o These connections are particularly useful for 

training deep networks 

▪ Use layer normalization to stabilize the network 
and allow for proper gradient flow

93
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Putting it Together: Self-Attention Block

Given input 𝒙:

out = 𝐿𝑁 ෤𝒄 + 𝒄′

෤𝒄 = FFN 𝒄′ = 𝑓 𝒄′𝑊1 + 𝑏1 𝑊2 + 𝑏2

𝒄′ = 𝐿𝑁(𝒄 + 𝒙)

𝒄 = MultiHeadedAttention(𝒙)

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Summary: Self-Attention Block  

▪ Self-Attention: A critical building block of modern language models.

o The idea is to compose meanings of words weighted according some 
similarity notion. 

▪ Next: We will combine self-attention blocks to build various architectures 
known as Transformer.
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Transformer 
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How Do We Make it Deep? 

▪ Stack more layers! 

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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From Representations to Prediction

▪ To perform prediction, add a classification head 
on top of the final layer of the transformer.

▪ This can be per token (Language modeling)

▪ Or can be for the entire sequence (only one token)

books
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Image by http://jalammar.github.io/illustrated-gpt2/

TRANSFORMER

Transformer-based Language Modeling

And continue like 
that until we reach 
EOS or we get tired. 

http://jalammar.github.io/illustrated-gpt2/
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Training a Transformer Language Model

▪ Goal: Train a Transformer for language modeling (i.e., predicting the next word). 

▪ Approach: Train it so that each position is predictor of the next (right) token. 

o We just shift the input to right by one, and use as labels

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

EOS special token

[Slide credit: Arman Cohan]
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Training a Transformer Language Model

▪ For each position, compute their corresponding distribution over the whole vocab. 

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =
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Training a Transformer Language Model

▪ For each position, compute the loss between the distribution and the gold output label. 

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =
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Training a Transformer Language Model

▪ Sum the position-wise loss values to a obtain a global loss. 

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =
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Training a Transformer Language Model

▪ Using this loss, do Backprop and update the Transformer parameters.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ

Well, this is not quite right 
… 

what is the problem with this?
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Training a Transformer Language Model
▪ The model would solve the task by copying the next token to output (data leakage). 

o Does not learn anything useful

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ
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Training a Transformer Language Model

▪ We need to prevent information leakage from future tokens! How?

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ
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Attention mask

Slide credit: Arman Cohan

What we haveWhat we want
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Attention mask

Slide credit: Arman Cohan

Attention mask
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x

Attention mask

Slide credit: Arman Cohan

Attention mask

Note matrix multiplication is quite fast in GPUs. 
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x =

Attention mask

Slide credit: Arman Cohan
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x

softmax

Attention mask
The effect is more than just pruning out some of the 

wirings in self-attention block.

Slide credit: Arman Cohan
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Training a Transformer Language Model

▪ We need to prevent information leakage from future tokens! How?

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ
+ masking
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat

on

The probabilities get 
revised upon adding a 

new token to the input. 
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on

the

The probabilities get 
revised upon adding a 

new token to the input. 
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on the

mat

The probabilities get 
revised upon adding a 

new token to the input. 
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on the mat

</s>

The probabilities get 
revised upon adding a 

new token to the input. 
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How efficient is 
this decoding? 
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Making decoding more efficient

119

K
V

q

x

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

120

K

q

x

q: the next token

previous context

V

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

121

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

122

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

123

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

124

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

125

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

▪ We are computing the Keys and Values many times! 

o Let’s reduce redundancy! 

126

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

q

[Slide credit: Arman Cohan]
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Making decoding more efficient

▪ We are computing the Keys and Values many times! 

o Let’s reduce redundancy! 

127

K Cached

q

q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

The cat sat on the

vnew = Wvx[: , : −1]

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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K Cached

q

q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

vnew = Wvx[: , : −1]

▪ Question: How much memory does this K, V cache require?

128

The cat sat on the

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

Making decoding more efficient

[Slide credit: Arman Cohan]
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Summary 

▪ This is a very generic Transformer! 

▪ Next: 

o Positional encodings 

o … 
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Encoding 
Positional Information



131

Why do we need 
positional encoding?



O
O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

O O O O O

The cat sat           on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 = ෍

𝑖

ො𝛼1,𝑖𝑣𝑖
One issue: the model doesn’t know 
word positions/ordering.  
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𝑣1

O
O

𝑘1
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𝑞1

𝑥1
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O
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𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3
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O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

One issue: the model doesn’t know 
word positions/ordering.  

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 = ෍

𝑖

ො𝛼1,𝑖𝑣𝑖

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn 
relative positioning

𝑝𝑖 are positional 
embeddings

We will discuss 
various choices for 
these embedding!
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O
O

O
O

O
O

𝑥1

O O O O O

O
O

O
O
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𝑥2
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O
O

O
O

O
O

𝑥3

O O O O O

O
O

O
O

O
O

𝑥4

O O O O O

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn 
relative positioning

𝑝𝑖 are positional 
embeddings

Positional Embeddings: The Flavors

▪ Absolute encoding: vectors that uniquely encoder each position. 

▪ Relative encoding: the positional encoding for each position is determined based on 
its distance from the other positions it is attending to.
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𝑥1
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𝑥2
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O
O

𝑥3

O O O O O

O
O

O
O

O
O

𝑥4

O O O O O

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn 
relative positioning

𝑝𝑖 are positional 
embeddings

An approach: 

Sine/Cosine encoding 
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Limits of Absolute Positional Encoding

▪ We can have fixed positional embeddings for each index training position (e.g., 1, 2, 3, …
1000). 

o What happens if we get a sequence with 5000 words at test time?

▪ We want something that can generalize to arbitrary sequence lengths. 

o Approach: encoding the relative positions, for example based on the distance of 
the tokens in a local window to the current token.
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Relative Positional Encoding

▪ You can rewrite the statement from the previous slide in the following form:

𝑄𝐾𝑖𝑗 = 𝑊𝑞[𝒙𝒊+𝒑𝑖]
𝑇

𝑊𝑘[𝒙𝒋+𝒑𝑗] = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

▪ Note, the values of 𝑷𝒊𝒋 encode the relative of 𝒊 and 𝒋.

▪ How should we construct 𝑷𝒊𝒋? 

How much attention 

should position 𝒊 should 
attend to position 𝒋
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Relative Positional Encoding

▪ There have been various choices:

o T5 models simplify this into learnable relative embeddings 𝑷𝒊𝒋 such that: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

o DeBERTa learns relative positional embeddings ෥𝒑𝑖−𝑗 such that: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗+෥𝒑𝑖−𝑗
𝑇 𝑊𝑞

𝑇𝑊𝑘𝒙𝒋

o Tranformer-XL learns relative positional embeddings ෥𝒑𝑖−𝑗 and trainable vectors 𝒖, 𝒗 s.t.: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗+𝒖𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋+𝒗𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗

o ALiBi learns learns a scalar 𝑚 such that:
𝑄𝐾𝑖𝑗 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 − 𝑚 |𝑖 − 𝑗|

Exploring the Limits of Transfer Learning with a Unified Text -to-Text Transformer, 2020
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Relative Encoding via Multiplication:
Rotary Positional Encoding (RoPE)

RoFormer: Enhanced Transformer with Rotary Posit ion Embedding (2022) Figure source

▪ Drop the additive positional encoding and make 
it multiplicative. 

𝑞𝑘𝑚𝑛 = 𝑅𝜃,𝑚𝑊𝑞𝒙𝑚
𝑇

𝑅𝜃,𝑛𝑊𝑘𝒙𝑛

= 𝒙𝑚
𝑇 𝑊𝑞

𝑇𝑅𝜃,𝑚
𝑇 𝑅𝜃,𝑛𝑊𝑘𝒙𝒋

o 𝜃: the size of rotation

o 𝑅𝜃,𝑚: rotation matrix, rotates a vector it gets 
multiplied to proportional to 𝜃 and the 
position index 𝑚.  

▪ Intuition: nearby words have smaller relative 
rotation.

https://colab.research.google.com/github/krasserm/krasserm.github.io/blob/master/notebooks/2022-12-13-rotary-position-embedding.ipynb
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Summary 

▪ Encoding positional information in language models is a non-trivial problem. 

o We discussed various proposal: learned, absolute, relative encoding, NoPos, etc. 

▪ This is an important literature related to the length generalization of Transformers.

▪ This is an active research area and likely to change in the coming years. 
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Transformer 
Architectural Variants  
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Transformer [Vaswani et al. 2017]

▪ An encoder-decoder architecture built with attention modules. 
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Transformer [Vaswani et al. 2017]

▪ Computation of encoder attends to both sides.  

143
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous 
computation of encoder

144
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous 
computation of encoder as well as decoder’s 
own generations 

145
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous 
computation of encoder as well as decoder’s 
own generations 

▪ At any step of decoder, re-use previous 
computation of encoder.

▪ Computation of decoder is linear, 
instead of quadratic.

146
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762


147

Quiz: Enc-Dec Cost 

▪ Goal: We are building an encoder-decoder Transformer for summarizing passages to 
summaries. 

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]
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Quiz: Enc-Dec Cost 

▪ Goal: We are building an encoder-decoder Transformer for summarizing passages to 
summaries. 

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all 
and so quadratic.
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Quiz: Enc-Dec Cost 

▪ Goal: We are building an encoder-decoder Transformer for summarizing passages to 
summaries. 

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all 
and so quadratic in 𝑀 and 𝑁.
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Quiz: Enc-Dec Cost 

▪ Goal: We are building an encoder-decoder Transformer for summarizing passages to 
summaries. 

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all 
and so quadratic in 𝑀 and 𝑁.
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Quiz: Enc-Dec Cost 

▪ Goal: We are building an encoder-decoder Transformer for summarizing passages to 
summaries. 

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, cross attention is missing. 
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Quiz: Enc-Dec Cost 

▪ Goal: We are building an encoder-decoder Transformer for summarizing passages to 
summaries. 

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

Yes. The three terms are respectively the Encoder 
self-attention, Decoder self-attention, and Cross 
attention.



After Transformer …
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Impact of Transformers 

▪ A building block for a variety of LMs 

154

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-3, GPT-4, LaMMA, Mistral 

❖ Other name: causal or auto-regressive language model 

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, SciBERT.

❖ Captures bidirectional context. Wait, how do we pretrain them?

❖ Examples: T5, Meena

❖ What’s the best way to pretrain them?



Yang et al. Harnessing the Power of 

LLMs in Practice: A Survey on 

ChatGPT and Beyond, 2023
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Few notable models
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GPT-2

▪ GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences
from scratch or from a starting sequence

▪ As it processes each subword, it masks the “future” words and conditions on and 
attends to the previous words

Image by http://jalammar.github.io/illustrated-gpt2/

http://jalammar.github.io/illustrated-gpt2/
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GPT-3: Just Scale 

▪ More layers & parameters 

▪ Bigger dataset 

▪ Longer training 

▪ Larger embedding/hidden dimension 

▪ Larger context window 

[Slide credit: Sbhya Chhabria & Michael Tang]
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GPT4

▪ Transformer-based 

o The rest is …. mystery! ☺

o If we’re going based on costs, GPT4 is ~15-30 times costlier than GPT3. That 
should give you an idea how its likely size! 

▪ Note, these language models involve more than just pre-training. 

o Pre-training provides the foundation based on which we build the model. 

o We will discuss the later stages (post hoc alignment) in a 2-3 weeks. 

https://openai.com/pricing

https://openai.com/pricing
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Other Available [Decoder] LMs

EleutherAI: GPT-Neo (6.7B), GPT-J (6B), GPT-NeoX (20B) 

https://huggingface.co/EleutherAI

https://6b.eleuther.ai/

LLaMA, 65B:     https://github.com/facebookresearch/llama

Mistral and Mixtral: 

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

https://github.com/facebookresearch/llama
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
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LMSys ChatArena https://lmarena.ai/

https://lmarena.ai/
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Training Transformer LMs: 
Empirical Considerations
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Pre-training Transformer LMs

▪ There is so much empirical knowledge/experiences that goes into training these 
models. 

▪ Various empirical issues about: 

o Preparation/pre-processing data

o Efficient training of models 

o …
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Data Cleaning: Example from C4

Slide adapted from Colin Raffel

Remove any: 
• References to Javascript
• “Lorem ipsum” text — placeholder text commonly used to 

demonstrate the visual form of a document

Retain: 

• Sentences with terminal 
punctuation marks 

• Pages with at least 5 sentences, 

sentences with at least 3 words 
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Pre-training Data: Experiment 

▪ Takeaway: 

o Clean and compact data is better than large, but noisy data. 

o Pre-training on in-domain data helps. 
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Pre-training Data Duplicates 

▪ There is a non-negligible number of 
duplicates in any pre-training data. 

Deduplicating Training Data Makes Language Models Better, 2020
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Deduplicating Data Improves LMs

▪ C4 : the original training data

▪ C4-NearDup: C4 excluding exact duplicates 

▪ C4-ExactSubs: C4 excluding near-duplicates 

Deduplicating Training Data Makes Language Models Better, 2020

Training on deduplicated 
data almost always leads 
to lower PPL! 
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Convergence 

▪ In practice, your model’s loss should continue 
to go down with more training on more data. 

▪ So, the real bottlenecks are: 

o (1) compute

o (2) data

▪ Sometimes training diverges (spikes in the 
loss), at which point practitioners usually 
restart training from an earlier checkpoint. 



169

Summary 

▪ There is many empirical knowledge that goes into engineering LMs. 

▪ Here we covered a basic topics about data and architecture engineering. 

▪ Various topics are forthcoming: scaling laws, efficient training, etc. 



170

Adaptation via Fine-Tuning
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▪ At this point, we have built a pre-trained model. 
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Fine-Tuning for Tasks 

▪ Now we want to “adapt” it for specific tasks with labeled data. 
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Embeddings

Input

Language
Model

Classification
Head

[CLS] A three-hour cinema master class.

81

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

Fine-tuning Pre-trained Models

▪ Whole model tuning: 

o Run an optimization defined on your 
task data that updates all model 
parameters 

▪ Head-tuning: 

o Run an optimization defined on your 
task data that updates the parameters 
of the model “head” 

https://github.com/allenai/acl2022-zerofewshot-tutorial/
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Parameter-efficient Fine-tuning

▪ In fine-tuning we need to updating and storing all the parameters of  the LM

o We would need to store a copy of the LM for each task

▪ With large models, storage management becomes difficult.

o E.g., A model of size 170B parameters requires ~340Gb of storage

o If you fine-tune a separate model for 100 tasks:

• 340 * 100 = 34 TB of storage!
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Parameter-efficient Fine-tuning

fig source https://arxiv.org/pdf/2303.15647.pdf
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LoRA: Low-Rank Adaptation 

▪ Hypothesis: the intrinsic rank of the weight 

matrices in a large language model is low

▪ Parameter update for a weight matrix is
decomposed into a product of two low-rank
matrices

▪ A is initialized with random Gaussian 
Initialization, B is initialized to zero

125

[“LoRA: Low-Rank Adaptation of Large Language Models” Hu et al., 2021.]

https://arxiv.org/abs/2106.09685
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Performance/compactness comparison
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Summary

● Parameter efficient optimization — optimize fewer parameters than the 
whole model. 

● Space efficiency — fewer parameters to store 

● Computation efficiency? Some gains since you’re storing less trainable parameters. 
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Prompting and 
In-Context Learning
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In-Context Learning

▪ Learns to do a downstream task by conditioning on input-output examples! 

▪ No weight update — our model is not explicitly pre-trained to learn from examples

o The underlying models are quite general 
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In-Context learning Results

Brown et al. 2020. “Language Models are Few-Shot Learners”

https://arxiv.org/abs/2005.14165
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ICL as a General-Purpose Few-Show Learning Mechanism

Language ModelAny arbitrary task

A few-shot learner

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

https://github.com/allenai/acl2022-zerofewshot-tutorial/
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In-Context Learning: Practically Useful

▪ Labeling data is costly

▪ Finetuning can tricky

● You don’t want to get more data
● Emergent, time-sensitive scenarios

○ Something new happened—need to react quickly!

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh; quote credit: Colin Raffel]

● Not enough validation data
● Expensive to train, time and memory

https://github.com/allenai/acl2022-zerofewshot-tutorial/
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In-Context Learning: Intellectually Intriguing

▪ Potential test for “Intelligent Behavior”

▪ Insights into Language Modeling

● Generalization from few examples
○ Fundamental piece of intelligence

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

● What does an LLM “know”?
● What are the biases/limitations of LLMs?
● …

https://github.com/allenai/acl2022-zerofewshot-tutorial/
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ICL’s is quite sensitive! 
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LM Prompting: Choices of Encoding 

[Slide credit: Eric Wallace]
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LM Prompting: Choices of Encoding 

[Slide credit: Eric Wallace]
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LM Prompting: Choices of Encoding 

[Slide credit: Eric Wallace]
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In-Context Learning: Sensitivity to Encoding 

[“Calibrate Before Use: Improving Few-Shot Performance of Language Models.” Zhao et al. 2021]

[Slide credit: Eric Wallace]

In-context learning is highly sensitive to prompt format (training sets and  patterns/verbalizers)

https://arxiv.org/pdf/2102.09690.pdf
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What Causes These Variances?

▪ Here we will provide several factors … 
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Majority Label Bias

▪ Among 4 demonstrations, count how many are “positive”. 

▪ Then check if the model output correlates with the number of “positive” demos. 
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Majority Label Bias

▪ Among 4 demonstrations, count how many are “positive”. 

▪ Then check if the model output correlates with the number of “positive” demos. 

Frequency of
Positive
Predictions

4/4
Positive

56

37

20

0
3/4

Positive
2/4

Positive
1/4

Positive
0/4

Positive

100

Majority label bias:
frequent training answers
dominate predictions. 

[“Calibrate Before Use: Improving Few-Shot Performance of Language Models.” Zhao et al. 2021]

https://arxiv.org/pdf/2102.09690.pdf
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Recency Bias

▪ Check if the label of the most-recent demo biases the model output. 
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Recency Bias

▪ Check if the label of the most-recent demo biases the model output. 

Frequency of
Positive
Predictions

NPPP PNPP PPNP PPPN

62 60

12

90 Recency bias: examples near end
of prompt dominate predictions 
— Explains variance across
example permutations!

[“Calibrate Before Use: Improving Few-Shot Performance of Language Models.” Zhao et al. 2021]

https://arxiv.org/pdf/2102.09690.pdf
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Impact of Pretraining Term Frequencies

● For each task, identify relevant terms from each instance—numbers and units

● Count co-occurrences of these terms in the pretraining data (term pairs or 

triples within a  fixed window)

["Impact of Pretraining Term Frequencies on Few-Shot Reasoning" Razeghi et al. 2022.]

https://arxiv.org/abs/2202.07206
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In-context learning performance is highly correlated with 
term frequencies during pretraining 

["Impact of Pretraining Term Frequencies on Few-Shot Reasoning" Razeghi et al. 2022.]

Impact of Pretraining Term Frequencies

a
c
c
u
ra

c
y

https://arxiv.org/abs/2202.07206
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Why Does ICL Emerge? 

▪ We don’t know! 

▪ We have partial empirical explanations. 

▪ And some theoretical analogies. 

▪ But none of them fully explain ICL. 
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Prompting to Solve 
Multi-step Problems
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Some Problems Involve Reasoning 

Q: If there are 3 cars in the 

parking lot and 2 more cars 
arrive, how many cars are in 

the parking lot?

A: The answer is 5

Arithmetic Reasoning (AR)
(+ −×÷…)

Q: What home entertainment 

equipment requires cable?
Answer Choices: (a) radio shack

(b) substation (c) television (d) 

cabinet

A: The answer is (c).

Commonsense Reasoning (CR)

Q: Take the last letters of

the words in "Elon Musk"
and concatenate them

A: The answer is nk.

Symbolic Reasoning (SR)



200

Vanilla ICL on Reasoning Problems

Q: “Elon Musk” 

A: “nk”

Q: “Bill Gates” 

A: “ls”

Q: “Barack Obama” 

A:

LM

Input



[Denny Zhou]



How about adding more examples?

[Denny Zhou]



[Denny Zhou]
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CoT: Adding “thought” before “answer”

Q: “Elon Musk”

A: the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k" 

leads to "nk". so the output is "nk".
thought

Q: “Bill Gates”

A: the last letter of "Bill" is "l". the last letter of "Gates" is "s". Concatenating "l", "s" leads 

to "ls". so the output is "ls".

Q: “Barack Obama" 

A:

[Denny Zhou]
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CoT: Adding “thought” before “answer”

Q: “Elon Musk”

A: the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k"

leads to "nk". so the output is "nk".

Q: “Bill Gates”

A: the last letter of "Bill" is "l". the last letter of "Gates" is "s". Concatenating "l", "s" leads 

to "ls". so the output is "ls".

Q: “Barack Obama"

A: the last letter of "Barack" is "k". the last letter of "Obama" is "a". Concatenating "k", "a"

leads to "ka". so the output is "ka".

thought

[Denny Zhou]
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CoT: Adding “thought” before “answer”
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Apply CoT to Any Task
Though each task’s 

demonstrations need to be 

“engineered” manually! 
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Multi-Step Prompting: Steps Don’t Have to Be 
Correct! 

▪ It is possible even with invalid demonstrations

▪ Prompting with invalid reasoning steps can achieve over 80-90% of the performance 
with correct reasoning steps. 

[“Towards Understanding Chain-of-Thought Prompting”, Wang et al. 2022] 

https://arxiv.org/pdf/2212.10001.pdf
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Summary 

▪ Prompting language models is a powerful way to adapt them to our desired tasks. 

o We saw prompting via in-context demonstrations 

o We also saw various variants and extensions 

▪ They also serve as a gateway to understand the underlying dynamics inside models. 

▪ Lots of activity in this area and room for a lot of research progress. 
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Prompt Engineering

▪ Reformulating tasks to a language that is 
easier to for the models. 

o Show demonstrations 

o Decompose your problem 

o Ask for rationales (a la CoT) 

o Check for consistency 

o … 

▪ Question for you: will ”prompt engineering” 
be relevant topic in the coming years? 
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Alignment
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Things that Generative LMs Can Do

▪ Johns Hopkins University is in _______. [Trivia]

▪ I put _______ fork down on the table. [syntax]

▪ The woman walked across the street, checking for traffic over _______ shoulder. [coreference]

▪ I went to the ocean to see the fish, turtles, seals, and _______.  [lexical semantics/topic]

▪ What I got from the two hours watching it was popcorn. The movie was _______. [sentiment]

▪ Thinking about the sequence 1, 1, 2, 3, 5, 8, 13, 21, ___ [basic arithmetic]

[Slide credit: Jesse Mu]
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Language Modeling ≠ Following Human Instructions 

There is a mismatch between LLM pre-training and user intents.
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Language Modeling ≠ Following Human Instructions 

Human 

A giant rocket ship blasted off from Earth carrying  astronauts to the moon. The 

astronauts landed their  spaceship on the moon and walked around exploring the  

lunar surface. Then they returned safely back to Earth,  bringing home moon rocks to 

show everyone.

There is a mismatch between LLM pre-training and user intents.
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[Mis]Alignment in Language Models

▪ There is clearly a mismatch between what pre-trained models can do and what we 
want. 

▪ Addressing this gap is the focus of “alignment” research. 

o Making sure it does what its designers intended. 

o Making sure its outputs comply with rules.

o Making sure it produces outputs that comply with moral principles. 

o ….



216

[Mis]Alignment in a Broad Sense 

▪ “The result of arranging in or along a line, or into appropriate relative positions; the 
layout or orientation of a thing or things disposed in this way” — Oxford Dictionary 
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Alignment Problem is Everywhere! 

▪ This is a fundamental problem of human society. 

▪ Most things we do in our day-to-day life is an alignment problem. 

▪ Example 1: Alignment mechanisms in this class: 

o Me giving lectures; You asking questions; You solving homework assignments, …

▪ Example 2: Alignment mechanisms in our society: 

o Law and its enforcement; norms and cultures; markets, democracy, … 

[Slide Credit: Gillian Hadfield]
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Aligning Language Models: 
Instruction-tuning  
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Instruction-tuning 

▪ Finetuning language models on a collection of datasets that involve mapping 
language instructions to their corresponding desirable generations. 
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Instruction-tuning 

1. Collect examples of (instruction, output) pairs across many tasks and finetune an LM

2. Evaluate on unseen tasks

[Weller et al. 2020. Mishra et al. 2021; Wang et al. 2022, 

Sanh et al. 2022; Wei et al., 2022, Chung et al. 2022, many others ]
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Scaling Instruction-Tuning

[Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks, Wang et al. 2022 ]

Linear growth of model performance 
with exponential increase in observed tasks and model size. 

https://arxiv.org/abs/2104.08773
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Scaling Instruction-Tuning

▪ Instruction finetuning improves performance by 
a large margin compared to no finetuning

▪ Increasing the number of finetuning tasks 
improves performance

▪ Increasing model scale by an order of 
magnitude (i.e., 8B → 62B or 62B → 540B) 
improves performance substantially for both 
finetuned and non-finetuned models

[Scaling Instruction-Finetuned Language Models, Chung et al. 2022]

https://arxiv.org/abs/2210.11416
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Limits of Instruction-Tuning 

1. Difficult to collect diverse labeled data 

2. Rote learning (token by token) —

• limited creativity 

3. Agnostic to model’s knowledge —

• may encourage hallucinations The model itself should be involved in 

the alignment loop. 

Limited/sparse feedback—usually 

considered a curse, but now a blessing. 

“don't give a man fish rather teach him 

how to fish by himself”
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Aligning Language Models: 
Reinforcement Learning w/ Feedback
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Reinforcement Learning: Intuition

[figure credit]

Action here: generating responses/token

Reward here: whether humans 
liked the generation (sequence 

of actions=tokens)

https://www.analyticsvidhya.com/blog/2021/02/introduction-to-reinforcement-learning-for-beginners/
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Goal 

Task: choose the better next message in a conversation
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Feedback Mechanism 

Scoring interface: Likert scale or rankings
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Reinforcement Learning: Formalism

▪ An agent interacts with an environment by taking actions 𝑠𝑡.

▪ The environment returns a reward 𝑟𝑡 for the action 𝑠𝑡. 

▪ Agent uses a policy function 𝑝𝜃 to choose an action at a given state. 

▪ We need to figure out: (1) reward function 𝑟𝑡 and (2) the policy function 𝑝𝜃

[Fig credit: Nate Lambert]

Agent
𝑝𝜃(. )

The 
environment 

𝑠𝑡𝑟𝑡
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Reinforcement Learning 
from Human Feedback

▪ Imagine a reward function: 𝑅 𝑠; prompt ∈ ℝ for any output 𝑠 to a prompt.

▪ The reward is higher when humans prefer the output. 

▪ Good generation is equivalent to finding reward-maximizing outputs: 

[Slide credit: Jesse Mu]
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Reinforcement Learning 
from Human Feedback

▪ Imagine a reward function: 𝑅 𝑠; prompt ∈ ℝ for any output 𝑠 to a prompt.

▪ The reward is higher when humans prefer the output. 

▪ Good generation is equivalent to finding reward-maximizing outputs: 

▪ On the notation: 

o “𝔼” in practice is estimated empirically (i.e., average). 

o “~” indicates sampling from a given distribution. 

𝑝𝜃(𝑠) is a pre-trained model with
params 𝜃 we would like to 
optimize (policy function)

[Slide credit: Jesse Mu]

Expected reward over the 
course of sampling from our 

policy (generative model)

𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt
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▪ Imagine a reward function: 𝑅 𝑠; prompt ∈ ℝ for any output 𝑠 to a prompt.

▪ The reward is higher when humans prefer the output 

▪ Good generation is equivalent to finding reward-maximizing outputs: 

▪ What we need to do: 

o (1) Estimate the reward function 𝑅 𝑠; prompt . 

o (2) Find the best generative model 𝑝𝜃 that maximizes the expected reward: 

෠𝜃 = argmax𝜃𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

[Slide credit: Jesse Mu]

Reinforcement Learning 
from Human Feedback

𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt
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Step 1: Estimating the Reward 𝑅

▪ Obviously, we don’t want to use human feedback directly since that could be 

▪ Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]
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▪ Obviously, we don’t want to use human feedback directly since that could be 

▪ Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]

▪ Approach 2: ask for pairwise comparisons [Phelps et al. 2015; Clark et al. 2018]

Step 1: Estimating the Reward 𝑅

LM
Explain ”space elevators” to 

a 6-year-old. 

It is like any typical elevator, 

but it goes to space. … 

Explain gravity to a 6-year-

old.  …

𝑠1

𝑠2

Pairwise comparison of multiple 
provides which can be more reliable 

Bradley-Terry [1952] 
paired comparison model

𝑝𝜃

prompt

𝑠1, 𝑠2~𝑝𝜃
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LM
Explain ”space elevators” to 

a 6-year-old. 

It is like any typical elevator, 

but it goes to space. … 

Explain gravity to a 6-year-

old.  …

R

Step 1: Estimating the Reward 𝑅

𝑠1

𝑠2

“winning”
sample

“losing”
sample

𝑝𝜃

𝐽 𝜙 = −𝔼(𝑠+,𝑠−) log 𝜎 𝑅 𝑠+; prompt − 𝑅 𝑠−; prompt

prompt

𝑠1, 𝑠2~𝑝𝜃
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Step 1: Estimating the Reward 𝑅

“winning”
sample

“losing”
sample

𝐽 𝜙 = −𝔼(𝑠+,𝑠−) log 𝜎 𝑅 𝑠+; prompt − 𝑅 𝑠−; prompt

𝑅 𝑠1; prompt = 0.8

𝑅 𝑠2; prompt = 1.2

LM
Explain ”space elevators” to 

a 6-year-old. 

It is like any typical elevator, 

but it goes to space. … 

Explain gravity to a 6-year-

old.  …

R

𝑠1

𝑠2

The reward model returns a 

scalar reward which should 
numerically represent the 

human preference. 

𝑝𝜃
prompt

𝑠1, 𝑠2~𝑝𝜃
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Scaling Reward Models 

Large enough reward
trained on large enough 
data approaching 
human performance. 

[Stiennon et al., 2020]

R

https://arxiv.org/abs/2009.01325
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Step 2: Optimizing the 
Policy Function

▪ Policy function := The model that makes decisions (here, generates responses)

▪ How do we change our LM parameters 𝜃 to maximize this?

LM
Explain ”space elevators” to a 

6-year-old. RIt is basically …. 

መ𝜃 = argmax𝜃 𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

Ƹ𝑠~𝑝𝜃𝑝𝜃
prompt
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Step 2: Optimizing the 
Policy Function

▪ Policy function := The model that makes decisions (here, generates responses)

▪ How do we change our LM parameters 𝜃 to maximize this?

▪ Let’s try doing gradient ascent!

▪ Turns out that we can write this “gradient of expectation” to a simpler form.

መ𝜃 = argmax𝜃 𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 ∇𝜃𝑡
𝔼 Ƹ𝑠~𝑝𝜃

𝑅 Ƹ𝑠; prompt

How do we estimate 
this expectation? 

[Slide credit: Jesse Mu]
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Policy Gradient [Williams, 1992]

701.741 Huggingface’s course

▪ How do we change our LM parameters 𝜃 to maximize this?

▪ Let’s try doing gradient ascent!

▪ With a bit of math, this can be approximated as Monte Carlo samples from 𝑝𝜃(𝑠):

▪ This is “policy gradient”, an approach for estimating and optimizing this objective.

▪ Oversimplified. For full treatment of RL see 701.741 course, or Huggingface’s course

መ𝜃 = argmax𝜃 𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 ∇𝜃𝑡
𝔼 Ƹ𝑠~𝑝𝜃

𝑅 Ƹ𝑠; prompt

[Slide credit: Jesse Mu]

∇𝜃𝔼𝑠~𝑝𝜃
𝑅 𝑠; prompt ≈

1

𝑛
෍

𝑖=1

𝑛

𝑅 𝑠𝑖; prompt ∇𝜃 log 𝑝𝜃 𝑠𝑖

Proof next slide; check it 
later in your own time!

https://ep.jhu.edu/courses/705741-reinforcement-learning/
https://huggingface.co/deep-rl-course/unit0/introduction
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Derivations (check it later in your own time!)

▪ Let’s compute the gradient:

▪ Log-derivative trick   ∇𝜃𝑝𝜃 𝑠 = 𝑝𝜃 𝑠 . ∇𝜃 log 𝑝𝜃 𝑠 to turn sum back to expectation: 

▪ Approximate this expectation with Monte Carlo samples from 𝑝𝜃 𝑠 :

∇𝜃𝔼𝑠~𝑝𝜃(𝑠) 𝑅 𝑠; 𝑝 = ∇𝜃 ෍

𝑠

𝑝𝜃(𝑠)𝑅(𝑠; 𝑝) = ෍

𝑠

𝑅 𝑠; 𝑝 . ∇𝜃𝑝𝜃 𝑠

Def. of “expectation” Gradient distributes over sum

∇𝜃𝔼𝑠~𝑝𝜃(𝑠) 𝑅 𝑠; 𝑝 = ෍

𝑠

𝑅 𝑠; 𝑝 𝑝𝜃 𝑠 ∇𝜃 log 𝑝𝜃 𝑠 = 𝔼𝑠~𝑝𝜃(𝑠) 𝑅 𝑠; 𝑝 ∇𝜃 log 𝑝𝜃 𝑠

Log-derivative trick

∇𝜃𝔼𝑠~𝑝𝜃(𝑠) 𝑅 𝑠; 𝑝 ≈
1

𝑛
෍

𝑖=1

𝑛

𝑅 𝑠; 𝑝 ∇𝜃 log 𝑝𝜃 𝑠



241

Policy Gradient [Williams, 1992]

▪ This gives us the following update rule: 

▪ If 𝑅 𝑠; 𝑝 is large, we take proportionately large steps to maximize 𝑝𝜃(𝑠)

▪ If 𝑅 𝑠; 𝑝 is small, we take proportionately small steps to maximize 𝑝𝜃(𝑠)

This is why it’s called “reinforcement learning”: 
we reinforce good actions, increasing the chance they happen again.

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼
1

𝑛
෍

𝑖=1

𝑛

𝑅 𝑠; 𝑝 ∇𝜃 log 𝑝𝜃 𝑠

[Slide credit: Jesse Mu]

Note, 𝑅 𝑠; 𝑝 could be any arbitrary, non-
differentiable reward function that we design. 
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Putting it Together 

▪ First collect a dataset of human preferences

o Present multiple outputs to human annotators and ask them to rank the output 
based on preferability

Policy

LM
Prompt X 

Output 1

Output 2

Output 1

Output 2

…

✓

✘

✓

✘

Human annotators 

specify their preferences
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Putting it Together (2)

▪ Using this data, we can train a reward model

o The reward model returns a scalar reward which should numerically represent 
the human preference. 

Policy

LM
Prompt X R

Output 1

Output 2

Output 1

Output 2

…

✓

✘

✓

✘
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Putting it Together (3)

▪ We want to learn a policy (a Language Model) that optimizes against the reward 
model

Policy

LM
Prompt X Output R 𝑅

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 ∇𝜃𝑡
𝔼 Ƹ𝑠~𝑝𝜃

𝑅 Ƹ𝑠; 𝑝

Reinforcement learning update
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Putting it Together (4)

▪ Periodically train the reward model with more samples and human feedback

Policy

LM
Prompt X Output R 𝑅

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 ∇𝜃𝑡
𝔼 Ƹ𝑠~𝑝𝜃

𝑅 Ƹ𝑠; 𝑝

Output 1

Output 2

Output 1

Output 2

…

✓

✘

✓

✘
Periodically train 

the reward model

Reinforcement learning update
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One missing ingredient 

▪ It turns out that this approach doesn’t quite work. (Any guesses why?)

o The policy will learn to “cheat”.

Policy

LM
Prompt X Output R 𝑅

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 ∇𝜃𝑡
𝔼 Ƹ𝑠~𝑝𝜃

𝑅 Ƹ𝑠; 𝑝

Output 1

Output 2

Output 1

Output 2

…

✓

✘

✓

✘
Periodically train 

the reward model

Reinforcement learning update
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One missing ingredient 

▪ Will learn to produce an output that would get a high reward but is gibberish or 
irrelevant to the prompt.

▪ Note, since 𝑅 𝑠; 𝑝 is trained on natural inputs, it may not generalize to unnatural inputs. 

Policy

LM
Prompt X Output R 𝑅

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 ∇𝜃𝑡
𝔼 Ƹ𝑠~𝑝𝜃

𝑅 Ƹ𝑠; 𝑝

Output 1

Output 2

Output 1

Output 2

…

✓

✘

✓

✘
Periodically train 

the reward model

Reinforcement learning update

How do you resolve this? 



248

Regularizing with Pre-trained Model 

▪ Solution: add a penalty term that penalizes too much deviations from the 
distribution of the pre-trained LM. 

▪ Prevents the policy model from diverging too far from the pretrained model.

▪ This regularization is equivalent to adding a KL-divergence regularization term. 

෠𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝𝑅𝐿 𝑠

𝑝𝑃𝑇 𝑠
pay a price when

𝑝𝑅𝐿 𝑠  > 𝑝𝑃𝑇(𝑠) Pre-trained 

model

Policy model
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RLHF: Putting it All Together [Stiennon et al. 2020]

1. Select a pre-trained generative model as your base: 𝑝𝜃
𝑃𝑇 𝑠

2. Build a reward model 𝑅 𝑠; 𝑝 that produces scalar rewards for outputs, trained on a 
dataset of human comparisons

3. Regularize the reward function: 

4. Iterate: 

1. Fine-tune the policy 𝑝𝜃
𝑅𝐿(𝑠) to maximize our reward model 𝑅 𝑠; 𝑝

2. Occasionally repeat repeat 2-3 to update the reward model. 

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼
1

𝑛
෍

𝑖=1

𝑛

෠𝑅 𝑠; 𝑝 ∇𝜃 log 𝑝𝜃
𝑅𝐿 𝑠

෠𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝𝑅𝐿 𝑠

𝑝𝑃𝑇 𝑠
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GPT3 vs. InstructGPT3 (RLHF-ed)
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GPT3 vs. InstructGPT3 (RLHF-ed)
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The overall recipe 

Pre-train
Align 

(instruct-tune)
Align 
(RLHF)
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The overall recipe : 
Yann’s Three-layered cake 

Cake génoise

Pre-train
Align 

(instruct-tune)
Align 
(RLHF)

Cherry on the 

cake

Icing
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Failures and Challenges 
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RL Failure: Reward Hacking

▪ ”Reward hacking” is a common problem in RL

▪ Goodhart’s law— when a measure becomes a target, it ceases to be a good measure. 
(i.e., the proxy ceases to track the actual thing that you care about)

[https://openai.com/blog/faulty-reward-functions/]

[Concrete Problems in AI Safety, 2016]

https://arxiv.org/pdf/1606.06565.pdf
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Reward Over-optimization

▪ Regularizing reward model is a delicate dance balancing: 

o Distance to the prior 

o Following human preferences  

• The reward might be over-optimized; the reward might 
be increasing but the actual preferences may degrade. 

• Why does over-optimization happen?

o The proxy reward is estimated and there are parts 
of input space that are poorly estimated. 

Reward model over-optimization

[Scaling Laws for Reward Model Overoptimization, 2022]

𝐽 𝜋𝜃 = 𝔼 Ƹ𝑠~𝜋𝜃
𝑅 Ƹ𝑠; 𝑝 − 𝛽𝐷𝐾𝐿(𝜋𝜃||𝜋ref)

https://arxiv.org/pdf/2210.10760.pdf
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Direct Policy Optimization
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Simplifying RLHF: 

Direct Policy Optimization (DPO)

Direct Preference Optimization: Your Language Model
is Secretly a Reward Model (Rafailov et al., 2023)

▪ DPO directly optimizes for human preferences 

o avoiding RL and fitting a separate reward model

▪ One can use mathematical derivations to simplify the RLHF objective to an equivalent 
objective that is simpler to optimize. 

RLHF objective DPO objective 
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DPO Algorithm 

▪ Algorithm: 

1. Create a preference data 

2. Optimize the language model to minimize the DPO objective. 
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DPO Limitations 

▪ You’re trying to optimize multiple things
which can potentially override each other. 

▪ In practice, when using DPO practitioners constantly monitor these terms. 
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Alignment with 
Model-Generated (Synthetic) Data
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RLHF/Instruction-tuning is Data Hungry 

▪ Idea: Use LMs to generate data for aligning them with intents. 

o Self-Instruct [Wang et al. 2022] 

• Uses vanilla (not aligned) LMs to generate data 
• That can then be used for instructing itself. 

▪ More related work: 
o Unnatural Instructions [Honovich et al. 2022] — Similar to “Self-Instruct” 
o Self-Chat [Xu et al. 2023] — ”Self-Instruct” extended to dialogue 
o RL from AI feedback [Bai et al., 2022],
o Finetuning LMs on their own outputs [Huang et al., 2022; Zelikman et al., 2022]

LM Model output

https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.09689
https://arxiv.org/pdf/2304.01196.pdf
https://arxiv.org/abs/2204.05862
https://openreview.net/forum?id=NiEtU7blzN
https://arxiv.org/abs/2203.14465
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Get humans to write ”seed” tasks 

263

175 seed 
tasks 

• I am planning a 7-day trip to Seattle. Can you make a detailed plan for me? 
• Is there anything I can eat for breakfast that doesn’t include eggs, yet 

includes protein and has roughly 700-100 calories?
• Given a set of numbers find all possible subsets that sum to a given number.
• Give me a phrase that I can use to express I am very happy. 
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Put them your task bank 

264

175 seed 
tasks 

• I am planning a 7-day trip to Seattle. Can you make a detailed plan for me? 
• Is there anything I can eat for breakfast that doesn’t include eggs, yet 

includes protein and has roughly 700-100 calories?
• Given a set of numbers find all possible subsets that sum to a given number.
• Give me a phrase that I can use to express I am very happy.

task pool



265

Sample and get LLM to expand it

265

175 seed tasks 

• I am planning a 7-day trip to Seattle. Can you make a detailed plan for me? 
• Is there anything I can eat for breakfast that doesn’t include eggs, yet 

includes protein and has roughly 700-100 calories?
• Given a set of numbers find all possible subsets that sum to a given number.
• Give me a phrase that I can use to express I am very happy.

task pool

LM suggests 
new tasks

LM Pre-trained, but not aligned yet

• Create a list of 10 African countries and their capital city?
• Looking for a job, but it’s difficult for me to find one. Can you help me?
• Write a Python program that tells if a given string contains anagrams. 
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Get LLM to answers the new tasks

266

• Task: Convert the following temperature from Celsius to Fahrenheit.
• Input: 4 °C
• Output: 39.2 °F 

• Task: Write a Python program that tells if a given string contains anagrams. 

• Input: -
• Output: 

def isAnagram(str1, str2): ...

LM Pre-trained, but not aligned yet

175 seed tasks 
task pool

LM suggests 
new tasks

LM suggests 
answers
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Filter tasks

▪ Drop tasks if LM assigns low probability to them. 

▪ Drop tasks if they have a high overlap with one of the existing tasks in the task pool.

o Otherwise, common tasks become more common — tyranny of majority.  

267

175 seed tasks 
task pool

LM suggests 
new tasks

LM suggests 
answers

LM suggests 
answers

filter out if 
not novel or confident



268

Close the loop 

▪ Add the filtered tasks to the task pool. 

▪ Iterate this process (generate, filter, add) until yield is near zero.

268

175 seed tasks 
task pool

LM suggests 
new tasks

LM suggests 
answers

LM suggests 
answers

filter out if 
not novel or confident
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Self-Instructing GPT3 (base version)

▪ Generate: 

o GPT3 (“davinci” engine).

o We generated 52K instructions and 82K instances.

o API cost ~$600

▪ Align: 

o We finetuned GPT3 with this data via OpenAI API (2 epochs). **

o API cost: ~$338 for finetuning

269

175 seed tasks 
task pool

LM suggests 
new tasks

LM suggests 
answers

LM suggests 
answers

filter out if 
not novel or confident
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Evaluation on User-Oriented Instructions

2

7

0

[Self-Instruct: Aligning Language Model with Self-Generated Instructions, Wang et al. 2023]
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Evaluation on User-Oriented Instructions

2

7

1

LM pretraining

vanilla GPT3 (davinci)

GPT3-instruct (davinci-001)

+ instruct-tuning

Noisy, but diverse “self-instruct” data ~ 

thousands of clean human-written data

[Self-Instruct: Aligning Language Model with Self-Generated Instructions, Wang et al. 2023]
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Summary Thus Far 

 Evidence suggest that we probably can reduce the reliance on human

annotations in the “alignment” stage

● Data diversity seems to be necessary for building successful generalist models. 

 Self-Instruct: Rely on creativity induced by an LLM’s themselves. 

● Applicable to a broad range of LLMs.

● Several open-source models utilize “Self-Instruct” data. 

2
7
2

(* See also concurrent work: Unnatural-Instructions [Honovich et al. 2022] and Self-Chat [Xu et al. 2023] )



273

Impact: Learning from AI Feedback

▪ Open-source models adopted Self-Instruct data generation. 

o Alphaca, Zephyr, etc. 

▪ LLMs used directly as a reward during alignment, skipping the data generation. 

[Taori et al. 2023; Tunstall et al. 2023]

[Lee et al. 2023; many others]

LM Model output
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Training LLMs with LLM Feedback: 
The Bottleneck

▪ Model feedback is a powerful idea, but … 

▪ It has many limitations …  

o It amplifies existing biases.

o It is still confined to the [implicit] boundaries defined by the its prompts.

o LLMs work best in high-data regime. They fail when data is thin. 

▪ Training with self-feedback is unlikely to be the way to 
the moon! 

LM Model output

log-popularity

a
c

c
u

ra
c

y

[Mallen et al. 2022; Razeghi et al. 2022; many others]
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Brief on “Scaling”
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Model Size vs. Accuracy
Photo credit:PaLM, Chowdheryet.al.,2022

Larger LMs ⇒  better zero/few-shot performance
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“More is Different”

▪ The idea that complex physical systems can behave in 
ways that can't be understood by the laws that govern 
their microscopic parts.

▪ Anderson also gives an example of "More is Different" 
at the molecular level. 

o He describes a peculiar broken symmetry that 
appears in larger-scale molecules, which seems to 
go against a law defined at the smaller scale. 

o This broken symmetry is a new effect that 
appears when the scale changes.

▪ Anderson argues that new properties appear at each 
level of complexity. 

o For example, although chemistry is subject to the 
laws of physics, we can't infer chemistry from our 
knowledge of physics. 
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Scaling Laws

▪ Hypothesis: there are fundamental principles that govern effective scaling 

▪ Importance: understanding these “laws” would allow us to find optimal 
models for a given data/compute budget. 

▪ Think of Newton’s laws 

o Provide the basis for understanding and analyzing the motion of objects 
in the physical world

o Can be used to calculate the trajectory of a rocket, the speed of a car, 
or the motion of a planet.



279

Constraints of Real World 

▪ Even massive companies have their own 
constraints. 

▪ Examples of constraints: 

o The total amount of data 

o The total computing budget. 

o Time 

o ….

▪ Given a set of constraints, how do 
you choose which LM to train? 

o Note, trial and error is wasteful. 
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Quantifying Computation Cost of Models 

▪ How do you compute computational cost of a single-layer NN with one matrix 
multiplication?
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FLOPS

▪ Floating point operations per second (FLOPS, flops or flop/s) 

o Each FLOP can represent an addition, subtraction, multiplication, or division of 
floating-point numbers, 

▪ We want to compute the total FLOP of a model (e.g., Transformer) 

o Provides a basic approximation of computational costs associated with that 
model.

▪ Our models are just a bunch of matrix multiplications. 
Let’s estimate the FLOPS of matrix operations… 
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FLOPS: Matrix Multiplication

(Why? Think about FLOPS for forward and backward separately …)

Training FLOPs for multiplying by a matrix W 

≈ 6 x (batch size) x (size of W)

Inference FLOPs for multiplying by a matrix W 

≈ 2 x (batch size) x (size of W)
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Computing the computational cost of Transformer 
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Transformer FLOPs: The Quick Estimate

▪ The Weight FLOPs Assumption 

o The FLOPs that matter the most are weight FLOPs, that is ones performed when 
intermediate states are multiplied by weight matrices.

o The weight FLOPs are the majority of Transformer FLOPs 

o We can ignore FLOPs for 

• Bias vector addition 

• layer normalization 

• residual connections 

• non-linearities 

• Softmax

The FLOPs Calculus of Language Model Training, Dzmitry Bahdanau (2022)
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Transformer FLOPs: The Quick Estimate

▪ Let N be number of parameters (the sum of size of all matrices)

▪ Let D be the number of tokens in pre-training dataset.  

▪ The total cost of pre-training on this dataset is:  

o We are ignoring the non-matrix operators (normalization, non-
linearities, etc.)

C ~ 6ND
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Transformer FLOPs

▪ Given the pre-training data with 400B tokens. 

𝐶 ≈ 6𝑁𝐷
= 6 × 400 × 109

× 52 × 109

= 1.24 × 1023

Training cost (FLOPs): 

Table from: A General Language Assistant 
as a Laboratory for Alignment, 2021



287

Estimating training time

• This is a very practical question in real world. 

• We will use our formula earlier to estimate training time. 

• Consider HyperCLOVA, an 82B parameter model that was pre-trained on 
150B tokens, using a cluster of 1024 A100 GPUs. 

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021 
https://arxiv.org/pdf/2109.04650.pdf

https://arxiv.org/pdf/2109.04650.pdf
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Estimating training time

A100 GPUs

• Consider HyperCLOVA, an 82B parameter model that 
was pre-trained on 150B tokens, using a cluster of 1024 A100 GPUs. 

• Training cost (FLOPs): 

• The peak throughput of A100 GPUs if 312 teraFLOPS or 3.12
× 1014.  

• How long would this take?

𝐶 ≈ 6𝑁𝐷
= 6 × 150 × 109 × 82 × 109 = 7.3 × 1022

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021 
https://arxiv.org/pdf/2109.04650.pdf

Duration =
model compute cost

cluster throughput
=

7.3 ×1022

3.12 ×1014× 1024
= 2.7 days

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://arxiv.org/pdf/2109.04650.pdf
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Estimating training time

• How long would this take?

• According to the white paper, training took 13.4 days. Our estimate is 
5 times off (why?), but we did get the order of magnitude right! 

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021 
https://arxiv.org/pdf/2109.04650.pdf

Duration =
model compute cost

cluster throughput
=

7.3 ×1022

3.12 ×1014× 1024
= 2.7 days

https://arxiv.org/pdf/2109.04650.pdf
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Factors We Did Not Consider

• Note that these estimates can be slightly off in practice
• Theoretical peak throughput is not achievable with distributed training. 

(unless your model only does large matrix multiplications). 

• We ignored many additional operations like softmax, ReLU/GeLU activations, 
self-attention, Layer Norm etc.

• Training divergence and restarting from earlier checkpoints are not uncommon. 

▪ There are various factors that contribute to computation latency

o Communication latency, memory bandwidth, caching, etc. 

o See https://kipp.ly/transformer-inference-arithmetic/ for an excellent discussion. 

https://kipp.ly/transformer-inference-arithmetic/
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Summary 

▪ One can measure the computational cost of training neural networks in terms of 
FLOPS.  

▪ Such estimates allow you to estimate the training time of your model, given your 
GPU specs. 

▪ What else can we do? 
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Optimal Scaling 
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Optimal Scaling 

▪ A real problem: Your boss gives you a compute budget $$$. What is the best 
model you can build with this budget? 

▪ We know from the literature that larger models generally lead to better models. 

o Does that mean that you should aim to build the largest model possible? 

▪ Intuitively, if you choose a model that is too large for your budget, you need to cut 
your training cycles that may reduce its quality. 

▪ This chapter: principled approach to selecting optimal data/model scaling. 
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Optimal  
model  
size for  
compute

Photo credit: GPT3, Brown et. al., 2020

Scaling 

Experimental Setup: 

▪ Pre-train various models of different sizes 

▪ Plot their validation loss throughout training
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Small model  
plateaus early

Large model  
reaches lower loss

Photo credit: GPT3, Brown et. al., 2020

Scaling

▪ Smaller models don’t have enough capacity  
to utilize the extra compute. They plateau  
early.

▪ Larger models are initially slower to train, 
but  with more compute they reach lower
losses.
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Photo credit: GPT3, Brown et. al., 2020

Scaling -Optimal Model Size

▪ Let’s say our compute budget is 𝐶 = 10−2 PetaFLOPs-
days. 

o The optimal model is the one that plateaus at 
exactly 𝐶.  

o If we train a larger model than optimality point, 
we won’t reach the best performance. 

o If we train a smaller model the performance 
wouldn’t be optimal

▪ The idea of “optimal model size for given compute”
was introduced by Kaplan et. al.

▪ If we have the equations (“laws”) describing the 
behavior, we can compute it analytically. 

Optimality

Optimal model
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Scaling Laws: Kaplan et al. 

▪ Optimal model size and optimal number of tokens, for a given compute budget

𝑁opt exponent  >>  𝐷opt exponent

▪ Takeaway: grow the model size faster than growing the number of tokens.

o Example: Given 10x compute, increase N by 5.5x, and D by 1.8x

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

N: number of model parameters 
C: compute 
D: dataset size 

Kaplan et. al. 2020 𝑁opt ∝ 𝐶0.73 𝐷opt ∝ 𝐶0.27

[MASK] [MASK]

https://github.com/allenai/acl2022-zerofewshot-tutorial/
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However …

▪ In 2022 a Hoffmann et al. from DeepMind showed a different set of scaling laws.
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Scaling Laws: Hoffmann et al. 

▪ Optimal model size and optimal number of tokens, for a given compute budget

𝑁opt exponent ≅ 𝐷opt exponent

▪ Compute and tokens should increase at the same rate.

o Example 1: Given 10x compute, grow N by 3.2x and D by 3.2x

o Example 2: Given 100x compute, grow N by 10x and D by 10x

Kaplan et. al. 2020

Hoffmann et. al., 2021

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

N: number of model parameters 
C: compute 
D: dataset size 

𝑁opt ∝ 𝐶0.73 𝐷opt ∝ 𝐶0.27

𝑁opt ∝ 𝐶0.5 𝐷opt ∝ 𝐶0.5

[MASK] [MASK]

https://github.com/allenai/acl2022-zerofewshot-tutorial/
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Recap

▪ We used to train “oversized” and “under-trained” models.

▪ You should scale your model at the same rate as your data. 

▪ For example, if you get a 100x increase in compute,

o you should make your model 10x bigger and your data 10x bigger.
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A Word of Caution

▪ While we kept referring to these as “law”, one should take them with grain of salt. 

▪ There are various confounding factors here:

o Different optimizer: AdamW vs. Adam vs. others

o Different tokenizers 

o Different numerical representation (e.g., bfloat16 vs float32)

o ….
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Is Scale All You Need?
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Is Scale All We Need? 

▪ For what purpose? 

o For building useful applications 
(answering simple questions, 
translating simple sentences) we 
already have good models. Not our 
focus. 

o General intelligence: think of an 
assistant that is always with you, 
knows what you want, assists you 
with anything you need. 

Do you agree with Nando?
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Argument: Not Enough Compute

Limitations regarding compute: 

▪ There is simply not enough compute available.

o Models have been increasing 10x every year 

o Moore’s law: # of transistors on an IC doubles about every two years.

o There are physical limits to how much faster computers can get. 

▪ Even if we have the compute, scaling the compute will be quite costly. 

▪ Scaling compute is simply infeasible. [QED] 

Are you convinced?
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Rebutting “Not Enough Compute”

▪ On insufficiency of compute resource:

o Hardware technologies continue to progress at a rapid pace. 

o Huang’s law: advancements in GPUs happen at much faster rate than what 
Moore predicted. 

o So much potentials in parallel computing. 

▪ On cost-[in]efficiency of scaling:

o While models like GPT3 cost a lot (monetary or otherwise), their availability 
prevent training MANY smaller, mediocre models. 

o Therefore, it might be that the net cost of scaling large models is negative. 

• It is the case within Microsoft according to its CTO, Kevin Scott. 
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Argument: Not Enough Data

▪ Hoffmann et al showed that, to be compute-optimal, model size and training data 
must be scaled equally. 

▪ It shows that existing LLMs are severely data-starved and under-trained. 

▪ Given the new scaling law, even if you pump a billions of params into a model, the 
gains will not compensate for more training tokens. 

▪ There is simply not enough [language] data. [QED] 

[Training Compute-Optimal Large Language Models. Hoffmann+ NeurIPS, 2022]

Are you convinced?
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Rebutting “Not Enough Data” 

▪ Data is growing exponentially (?)

Wikipedia size
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Rebutting “Not Enough Data” (2)

▪ You can harness data from other modalities. 

o For example, to get more text data we can build a solid speech processor model 
that converts speech to text. 

o (aside: more than 80% if internet traffic is video) 

o (aside2: is that why OpenAI built Whisper?!) 

["Robust speech recognition via large-scale weak supervision." Radford+ 2022]
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Argument: Scale is Not all You Need Because 
of Tail Phenomena 

▪ Tail phenomena will never go away! 

tasks

p
o

p
u
la

rity

Head tasks: 

• Translating simple sentences 

• Generate rhyming sentence 

• Indicating spans of location

• …
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Argument: Scale is Not all You Need Because 
of Tail Phenomena 

▪ Tail phenomena will never go away! 

tasks

p
o

p
u
la

rity

Tail tasks: 

• Translation while while retaining rhyme scheme.

• Extract all ACL conference chairs since 1990.

• Do literature review summarizing human studies on corona 

viruses.



311

Argument: Scale is Not all You Need 
Because of Tail Phenomena 

Impact of Pretraining Term Frequencies on Few-Shot Reasoning, Razeghi+ 2022

Large Language Models Struggle to Learn Long-Tail Knowledge, Kandpal+ 2022
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Argument: Scale is Not all You Need Because 
of Tail Phenomena 

▪ Hence, scale won’t solve the tail phenomena. [QED] 

tasks

p
o

p
u
la

rity

Head tasks: 

• Translating simple sentences 

• Generate rhyming sentence 

• Indicating spans of location

• …

Let’s do a poll! 
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Argument: Scale is Not all You Need 
Because of Tail Phenomena 

▪ How do you rebut this??
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Long Context: 
Efficiency and Generalization
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▪ Length generalization: Do Transformers 
work accurately on long inputs? 

o We will read papers on this topic.

▪ Efficiency considerations: How efficient
are LMs are long inputs? 

Transformer LMs and Long Inputs
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Efficiency via sparsity
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Sparse Attention Patterns

▪ The idea isto makethe attention operation sparse

[NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters]

https://github.com/allenai/naacl2021-longdoc-tutorial/
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Sparse Attention Patterns: Challenge

▪ Ok sparsity is great, but how to efficiently implement this?

▪ Challenge: Arbitrary sparse matrix multiplication is not supported in DL
libraries 

▪ A solution: Perform computations in blocks

▪ There are libraries for implementing 
blockified sparse matrix multiplication. 

o Can be hardware specific
o Block Sparse (Gray et al., 2017)
o TVM toolkit (Chen et al., 2018)
o cuSPARSE

[NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters]

https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://www.usenix.org/conference/osdi18/presentation/chen
https://github.com/allenai/naacl2021-longdoc-tutorial/
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Pre-specified Sparsity Patterns

▪ A variety of patterns hasbeen explored inthe past work
o Longformer (Beltagy et al., 2020), Sparse Transformer (Child et al., 2019), …

Slidingwindow Dilated Global Blocked

SparseTransformer 

Longformer

Longformer
Big Bird Big Bird

Random

Big Bird 

Sinkhorn

[NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters]

https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/1904.10509.pdf
https://github.com/allenai/naacl2021-longdoc-tutorial/
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Pre-specified Sparsity Patterns

▪ Different layers and attention heads can follow 
different patterns

▪ A common setup is to have earlier layers with sparser 
attention pattern. 

o Longformer (Beltagy et al., 2020)

https://arxiv.org/pdf/2004.05150.pdf
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A Notable Adoption: GPT-3 

▪ Sparse patterns also used in GPT-3 (Brown et al., 2020)

https://arxiv.org/pdf/2005.14165.pdf
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Summary 

▪ How well do Transformers work on long sequences? Not so well. 

▪ How can we make them more efficient? Induce sparsity. 

▪ We will see papers on other aspects of efficiency: 

o Quantization 

o Effective use of compute (GPUs) 

o Architectural variations 

o … 
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Retrieval-augmented LMs
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Retrieval-based Language Models

• It is a language model P(xn|x1,x2, ⋯, xn−1)

The capital city of Ontario is 

(can be broadly extended to masked language 

models or encoder-decoder models)

• It retrieves from an external datastore (at least during inference time)

(Also referred to semiparametric 
and non-parametric models)

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Why retrieval? 

▪ LLMs can’t memorize all (long-tail) knowledge in their parameters 

Geoffrey Hinton is a renowned computer scientist … 

Here are five important papers authored by him:

1. "Learning Internal Representations by Error 

Propagation" (with D. E. Rumelhart and R. J. 

Williams) - This paper, published in 1986, ..

2. "Deep Boltzmann Machines" (with R.

Salakhutdinov) - Published in 2009, ..
…

4. "Deep Learning" (with Y. Bengio and A. Courville) -

Published as a book in 2016,…

List 5 important papers authored by Geoffrey Hinton

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Why retrieval? 

▪ LLMs can’t memorize all (long-tail) knowledge in their parameters 

▪ LLMs’ knowledge is easily outdated and hard to update

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]

Who is the CEO of Twitter?

As of my knowledge cutoff in 

September 2021, the CEO of 

Twitter is Jack Dorsey….

• The datastore can be easily updated and

expanded - even without retraining!
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Anatomy of a Neural Retriever

value

value

value

value

input

We have a “datastore” that 

contains a variety 
of documents 

Given an input, we want to 

find the relevant docs 
from the datastore
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Anatomy of a Neural Retriever

1. Score the input against each key.

2. Return the value for the highest scoring key.

key

key

key

key

value

value

value

value

input

1.2

0.3

6.8

7.1

[Slides: Kelvin Guu]

A similarity function: sim(input, key) → score
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Similarity via Sentence Embeddings

▪ Advantages: 

o Differentiable -- can optimize 
with gradient descent.

▪ Disadvantages: 

o Works well for data on which 
your LM is pre-trained on. 

sim(I,M)= Encoder(I) x Encoder(M)

[Slides: Kelvin Guu]

input

input vector

memory

memvector

dot product
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Thus far: Data store documents can be 
represented as word embeddings. 

Now how do we find the most relevant ones?
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Finding Nearest Neighbors 

[Slides: Yusuke Matsui]
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Approximate Finding Nearest Neighbors 

[Slides: Yusuke Matsui]



29

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Service (e.g., vector DB)
➢ Library + (handling metadata,

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ) 

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW) 

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI 
Matching Engine

Vald

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

faiss

NMSLIB

hnswlib

ScaNN

jina

[Slides: Yusuke Matsui]

Approximate NNs: Algorithms, Libraries, Services 



Three levels of technology
Algorithm Library Service (e.g., vector DB)
➢ Scientific paper ➢ Implementations of algorithms ➢ Library + (handling metadata,
➢ Math ➢ Usually, a search function only serving, scaling, IO, CRUD, etc)
➢ Often, by researchers ➢ By researchers, developers, etc ➢ Usually, by companies

Pinecone

Qdrant

Milvus

NMSLIB jina

Vald Vertex AI

ScaNN (4-bit PQ)
hnswlib Matching Engine

[Guo+, ICML 2020]

ScaNN Weaviate

30

Product Quantization + 
Inverted Index (PQ, IVFPQ) 

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW) 

[Malkov+, TPAMI 2019]

faiss

One library may implement
multiple algorithms

“I benchmarked faiss”
“I benchmarked PQ in faiss”

[Slides: Yusuke Matsui]
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Let’s assume that we have our 
retrieval engine and data ready
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Retrieval-Augmented LM

▪ x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Summary

● How do we enable LMs to utilize external knowledge? 
● Retrieval-augmented language models  

● A retriever is a function, f(input, memory) → score

● What we did not discuss:
● Attribution: Tracing decisions to the source knowledge
● How to modify the knowledge 
● Conflicting knowledge
● Editing knowledge 
● More efficient scaling 
● ....  
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