
Gus Fridell, Jason Zuo
10/14/2025 CS 601.771

Motivation

- There is a discrepancy between theoretical improvements and observed
performance in context length

- LLMs demonstrate effective context lengths <50% of training length
- 2 main reasons:

- undertraining of long distance position indices during pre-training and post-training (left
skewness)

- Compounded by inherent difficulty in modeling long-range dependencies

Hsieh, et al., 2024.

RULER: What's the Real Context Size of Your Long-Context Language
Models?

Eff. Length := max(length) >= Llama2(7B) 4K

Problem: Left-Skewed Position Frequency Distribution

“How many times do we compute attention between tokens separated by distance i?”

Intuition: Properties of RoPE

● for queries and keys, qᵢ = Rᵢ · q (rotate query with rotation matrix Rᵢ)
● kⱼ= Rⱼ· k (rotate key with rotation matrix Rⱼ)
● attention score: qᵢT * kⱼ = (Rᵢ · q)T · (Rⱼ· k) = qT · RᵢT · Rⱼ· k = qT Rj-ik

○ rotation matrices are orthogonal: RᵢT = Rᵢ-1, the inverse rotation “undoes” the rotation
○ Rᵢ rotates q by angle of iΘ, RᵢT rotates by angle of -iΘ
○ rotations compose additively: RᵢT · Rⱼ = R-i + j

Intuition: Building the Position Matrix
● QTK gives L x L matrix of attention scores
● P[m][n]:

○ row m = query token at position m
○ col n = key token at position n
○ value = relative position between them = m - n

Key Positions (n)

Q
ue

ry
 P

os
iti

on
s

(m
)

← query 0 attending to keys

← query 1 attending to keys

[only docs longer than i contribute]

[substitute k = s-i]

[POV: you’re 7y/o Carl Gauss]

[quadratic in distance from end]

Challenges

1. Effective-vs-training context length gap is still a problem for models that use
RoPE

2. Position frequency imbalance problem
a. Toeplitz matrix structure is fundamental to relative PE + attention
b. even with perfect data, we still have linear decay

3. Continual training is cost-ineffective
a. Llama3.1 used 6 stages of continual training with 800B tokens, you can’t do this

4. Interpolation and Extrapolation approaches fail for the same reasons
a. Extrapolation (YaRN, NTK-RoPE, etc) train on length L, test on length > L
b. Problem: if we make position 200K behave like position 100K, what happens if position 100k is

already undertrained?
c. Standard interpolation shares this problem: tail positions are effectively OOD

A PROBING EXPERIMENT

Question:

Setup

❖ Training
➢ 1.3B models: max length of 2k and 4k
➢ SlimPajama (1T tokens)

❖ Position frequency is difficult to control directly, so instead:
➢ Consumed tokens
➢ Training context window size

How does position frequency observed in the training corpus and the model’s
effective length relates?

Observations

1. Larger training context window consumes fewer tokens to achieve the same
effective context length. (Sounds intuitive)

Observations

2. Models can achieve similar effective context lengths if they have been
exposed to similar frequencies of position indices, even if their maximum training
lengths differ. (The true underlying driver for effective length 🔑)

Observations

3. The growth trend of the model’s effective length aligns with the position
frequency distribution: 4k has higher frequency at distancing positions.

Observations

Bonus. TinyLlama struggles to gather information when the distance exceeds
1,536 tokens. Most failure cases occur within the first L/3 of the document. This
may indicate that:

The last L/3 positions of current LLMs all fall in the tail of the position
frequency distribution.

What can we do about that? 😱 Let’s just discard them!🗑

STRING: ShifTed Rotary position embeddING

Key Takeaways from Observations:

● Model’s knowledge on position (i.e. position frequency) is important.
● But model only knows shorter distance much more than longer ones.
● Long distance dependency is also Long Tail in natural corpus.

Core Idea:

Instead of training with longer positions, let’s shift position indices for
RoPE, so that long-range indices are now under well-trained positions.

STRING: ShifTed Rotary position embeddINGWhy after messing the up positions, we would still it expect to work?

STRING: Simple Training-fRee embeddING

STRING: Parameters

❖ W from 4 to 512
➢ When W ≥ 32, performance improved

significantly compared to RoPE
➢ As long as W ≪ S, further increasing W

does not cause a performance drop.
❖ S from L/5 to L/2 .

➢ As S increases, more position indices are
discarded, the performance increases.

➢ The trend slowed down when S > L/3,
indicating that at least the last 33% to 50%
of the position can be overwritten.

Experimental Setup: Baselines

❖ NTK-Aware RoPE: Adjusts the RoPE base frequency to scale rotational
wavelengths for longer contexts.

❖ YaRN: Introduces temperature scaling to the attention softmax to stabilize
score distributions.

❖ Resonance RoPE: Clamps the query’s position index to a known maximum
for long-range interactions.

❖ Self-Extend: Remaps the key’s position index based on its distance from the
query during inference.

❖ DCA: Adds a cross-attention mechanism for each layer to query a summary
of all preceding layers.

Experimental Setup

❖ STRING focus on improving the performance within the training context size.
❖ NTK-Aware RoPE and YaRN implement extrapolation by increasing the base

frequency of RoPE.
❖ Meanwhile, ReRoPE, Self-Extend, and DCA modify the position matrix to

avoid unseen positions.
❖ The training length of the model to 2/3 of the original length and set the

extrapolation scaling factor to 3/2, meaning the test sequence length is 1.5
times the training length.

Main Results

NO TRAINING!

Main
Results

Main Results

Conclusions

● STRING achieves highest performance on all 7 models in 4-NIAH evaluation
(2k-128k lengths)

○ Extrapolation methods fail within training windows
● STRING extends effective context length to 100k (up from 64k)
● Improvements hold from controlled tasks to practical applications
● Benefits increase with model size
● Results suggest that addressing undertrained positions improves long-context

performance

Critiques

● Is it fair to use extrapolation methods as a comparison? (⅔ compression * 3/2
extension)

● STRING results are impressive, but do they create position ambiguity?
○ well-trained positions become pleiotropic by design → possibly introduce issues with

superposition/representation interference?
○ relying on content to disambiguate → does STRING struggle when content is repetitive?

● Claim: position frequency during training → quality of learned attention
patterns for that relative distance

○ High position frequency → better learned attention → better retrieval and context utilization
○ if reusing positions works, why didn’t training learn to make all positions work? positions are

just indices in the same RoPE encoding function
● STRING *fits* model bias, doesn’t correct it, fundamental architectural

constraints remain
○ model’s just need *sufficient* frequency for positions and content does the rest

Future Experiments

● Evaluation is biased towards retrieval, let’s see some long-form generation
● When does STRING fail?
● STRING leaves a gap in position indices, why doesn’t this matter?

○ Pretty crazy that losing ~⅓ of position indices doesn’t hurt the model
● Some attention visualization could help explain *why* STRING works so well

○ Show how the model effectively reuses positions
● Is STRING effective for SFT?
● Authors should train with forced uniform position distribution

○ Train with oversampled long sequences, or gradient reweighting 1/f(i)
○ If this fixes the problem, then position frequency is causal

● Test position-critical tasks (find the Nth occurrence of X)
○ should test limits of content disambiguation

Further Readings

1. Dissecting Transformer Length Extrapolation via The Lens of Receptive Field
Analysis

2. Information Entropy Invariance: Enhancing Length Extrapolation in Attention
Mechanisms

https://aclanthology.org/2023.acl-long.756.pdf
https://aclanthology.org/2023.acl-long.756.pdf
https://arxiv.org/abs/2501.08570
https://arxiv.org/abs/2501.08570

Appendix

