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Motivation

- There is a discrepancy between theoretical improvements and observed
performance in context length

- LLMs demonstrate effective context lengths <50% of training length
- 2 main reasons:

undertraining of long distance position indices during pre-training and post-training (left
skewness)

- Compounded by inherent difficulty in modeling long-range dependencies



RULER: What's the Real Context Size of Your Long-Context Language
Models?  Hsieh, etal., 2024.

Claimed Effective

Models Lierigth —— 4K 8K 16K 32K 64K 128K | Avg.
Llama?2 (7B) | 4K - | 85.6 Eff. Length := max(length) >= Llama2(7B) 4K
Gemini-1.5-Pro M >128K | 96.7 958 96.0 959 959 944 95.8
GPT-4 128K 64K 96.6 963 952 932 870 812 91.6
Llama3.1 (70B) 128K 64K 96.5 958 954 948 884 66.6 89.6
Qwen2 (72B) 128K 32K 969 96.1 949 941 798 537 85.9
Command-R-plus (104B) 128K 32K 95.6 952 942 920 843 63.1 87.4
GLM4 (9B) M 64K 947 928 921 899 86.7 83.1 89.9
Llama3.1 (8B) 128K 32K 95,5 938 916 874 847 77.0 88.3
GradientAlI/Llama3 (70B) 1M 16K 95.1 944 908 854 809 721 86.5
Mixtral-8x22B (39B/141B) 64K 32K 95.6 949 934 909 84.7 317 81.9
Yi (34B) 200K 32K 933 922 913 8Ii5 832 773 87.5
Phi3-medium (14B) 128K 32K 933 932 91.1 868 786 46.1 81.5
Mistral-v0.2 (7B) 32K 16K 93.6 912 872 754 490 138 68.4
LWM (7B) 1M <4K 823 784 737 691 681 650 72.8
DBRX (36B/132B) 32K 8K 95.1 938 836 631 24 0.0 56.3
Together (7B) 32K 4K 88.2 811 694 630 0.0 0.0 50.3
LongChat (7B) 32K <4K 84.7 799 708 593 0.0 0.0 49.1
LongAlpaca (13B) 32K <4K 606 570 56.6 436 0.0 0.0 36.3




Problem: Left-Skewed Position Frequency Distribution
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(c) Concatenated data distribution

“How many times do we compute attention between tokens separated by distance i?”



Intuition: Properties of ROPE

e for queries and keys, gi = Ri - q (rotate query with rotation matrix Ri)

e Kki=R[- k (rotate key with rotation matrix RJ)

e attention score: qi' *k[1 =(Ri-q)" - (RI-k)=q"-R"-R-k=q' R K
o rotation matrices are orthogonal: Ri" = R, the inverse rotation “undoes” the rotation

o Rirotates q by angle of i@, R rotates by angle of -i®
o rotations compose additively: Ri" - R = R, ‘]

px =]

cosm@ —sin mH) "= Romx

Rom = (sin mé  cosm6 x= [Z]
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Intuition: Building the Position Matrix ., -

e Q'K gives L x L matrix of attention scores

Position Frequency
J

e P[min]
o row m = query token at position m orl MR ;*1 L !JT@M%[;LUL\
o col n = key token at position n TR T RCR
o value = relative position between them =m - n (b) Uniform data distribution
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Challenges

1. Effective-vs-training context length gap is still a problem for models that use
RoPE

2. Position frequency imbalance problem
a. Toeplitz matrix structure is fundamental to relative PE + attention
b. even with perfect data, we still have linear decay
3. Continual training is cost-ineffective
a. Llama3.1 used 6 stages of continual training with 800B tokens, you can’t do this

4. Interpolation and Extrapolation approaches fail for the same reasons
a. Extrapolation (YaRN, NTK-RoPE, etc) train on length L, test on length > L
b. Problem: if we make position 200K behave like position 100K, what happens if position 100k is
already undertrained?
c. Standard interpolation shares this problem: tail positions are effectively OOD



A PROBING EXPERIMENT
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(a) Tinyllama-1.3B-2K

Question:

How does position frequency observed in the training corpus and the model’s
effective length relates?

Setup

7/

% Training
> 1.3B models: max length of 2k and 4k
> SlimPajama (1T tokens)

O/

% Position frequency is difficult to control directly, so instead:
> Consumed tokens
> Training context window size



Observations

1. Larger training context window consumes fewer tokens to achieve the same
effective context length. (Sounds intuitive)
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(a) Effective length vs. consumed tokens



Observations

2. Models can achieve similar effective context lengths if they have been
exposed to similar frequencies of position indices, even if their maximum training
lengths differ. (The true underlying driver for effective length /°)
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(b) Effective length vs. position frequency



Observations

3. The growth trend of the model’s effective length aligns with the position
frequency distribution: 4k has higher frequency at distancing positions.
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Observations

Bonus. TinyLlama struggles to gather information when the distance exceeds
1,536 tokens. Most failure cases occur within the first L/3 of the document. This
may indicate that:

The last L/3 positions of current LLMs all fall in the tail of the position
frequency

What can we do about that? & Let’s just discard them!"
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STRING: ShifTed Rotary position embeddING

Key Takeaways from Observations:

e Model's knowledge on position (i.e. position frequency) is important.
e But model only knows shorter distance much more than longer ones.
e Long distance dependency is also Long Tail in natural corpus.

Core ldea:

Instead of training with longer positions, let’s shift position indices for
RoPE, so that long-range indices are now under well-trained positions.




STRI N G - Why after messing the up positions, we would still it expect to work?
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(a) Dropping infrequent positions (b) Shifting frequent positions (c) Recovering locality

Figure 5: A illustrative example of STRING for a sequence length of L = 9. (a) Position indices
6, 7, and 8 are removed from the matrix. (b) Indices 0, 1, 2, 3, 4, and 5 are shifted from the main
diagonal to the lower-left triangle with an offset of 3. (c) A small constant WV is added to all diagonals
where m > n — 3, thereby restoring emphasis on the neighboring W tokens. The position matrix of
Llama3.1-128K using STRING is shown in Figure 8 Appendix.



STRING: Simple Training-fRee embeddING

Pm]n]—-S+W ifm>n-2S5,

Plmin] = P[m][n] otherwise.

4)

Algorithm 1 Pseudocode of STRING with FlashAttention

1 # Q, K, V: tensors with shape [L, d]

2 # W: the local window value (scalar) 0

3 # S: the slding window size (scalar)

4 # N: the left-bottom triangle height (scalar) 1 0

5

6 pids_query = [0,1,2,...L-1] # standard position ids for keys 2 1 0

7 pids_key = [0,1,2,...L-1] # standard position ids for queries

8 # Apply rotary position embeddings to K 0+w2 1 0

9 K = apply_rotary_pos_emb (K, pids_key)

10 +wo+w2 1 0

11 # <—-- Calculating sliding window attention around the diagonal ---> 1+wo+w2 1 0

12 Q_diag = apply_rotary_pos_emb (Q, pids_query)

13 O_diag, attn _map_diag = flash_attn(Q_diag, K, V, sliding window=S) ‘2 +woew2 1 0

14

15 # <——- Calculating self-attention at the left-bottom triangle ---> 4+w A +=wWo+rw2 1 0

16 pids_q shifted = pids_query — S + W # new position ids for queries L

17 Q_shifted = apply_rotary_pos_emb(Q, pids_g _shifted) Stwaw Hwow2 1 0

18 # obtain q,k,v in the bottom-left corner & calculate flash-attn

19 O_shifted, attn_map_shifted = flash_attn(Q_shifted[-N:], K[:N], V[:N])

20

21 # Merge the attention outputs from the diagonal and left-bottom triangle

22 output = merge_diag_shifted(O_diag, O_shifted, attn_map_diag, attn_map_shifted)
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STRING: Parameters ',

w2 1 0
Hworw2 1 0
1+wo+w2 1 0
H+wkkw2 1 0
41w , Bwoekw2 1 0
swaw  wwow2 1 0

< Wifrom4to 512

> When W 2 32, performance improved
significantly compared to RoPE

> Aslongas W K S, further increasing W
does not cause a performance drop.

< SfromL/5 tolL/2.

> As S increases, more position indices are
discarded, the performance increases.

>  The trend slowed down when S > L/3,
indicating that at least the last 33% to 50%
of the position can be overwritten.
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Experimental Setup: Baselines

% NTK-Aware RoPE: Adjusts the RoPE base frequency to scale rotational
wavelengths for longer contexts.

% YaRN: Introduces temperature scaling to the attention softmax to stabilize
score distributions.

% Resonance RoPE: Clamps the query’s position index to a known maximum
for long-range interactions.

s Self-Extend: Remaps the key’s position index based on its distance from the
query during inference.

% DCA: Adds a cross-attention mechanism for each layer to query a summary
of all preceding layers.



Experimental Setup

% STRING focus on improving the performance within the training context size.

% NTK-Aware RoPE and YaRN implement extrapolation by increasing the base
frequency of RoPE.

% Meanwhile, ReRoPE, Self-Extend, and DCA modify the position matrix to
avoid unseen positions.

% The training length of the model to 2/3 of the original length and set the
extrapolation scaling factor to 3/2, meaning the test sequence length is 1.5
times the training length.



Main Results

Table 1: Needle-in-a-haystack (4 needles) results of 7 base models across various methods (columns
reordered from smallest to largest average) where L;,4;, means the size of the training context
window. All the models were tested using their training length. The number of test cases 1s 500.

Model Lirain ReROPE NTK  RoPEwrign Self-Extend YaRN DCA  STRING
TinyLlama-1.3B (ours) 2k 62.8 62.0 56.6 60.2 68.6 744 84.6
TinyLlama-1.1B-3T 2k 112 79.8 69.8 83.2 88.0  80.2 97.2
Llama-2-7B 4k 98.6 98.6 98.0 95.4 98.0 916 100.0
Llama-3-8B 8k 99.6 100.0 99.8 99.8 100.0  99.9 99.6
LWM-7B-base 32k 23.2 19.4 31.8 29.0 222 288 50.4
Mistral-7B-base 32k 54.5 42.2 52.8 54.2 482  64.2 73.0
Llama-3.1-8B 128k 3.6 112 66.0 65.8 68.8 728 95.2
Average - 6.1.3 67.6 67.8 69.6 105  73.1 85.7

NO TRAINING!



Models Effective/Claimed NIAH VT Aggregation QA  Avg. (13 tasks)

_ Llama2-chat 4K /4K 96.9  89.7 84.8 49.7 85.6
Main GPT-4-1106-preview 64K / 128K 84.8  99.6 79.7 59.0 813
GLM4 (Open-source best) 64K/ 1M 944 97.7 49.7 63.6 83.1
Results

(7B) 4K /128K 834 152 29.1 52.6 65.0
Phi3-medium (14B) 8K / 128K 513 26.0 43.5 38.0 46.1
Llama3.1 (8B) 32K / 128K 92.6 704 36.2 58.8 77.0
+ YaRN 32K / 128K 947  39.8 38.2 58.8 76.3
+DCA 32K / 128K 89.5  62.5 39.2 55.2 74.4
+ Self-Extend 32K / 128K 949  65.0 373 49.8 76.8
+ ReROPE 32K / 128K 90.0  56.3 38.7 56.9 74.4
+ STRING 32K / 128K 94.0  88.1 37.6 62.7 80.0
Yi (34B) 32K / 200K 902  76.8 43.4 59.9 7.3
GradientAI/Llama3 (70B) 16K/ IM 849 562 414 59.8 2.1
Mixtral (8x22B) 32K / 64K 23.8 0.0 69.7 40.8 317
Command-R-plus (104B) 32K/ 128K 65.7 972 59.5 39.2 63.1
Llama3.1 (70B) 64K / 128K 789 592 39.8 47.6 66.6
+ STRING 100K / 128K 92.7  95.6 50.0 63.0 81.7
Qwen?2 (72B) 64K / 128K 48.0  79.0 70.3 472 53.7
+ STRING (new SOTA) 100K / 128K 912 984 83.7 52.2 84.6

Test Length: 100K
Llama3.1-STRING (70B) 100K / 128K 94.6  97.8 72.1 67.3 87.2

Qwen2-STRING (72B) 100K / 128K 939 977 88.1 57.8 87.8




Main Results

Table 3: Comparison of STRING with three leading commercial long-context models on InfiniteBench.
Each model is evaluated using a maximum context length of 128K.

Tasks Commercial Models Llama3.1 8B Llama3.1 70B
GPT-4 Claude2 Kimi-chat ROPErgny STRING ROPEwigny STRING

En.Sum 14.73 14.45 17.93 26.00 28.22 26.89 27.64
En.QA 22.22 11.97 16.52 10.05 10.20 13.68 16.73
En.MC 67.25 62.88 72.49 65.50 70.30 76.41 81.98
En.Dia 8.50 46.50 11.50 20.00 19.50 18.00 30.50
Retr.PassKey 100.00 97.80 08.14 100.00 100.00 100.00 100.00
Retr.Number 100.00 98.14 94.42 99.32 99.89 100.00 100.00
Retr. KV 89.00 65.40 53.60 42.00 83.00 2.22 76.07
Code.debug 39.59 2.28 18.02 22.84 26.90 29.20 32.80
Math.find 60.00 32.29 12.57 32.18 34.87 40.92 46.28
Avg. 55.69 47.96 43.91 46.43 52.54 45.25 56.88




Conclusions

e STRING achieves highest performance on all 7 models in 4-NIAH evaluation
(2k-128k lengths)

o Extrapolation methods fail within training windows
STRING extends effective context length to 100k (up from 64k)
Improvements hold from controlled tasks to practical applications
Benefits increase with model size
Results suggest that addressing undertrained positions improves long-context
performance



Critiques

e |Is it fair to use extrapolation methods as a comparison? (%3 compression * 3/2
extension)

e STRING results are impressive, but do they create position ambiguity?
o well-trained positions become pleiotropic by design — possibly introduce issues with
superposition/representation interference?
o relying on content to disambiguate — does STRING struggle when content is repetitive?

e Claim: position frequency during training — quality of learned attention
patterns for that relative distance
o High position frequency — better learned attention — better retrieval and context utilization

o if reusing positions works, why didn’t training learn to make all positions work? positions are
just indices in the same RoPE encoding function

e STRING *fits* model bias, doesn’t correct it, fundamental architectural

constraints remain
o model’s just need *sufficient” frequency for positions and content does the rest



Future Experiments

e Evaluation is biased towards retrieval, let's see some long-form generation
e \When does STRING fail?

STRING leaves a gap in position indices, why doesn’t this matter?
o Pretty crazy that losing ~'4 of position indices doesn’t hurt the model

e Some attention visualization could help explain *why* STRING works so well
o Show how the model effectively reuses positions

Is STRING effective for SFT?

e Authors should train with forced uniform position distribution
o Train with oversampled long sequences, or gradient reweighting 1/f(i)
o If this fixes the problem, then position frequency is causal

e Test position-critical tasks (find the Nth occurrence of X)
o should test limits of content disambiguation



Further Readings

1. Dissecting Transformer Length Extrapolation via The Lens of Receptive Field
Analysis

2. Information Entropy Invariance: Enhancing Length Extrapolation in Attention
Mechanisms



https://aclanthology.org/2023.acl-long.756.pdf
https://aclanthology.org/2023.acl-long.756.pdf
https://arxiv.org/abs/2501.08570
https://arxiv.org/abs/2501.08570
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The Foundation: Rotary Position Embedding (RoPE)

Concept and Mathematics

The core idea is to encode absolute position using rotation matrices, such that the dot product in self-attention
naturally captures relative positional information.
A vector v € RY is viewed as d/2 2D vectors, each rotated at position m by a matrix R:

cosmby —sinmby --- 0
sin mby cosmbyg --- 0
Rl —
0 0 oo cosmBy/n_q

where the frequencies are 6; = b=%/9. The transformed query g, = Rmq and key k;, = R,k have a dot product

that depends only on the relative position m — n:

() "kn = (Rm@) " (Ruk) = @" Ry Rok = Q" Ru_mk

Gemini LLM Context Extension Methods

October 14, 2025 3/11




1. NTK-Aware RoPE

To handle sequences longer than the training length (L¢rain), NTK-Aware RoPE scales the base b of its
frequencies. This "stretches” the rotational wavelengths, effectively turning extrapolation into interpolation.

Define the scaling factor A\ = Lextend/Ltrain. The base b is adjusted to b’:

b — p.\/(d=2)
This changes the frequencies 0; to 0!, reducing the rotation angles:

011 - (b/)—2i/d — (@ )\—2i/(d—2)

Gemini LLM Context Extension Methods October 14, 2025 4/11



2. YaRN: Yet another RoPE extensioN

YaRN improves upon NTK-scaling by using a more nuanced interpolation and introducing a temperature scaling
factor to the attention mechanism, preserving the attention score distribution for longer contexts.

The main addition is the temperature t in the softmax. Given scale factor s = Lextend/ Ltrain:

Attention(Q, K, V) = softmax (QKT) %4
) NG t\/a;

The temperature t is an empirically derived function of the scale factor s:

e ( s log Lirain )0'25
Iog(SLtrain)

Gemini LLM Context Extension Methods

October 14, 2025 5/11




3. Resonance RoPE (ReRoPE)

When an out-of-distribution (OOD) query attends to a very distant key, it creates an unseen relative distance.
ReRoPE solves this by "clamping” the query’s position index for long-range attention, ensuring the rotation is
within a familiar range.

Let L be the training context length. For a query gm and key k:

(Rmqm) " (Rokn) ifm—n<L

AttentionS —
ention>core {(RL—lqm)T(Rnkn) fm_n>L

J

Gemini LLM Context Extension Methods October 14, 2025 6/11



4. Self-Extend: Tuning-Free Extension

For tuning-free context extension at inference time, Self-Extend remaps the position indices passed to RoPE.
This ensures that all computed relative distances fall within the range the model was trained on.

Let L be the training length and W = L/2 be the neighbor window. For a query at position i attending to a key |
at j, the key's position is re-mapped to j': |

s Ji—=(@i—=WwW) ifi—W<j<i (Neighbor)
A Jj (mod W) ifj<i— W (Grouped/Distant)

Gemini LLM Context Extension Methods October 14, 2025 7/11



5. DCA: DeepCrossAttention (Architectural Improvement)

DCA is not a context extension method, but an architectural improvement. It enhances the residual stream by
propagating a "summary” state C; through layers, which each subsequent layer can query via cross-attention.

At each layer /, the summary context C; is updated from the hidden state H;:
Ciy1 =1 —a)H + aC (o is a learnable gate)
Layer / + 1 uses cross-attention where Q is from H; and K, V are from Cji1:
Qi1 =HWq | Kiji=GCtWk | Vigi=GCuWy

The layer's output updates the residual stream: Hi1 = H; + DCA(H;, Ci41).

Gemini LLM Context Extension Methods October 14, 2025 8/11



