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Some Background



Long Context Problem

The Problem: Long context problem.
- 00D for the model. (performance drop).
- Inference cost increase.
- GPU CUDA memory limit.
Solutions:
- Extend position encoding. e.g. YaRN
- KV cache eviction, sparse attention.
- OCR: compress text into visual tokens. < Today’s papers

Visual Tokens vs Text Tokens:
A picture have many patches, each patch has its own “local”

semantic (i.e. a cat, a table edge), and have dependencies /
connections in between. This is similar to tokens in natural
language.

=> We can treat image as “bag of word”
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I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. |'ve seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!
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Background: VLM

We have good text LLM already. Can we leverage
natural language data to understand image?
Key: Representation can be shared shared.

Solution: Align visual token (of an image) to word
token (of the caption) via contrastive pretraining.
(=>CLIP)

Then we can fuze the visual encoder and the text
encoder and just use a single LLM . (VLM)

Now with a VLM, what can we get?

=> Generic image understanding.

-> OCR ability!

-> Can we represent text as image? Just like how
human read books.
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Glyph: Scaling Context Windows via Visual
Text Compression



Glyph: Introduction

Motivating the Problem
Reading isn’t a character-by-character computation; the visual stream aggregates shapes into word forms that the linguistic stream maps to meaning.

Pure text tokenizers ignore this pipeline and over-segment (especially across scripts and morphologies), inflating sequence length with units that are visually
redundant.

If we let the model ingest the visual bundles directly, a few visual tokens can carry the same semantic payload as many subwords—compressing
context without discarding meaning.

Why Current Solutions Don’t Work! Analogy from prior work: Visual processing can aggregate
shape/word cues into fewer units: used here only to motivate
Glyph'’s visual-text ion.
° Extractive prompt compression (LLMLingua yph's visual-text compression
family): Removes “less important” tokens to hit .
budgets; helpful but task-dependent. 2 ! LLM LLM
! t i
e  Context-extension via ROPE scaling (YaRN / i 3L O _1x@ )
NTK-aware): Increases the window size but doesn’t | AvifHeinyk Guavim | AyAHenyK Guaum

reduce tokens—compute and memory still grow with

.V'sion-centnc Tokenization!

1
I
1
the raw sequence length. | Text [
: Tokenization ! Projector [
Access to : (finite vocabulary) : Vision Encoder )
Meaning Visual Word \ lVisual mputs ' 4 T- """" -
‘ §) JOHNS HOPKINS FormArea  \(recognize shapes) ! pyitnenyk 6uaum [ ayithenys 6nium,)
WITTING scroor Reading Activity in the Brain ! Pure-Text Input Visual-Text Input



Glyph: Introduction & Motivation

...... Do you think, because | am poor, obscure,
plain, and little, | am soulless and heartless? You
think wrong! | have as much soul as you, and full

as much heart! And if God had gifted me with
Modern LLMs need to reason over long inputs, but compute and memory grow with sequence AlLong Novel beauty and much wealth

length, not semantic content density! (~180K Words)

How Glyph Presents the Problem

Scaling to million-token contexts is impractical due to prohibitive compute and memory; existing Plain Text Rendering
approaches either extend windows or prune tokens with trade-offs.

~240K ~80K g Images

Input Tokens VLM @

3x Compression

Render — VLM: Convert long text to images so each visual token aggregates many words,
attacking the bottleneck by changing the representation, not just the window.

What it Proposes to Solve the Problem

[ Qwen3-8B ¢ [ Text Backbone Model
Framework: A practical pipeline that renders long text to images and processes them with a 50 o - g g;ﬁ;:s;;‘:;:uﬁm ° 51 E=3 Glyph 4.8x
VLM, enabling large effective context with fewer tokens and stable accuracy. n == Glyph ’ ;} 4.4x
40 - S 44
LLM-driven rendering search: A genetic search over fonts/layout/DPI to optimize the 2 g 3.2x
readability < compression trade-off automatically. % 30 2 34
2 g
Training recipe + scaling result: Continual pre-training on rendered corpora — 20 A % 24
post-training (SFT/RL) with an auxiliary OCR-style loss. g'
TR
0 ' 0 . . .
JOHINS HOPKINS ronebench e (KV Coche Reducton) © Toroughput

of ENGINEERING



Glyph: Demo to Motivate
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https://docs.google.com/file/d/1g9HBb_lyJoBGRQBA256ukzHLk2DnmHUV/preview

Some Basics

Any task is defined by the triplet: (z,C,R)- I is a user instruction that specifies the core goal C,
where ¢ = {c,...,cr}iS an ultra-long textual context.

R is target response.
Traditionally, we would do: P(R | I, C).

GLYPH: Render C as visual pages V = {v1,...,v.} each containing glyph’s of multiple text
segments. Hence, Glyph does:

P (R | I, V) and a task is defined by (I, V, R)
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Glyph: Method

Continual Pre-Training LLM-Driven Rendering Search Post-Training

Long Context Initial Configuration Optimal Configuration for Rendering
Instruction: Context: ALiid Text Dataset
Who saved Little Once upon a time m page size: 960, 540 ’ zélignn]leqt;;gggm SFT Data OCR Task RL Data
Red Riding Hood? there was a swee't font style: SourceSans3 g Cotor % @
little girl who was AE Wab Styls CosleStyle = 1o
. loved by everyone,
Response: but most of all by her
The Hunter. grandmother. ... Rendering .Z. Rendering
Configs Model inference Pata Mutate configuration ‘z‘ Glyph-Base Policy Model
Detail: @ o
Evaluation on (. LLM Analysis
i o xNJ . Supervised Fine-tuni
Page Size Color DPI * Validation Set & & Critique |* upel ne-tuning r r, ry - Ig
Line Height Font Style Font Size Rendering
Dataset Update results Rank-and sample
Mst'aarch SFT Model Verifier Reference
. : istory Model
Instruction: Context: 4l
) [
Who saved Little Optimal Configuration
Red Riding Hood? Continual ° W U Uz - Ug
Pre-training et \74 o .’:. Glyph
1 font style: Verdana
3 - alignment: LEFT

Response: = Bg color: #FFFFF 5 |

.z. & Best trade-off DPI: 72 / | i Alla) (4 Ag
The Hunter. i first-line-indent: 0,

Givph-Basa beta:"ze:e‘:f%r:g::’e'°" sl 3~4x Context Extension
2




Glyph: Method

Continual Pre-Training CONTINUAL PRE TRAINING

Long Context Goal: Transfer long-context from text tokens — visual tokens by exposing a VLM to massive
Instr "°ti°’_'-' Context: ALiid Text Dataset rendered long-text with diverse typography/layout, so the model learns to read pages as compact
Red Rlding Hoo?  rare woa & swae: SRS RS
little girl who was AE

Response: pistgelo et bl Three tasks:
The Hunter. grandmother. ... Rendering

Configs - OCR reconstruction: read one/many rendered pages and transcribe all text verbatim.
Detail: @ - Interleaved LM: mix text and rendered spans and predict next tokens while switching

- modalities.

Page Size color bFl - Generation/completion: given partial pages (beginnings/ends), complete the missing
Line Height Font Style Font Size Rendering content, exercising long-range dependencies.

Dataset

Who saved Little

Instruction: ?0"@“‘ A0 5 ECPT = —E(I* ,V’R) Z 10g P¢ (’rt I Ik) V? r<t)7
t

Red Riding Hood? Continual
Pre-training

Response:

The Hunter. '2' Gives us Glyph-Base. Where does the ‘theta’
Glyph-Base L = CE(§,y) with §=VLM,(I,Vs) in V. come from? Those are the configs of the

‘page’ -> Next step!




Glyph: Method

Rendering Search

Why? Remember the photos are not ‘real’
but instead generated from text. Need
configs for how the photo ‘looks’.

Examples:
- DPI & Page Size
- Font Family and Size
- Borders and Spacing
- Colors

Parametrized by ©. Controlling this controls
compression ratio from text to vision.

Y
p(O) - ?=1 T(Uz') )

LLM-Driven Rendering Search

Web Style

7

Best trade-off

page size: 960, 540
font style: SourceSans3

Model inference

Evaluation on
Validation Set

Update results

Initial Configuration

Code Style

alignment: LEFT
Bg color: #353031

Rendering

. Mutate configuration

N NH' LLM Analysis
" & Critique
Search Rank-and sample

History

Optimal Configuration

‘w’ font size: 9
font style: Verdana
— alignment: LEFT
— Bg color: #FFFFF
Best trade-off DPI: 72

between compression first-line-indent: O,
left-indent: O,
and performance

Genetic Algorithm Approach

What is being evolved. A rendering genome 6.
Each 6 renders the same long text into images VO,
changing compression (visual tokens/page) vs
readability.

Mutation-only evolutionary loop. Start from seed
styles (web/code).

For each generation: Render, external LLM
critiques outputs (where/why errors happen,
readability issues), Rank & sample promising
candidates, Mutate parameters.

Objective/selection signal. Keep candidates that
maximize task utility under high compression,
effectively searching the Pareto front between
accuracy and compression ratio; the chosen 6x* is
the best trade-off.
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Glyph: Method

Post Training
Two tasks to improve “Glyph-Base”: Supervised FT and RL & Auxiliary OCR Alignment Task

SFT: Similar to what you would do with a Language Model except C is now V. Loss function
is written as:

Lser = —E(z,y,r) Y log Py(re | Z,V, <),
t

RL: Again, like basic LLM training, they use GRPO (C is now V). Importance sampling weight
defined as:

Reward r is {0,1}
integrating Verifiable
Rewards and Format

Rewards.

7T¢(Ti | I7 v)
T ot (Ti | Z, V) ]

u(ri) — mean({u(r;)}§,)
std({u(ry)}i2,)

. A =

— >

G
1
JGRPO(‘Ib) = ]E(I,V)NP, {ri}E i ~og la Z (
=1

min (wl-Ai, clip(w;, 1 — ¢, 1 + €3) Ai)

— B Dxu(ms | 7rsn-“r))],

Post-Training

Optimal Configuration for Rendering
SFT Data OCR Task RL Data
.Z. Glyph-Base Policy Model
. Supervised Fine-tuning I r ry - Ig
SFT Model Verifier Reference
Model
@ ul u2 u3 Bee uG
® ‘p: @ Glyph
B/ -
. o A A Ay - Ag
3~4x Context Extension
. ®




Glyph: Method
]
Post Training OCR Alignment

Reconstruct all text from a generated V' and fine tune to improve on that task - similar to
Continual Pre-Training Step.

They do this in both the SFT and RL Step:

1. For SFT - Its same as Pre-Training. Just minimize CE.
2. For RL - Its basic GRPO but reward is Levenshtein Distance.

Post-Training

Optimal Configuration for Rendering
SFT Data OCR Task RL Data
'Z' Glyph-Base Policy Model
’ Supervised Fine-tuning I r ry - Ig
SFT Model Verifier Reference
Model
S W U Uz - Ug
® ‘i ® Glyph
=5 ==
" “’ A A A - Ag
3~4x Context Extension
| ®




Glyph: Controllable Factors and Sampling

Factor

Specification / Sampling Strategy

dpi

page_size

font_family

font_size

JOHNS HOPKINS
‘.\:r“ ‘l‘ Nh\][\‘ ]\(l }‘\‘\K\“(“‘

Mixture of sets: lowest (45-59), low
(60-71), medium (72-119), normal
({72,80,96,100,110,120,144,150,300}),
high (over 300); favor normal/medium
with small probability spikes to
extremes.

(i) Fixed paper sizes (A4, Letter, Legal,
A5, BS, A3, B4, Tabloid) with priors;
(i) common aspect ratios (e.g., 1.414,
1.333, 1.5, 1.778); (iii) fully random
aspect via piecewise distribution (nar-
row — tall).

Pooled and deduplicated families
across serif/sans/mono/pixel; italics
sampled by filename heuristics (suf-
fixes, italic/oblique).
{7,7.5,8,9,9.5,10,11,12,14};
line_height tied as font_size +
{0;:::5 3}

alignment

margins

indent

spacing
h_scale

colors

borders

newline_markup

auto_crop

LEFT/JUSTIFY (dominant) with small-
prob. RIGHT/CENTER.

Three patterns: all-equal; vertical-
larger; horizontal-larger; values in 10—
40pt ranges.

Modes: none; first-line indent (=1-—
2.5 em); block/hanging with left/right
indents.

space-before/space-after use a
multi-mode prior (none, small, large).
Horizontal glyph scaling (0.75-1.0)
with decaying probabilities.
Page/background/font palettes
for light/dark themes; docu-
ment/web/code styles inherit coherent
triplets (page, paragraph, font).
Optional paragraph borders with
width/padding; disabled by default.
With small probability, explicit mark-
ers (e.g., \n, tags, or tokens) inserted
to preserve structure.

Optional white-margin cropping and
last-page trimming.

16
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Experiments and Results



Glyph: Experimental Setup

Benchmarks:

LongBench: a bilingual , multitask long context understanding benchmark
MRCR: A multi-document / “needle in haystack” style long-context retrieval QA
benchmark.

Ruler: long-context benchmark with various sub-tasks including UUID recognition
etc (where they ignore the UUID recognition.

MMLongBench-Doc: A long document understanding benchmark (multimodal
PDF documents with images/layout) used for cross-modal generalisation.

Backbone VLM: GLM-4.1V-9B-Base

‘q?ﬂ JOHNS HOPKINS
18



Glyph: Results

_e— _———
M a | n p e rfo rm a N C e Model Single-Doc QA | Multi-Doc QA | Summarization Few-shot Synthetic Code At
L B h QP NQA | HQA 2QA | QSUM GovRep | TREC TriQA PRZh PREn RB LCC
on Longbench => o4l | 5160 3573 [ 6910 7415 | 2350 3336 | 7700 9336 10000 10000 6794 6843 5603
MatCheS GPT-4.1 LLaMA-3.1-8B-Instruct | 44.56 26.34 | 56.88 46.67 | 2328 3236 | 1925 89.12 6220 99.50 42.81 4635 4134
Qwen2.5-7B-Instruct-1M | 45.29  25.61 | 60.70 40.51 | 2295  29.97 | 5937 8693 985 100.00 29.80 21.72 42.42
Qwen3-8B 44.67 2613 | 6583 7392 | 19.60 2685 | 70.50 87.98 100.00 97.26 40.89 44.87 47.46
GLM-4-9B-Chat-1M 4375 2672 | 5898 50.89 | 22.84  27.60 | 61.50 90.07 100.00 99.50 55.64 59.54 49.27
; : Glyph 40.64 2845 ) 6642 7298 \ 1978 2553 ) 8262 8854 89.03 99.50 60.80 48.85 50.56
(And in Appendix P \ /
the rest resu |ts) Table 1: Performance comparison of Glyph with leading LLMs on LongBench (%). Our model achieves competitive

results in the overall average score. Best results are bolded, and second-best are underlined. Refer to Table 10 for
the rest of the results.

More deg radatlon |n Model (Single-Doc QD Multi-Doc QA { Summarization Few-shot Synthetic
Sing|e-D0c QA QAZh QAEn| Mus Dur | News VcSum | Sam Lsht PaC
(Glyph has a more SRR e e ) B0 32T ) 5560 CASHL ZRIQ MHES FALAS OO0N0 205 .
LLaMA-3.1-8B-Instruct | 6220 5498 | 31.61 3375 2421 1623 | 761 000  7.13
blurry ) Qwen3-8B 60.98 49.78 | 4554 1669 | 18.55 1208 3647 4200 1281
understanding?) Quen2 575 st 1M | 298 5362 | 3472 28| 2102 1220 [ omes 350
and summarization. Glyph \3723 4589) 5618 2687\ 21.52 1243 ) 3249 4443 3050

Table 10: The rest of the results on LongBench benchmark (%), which encompasses Single-Document QA, Multi-
Document QA, Summarization, Few-shot Learning, and Synthetic task.
v JOHNS HOPKINS
‘l. \\HH[\]( 1\(\“‘(\7\!\ 19



Glyph: Results

4 Needle 8 Needle

Main performance Model Ok-8k B8k-16k 16k-32k 32k-64k 64k-128k Avg Ok-8k 8k-16k 16k-32k 32k-64k 64k-128k Avg
—_ GPT-4.1 50 38 29 42 38 394 33 26 17 22 19 234

on MRCR => small o 2 B B B B B B e 2 B B
LLaMA-3.1-8B-Instruct 3342 2597 2273 2697 1268 2435 2380 1769 1985 1772 1179 1817

gap below GPT-4.1 Qwen25-7B-Instruct-IM 25.96  20.13 1993 2425 1729 2151 1764 1948 1241 1480 1424 1571
Qwen3-8B 2034 2267 2034 2363 1911 2302 1875 1969 1681 1786 1500  17.62

match open-source. GLM-4-9B-Chat-IM 1517 1378 918 2027 1505 1469 1455 965 934 947 897 1040
Glyph 3544 2682 2415 2569 1637 2581 2512 2122 1643 1391 1351  18.14

Table 2: Performance comparison of our model against leading LLMs on the 4-needle and 8-needle sub-tasks of the
MRCR benchmark (%). Our method consistently ranks first or second across most settings while preserving about
3 compression ratio. Performance on the 2-needle task is deferred to the Appendix.

Model 2 Needle
2 needle |S Iess Ok-8k 8k-16k 16k-32k 32k-64k 64k-128k  Avg
GPT-4.1 83 72 67 62 59 68.6
performant (so they LA b 5021 321 505 2981 2498 4266
defer to appendix Chebcheid w7 14 16 8@ e Bn
. ’ . Qwen2.5-7B-Instruct-1M 4592 51.07 4697  34.67  37.57 4324
and dldn t eXplaln Glyph 4151 4078 3958 2967 2241 3485

why)

Table 9: Performance of various models on the MRCR
task (%) with the 2 Needle setting across different con-
text length intervals (Ok—8k, 8k—16k, 16k—32k, 32k—64k,
64k—128k) and the average score.

zi']l" JOHNS HOPKINS
i’ WHITING SCHOOL
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Compression Ratio

LongBench:
Passage Retrieval En HotpotQA NarrativeQA Average
—# GLM-4-9B-Chat-1M —e— Glyph 70 —# GLM-4-9B-Chat-1M —e— Glyph 26 —# GLM-4-9B-Chal-1M —e— Glyph ~# GLM-4-9B-Chal-1M —e— Glyph
100 Y LT = -—— . 2 - 50
g "4 Coniréssions 3 - Compression: 3.5 R, 2 Compression: 3.5\ g
£ 80 P S = 60 P e
= > - Bl o e =
2 2 prd @, » |20
£ 60 e ¥ £ 20 5@ g
3 3 50 / 3 - 3
o o 15 7 935
Q Q Q 18 Q
< 40 < % < <
;&
40 16 30
20 *
2k4k 8k 16k 32k 2kdk 8k 16k 32k 16k 32k 2k4k 8k 16k 32k
Context Window Context Window Context Window Context Window
MRCR:
2 Needle 4 Needle 8 Needle Average
—# GLM-4-9B-Chal-1M —e— Glyph —# GLM-4-9B-Chal-1M —e— Glyph 0.20 —# GLM-4-9B-Chat-1M —e— Glyph —# GLM-4-9B-Chal-1M —e— Glyph
0.35 - 0.25 "\_\ 0.25
3 0.30 . 3 A \ 2 -
s Compression: 3.0 \\ S 0.20 Compression: 3.0 s B 0.20
025 = N = =
< < o Q
@ L, ® 0.15 et @ el &
50204 I 209090909090 L _aem=- =Rl 17 4 R e T .o = = 0.15
3 - 3 .- 3 3
8 e 8 0.10 SHE g g
£ 015 . < P e < < 0.10
005{ X7
910 « 0.05
16k 32k 64k 128Kk 16k 32k 64k 128k 16k 32k 64k 128k 16k 32k 64k 128k
Context Window Context Window Context Window Context Window

Figure 3: Performance comparison of Glyph and the baseline across different context windows, demonstrating that
Glyph achieves performance equivalent to longer contexts with substantially shorter context windows.
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Varying Compression Ratio.

Higher DPI — larger rendered doc — More 14*14 pixel patch — More visual token.

Model Niah-S1 Niah-S2 Niah-M1 Niah-M2 Niah-V Niah-Q VI CWE FWE QA-1 QA-2 Awvg
GPT-4.1 100.0 98.85 100.0 100.0 99.67 100.0 100.0 97.87 98.66 86.82 77.47 96.30

LLaMA-3.1-8B-Instruct 99.33 99.33 99.33 99.00 98.17 99.67 87.07 57.30 81.85 84.00 58.00 87.55
Qwen2.5-7B-Instruct- 1M 100.00 99.67 99.67 99.00 93.83 98.75 8540 72.10 85.67 80.00 60.67 88.61

Qwen3-8B 100.00 100.00 95.33 84.67 97.42 99.33 9847 74.67 86.67 7033 5333 87.29
GLM-4-9B-Chat-1M 100.00  100.00 92.67 99.00 95.00 100.00 98.20 49.50 83.22 72.67 56.67 86.08
DPI: 72 / Compression rate: average 4.0, up to 7.7
Glyph 73.33 64.67 67.33 56.00 73.42 7142 7793 9440 92.67 5933 6333 72.17

DPI: 96 / Compression rate: average 2.2, up to 4.4
Glyph 98.00 95.33 95.67 85.00 96.33 05.83 9493 94.80 98.00 79.00 70.67 91.23

DPI: 120 / Compression rate: average 1.2, up to 2.8
Glyph 99.67 99.00 100.00 93.67 99.00 99.58 99.33 98.97 99.11 79.00 74.00 94.67

Table 3: Performance on the Ruler benchmark (%). We demonstrate the impact of different DPI settings on our
model’s performance and the resulting compression ratios. For each configuration, the table includes both the
average compression ratio across all sub-tasks and the maximum compression achieved for specific sub-task types.

‘ l.l ' J()I INS HOPKINS
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Efficiency

|
Relative Prefill Speedup (Inference) Relative Decoding Throughput Speedup (Inference) Relative Training Throughput Speedup
i 4.8x 4
51 —e— Giyph 31 —e— Giyph 4.0 { —e— Glyph
==== Text Backbone Model (1x) --== Text Backbone Model (1x) g2 g [ dsieie Text Backbone Model (1x)
& g £
.2 .S .2
I G =
& 3] e -1
[=9 f=% o,
=] = =
= o =
0 3 Q
Q 3 D
o o o
(/7] 2 . w wv
1:59
T S O S A S I T ! S s W B O e e e e
4K 8K 16K 32K 64K 128K 4K 8K 16K 32K 64K 128K 4K 8K 16K 32K 64K 128K
Sequence Length Sequence Length Sequence Length

Figure 4: Speedup ratios of Glyph over the text backbone model for prefill, decoding, and training across different
sequence lengths.

JOHNS HOPKINS
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As context grow...

Glyph has slower degradation.

(what about making axis the number
of token? Is the degradation tied
deeply to the attention mechanism -
some retrieval efficiency upper bound)

JOHNS HOPKINS
’ W N 1L

WHITING SCHOC
of ENGINEERING

95
90 A
=
> 851
Q .
£
5 . >,
151 ] N\ 0
< 801 — e = LLaMA-3.1-8B-Instruct o, i, ™
—a = GLM-4-9B-Chat-1M Loy
75 .2 @+ Qwen3-8B \
=== Qwen2.5-7B-Instruct-1M \\
=== Glyph °
70 T T T T T T
4K 8K 16K 32K 64K 128K

Sequence Length
Figure 5: Model performance degradation across differ-
ent sequence lengths on the Ruler benchmark.
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Better than base VLM

On MMLongBench-Doc
(multimodal document
understanding)

The full Glyph version
outperform Base VLM.

— Cross modality
post-training/RL actually
improves model’s ability.

'i.lrv JOHNS HOPKINS
" WHITING SCHOOL
of ENGINEERING

Model SP Cp UA  Acc F1

GLM-4.1V-9B-Base 36.76 2341 21.52 29.18 28.78

Glyph-Base 4791 2224 1480 3248 34.44
Glyph 5773 39.75 27.80 45.57 46.32

Table 4: Results on MMLongBench-Doc (%). SP, CP,
UA, and Acc denote Single-page, Cross-page, Unan-
swerable, and Overall Accuracy, respectively.
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Ablation: Is Genetic Search necessary

Configuration LongBench MRCR Ruler Avg.
Random Config 41.78 15.82 65.13 4091
Manual Config 43.45 19.33  68.09 43.62
Search-based Config 43.45 22.10 71.24 45.60

Table 5: Ablation study comparing randomly combined,
manually designed, and search-based configurations on
three benchmarks under SFT setting. The search-based
configuration achieves the best overall performance.

JOHNS HOPKINS
‘\r} ‘l‘ N(?][\‘ ]\(l l‘\‘\‘\“i“‘



Ablation: Is Aux. Objective necessary

JOHNS HOPKINS
¥ FENGINEERING.

Model LongBench MRCR Ruler
Glyph 50.56 26.27 12.17
—w/o OCR (in RL) -1.40 -2.00 -0.35
—w/o RL -7.11 -4.17 -0.93
—w/o OCR (in SFT) -8.12 -8.42 -1.23

Table 6: Ablation study showing the performance drop
(%) relative to the final Glyph model when components
are progressively removed.
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Limitations

Sensitivity to rendering parameters.
Model’s performance noticeably affected by rendering configurations such as
resolution, font, and spacing.

OCR-related challenges.
UUID task especially challenging. (quote - even the strongest models [e.g.,
Gemini-2.5-Pro] often fail to reproduce them correctly.)

Task diversity.

More tasks besides long-context understanding.
e.g. agentic, reasoning.
“We also observe that, compared with textual models, the visual-text model tends

to generalize less effectively across tasks”

‘q?ﬁ JOHNS HOPKINS
TP ENGIMERRING. 28



Questions?

Is patch based visual token necessary or sufficient? (What are we actually gaining
through using VLM, is it just a dense tokenization that encompass multiple token. )

'Qi.l"y JOHNS HOPKINS
" WHITING SCHOOI
of ENGINEERING
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DeepSeek-OCR: Introduction & Motivation

e Significant compute challenges with long textual content.
o One solution: use single image containing document text — rich information
while using substantially fewer tokens.
e OCR tasks establish natural compression-decompression mapping between visual
and textual representations

o Motivated DeepSeek-OCR Traditional LLMs

ofop
Text tokenization Tokens 002 %O A
[1000 Words] [~1300 Tokens] ’ ti 25 ’ SWe

More tokens — More cost

DeepSeek OCR
Render as o = ‘ ‘ "
Text image Deep Encoder | Token DeepSeek3B
[1000 Words] /\’\ (380 M) | (100 Vision Tokens) | Decoder (MoE) GRS

10x fewer tokens

‘ll” ]Ol INS HOPKINS DeepSeek OCR A Pct re is Worth a Tho sand Words, Towards Al (2024)
hit; - re-is-worth-a-tht N -e2;

l]]l\


https://pub.towardsai.net/deepseek-ocr-a-picture-is-worth-a-thousand-words-e2a8b9d74c7f

DeepSeek-OCR: Introduction & Motivation

e Types of Vision Encoders in current VLMs:
o Dual-tower architecture: two parallel encoders
o Tile-based method: split image into small tiles
o Adaptive-resolution encoder: process full image using patch segmentation
e One question not addressed: What is the least amount of vision tokens we need
to decode a document of x words?

Il

VITDet

[x] [x]
[x] [x]

lefﬂ JOHNS HOPKINS
’ WHITING SCHOOI

Il

X e
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DeepSeek-OCR: Methodology

e Encoder three part architecture:
o SAM base

o 2 layer convolutional model (downsampler)

o CLIP

e DeepSeek-3B MoE Decoder

=
W
SAM :
CLIP vt 300M
= VITDET 16x
- 80M [
- down- vision
sample tokens — _
Input Embedding layer
nx16x16 N~
patches Tokenizer DeepEncoder

JOHNS HOPKINS
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Output
=

(MOE-A570M)

Decoder

Prompt
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DeepSeek-OCR: Methodology

e Segment Anything Model (SAM) base: vision model designed to separate/segment
regions or objects in an image and extract visual perception features.
e Breaks image into 16x16 patches and creates local feature tokens to then be sent

into downsampling module — Downsampler reduces number of vision tokens

SAM
VITDET 16x
80M D
down- vision
i sample tokens
Input it
nx16x16 D —
patches Tokenizer

QCI:E JOHNS HOPKINS
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DeepSeek-OCR: Methodology

e CLIP: Embedding layer with global attention

o Vision Encoder that learns to connect images and text.

o The downsampled tokens are fed into CLIP which applies dense global

attention, how pieces fit together as “text”

e
B
SAM
L1 VIT 300M
VITDET 16x
80M j
down- vision
i sample tokens N s
Input A Embedding layer
nx16x16 e - ¥
patches Tokenizer DeepEncoder
=

qi.lrv JOHNS HOPKINS
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DeepSeek-OCR: Methodology

e During inference, model activates 8 out of 64 experts (specialized sub-networks)
e Z are the compressed latent (vision) tokens from DeepEncoder

e X hat is the reconstructed text representation.

e f,.isanon linear mapping that can be learned.

Output
- B

: RnXdlatent S IRNthext- X = fdec(Z) Where n<N

(MOE-A570M) f dec ’

Decoder

Prompt

lefﬂ JOHNS HOPKINS
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DeepSeek-OCR: Data

e OCR 1.0 data: ~30M PDF pages + natural scene text (English, Chinese, ~100
languages)

e OCR 2.0 data: synthetic charts, geometry, and chemical formulas for structured
parsing

e General vision data: small portion of image-caption, grounding, detection

e Text-only data: 10% of training to maintain language modeling ability

‘q?ﬂ JOHNS HOPKINS
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Precision (%)

DeepSeek-OCR: Results

e 64 vis toks(left) W 100 vis toks(left) - @ - 64 vis toks(right) - ® - 100 vis toks(right) I
100% g6 335% 97.3% 96.8% 96.8% 19.7
938 ;
e 20x
90% 5.8 e To87.a%
80% -
70% == 15x
S5 x
60% 5919 =
est S
o I ‘»
SR 1%}
50% o0 105 g
¢ E
o S
40% . O (§)
30%
5x
20%
10%
0% 0x
0 0 0 0 0
0 00 A0 20 0
o @@A @0" «,’29“'\'

Text Tokens in Per Page (Ground-truth)

(a) Compression on Fox benchmark

e 97% OCR precision with text
compressed by up to 10 times.

e 60% OCR precision even at a 20x
text compression ratio

e Promising for handling long context

Vision Tokens =64 Vision Tokens=100

Text Token e : o ;
ext Tokens pq ision Compre551on|Prec151on Compression Pages

600-700 96.5% 10.5% 98.5% 6.7% 7

700-800 93.8% 11.8% 97.3% 7.5% 28

800-900 83.8% 13.2x 96.8% 8.5% 28
900-1000 85.9% 15.1x 96.8% 9.7% 14
1000-1100  79.3% 16.5% 91.5% 10.6x 11
1100-1200  76.4% 17.7% 89.8% 11.3x 8
1200-1300  59.1% 19.7x 87.1% 12.6x 4




Overall Performance (Edit Distance)
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DeepSeek-OCR: Results

V73

DeepSeek-OCR 77
(Gundam-M 200dpi)

dots.ocr (200dpi) 4
DeepSeek-OCR (Gundam)

DeepSeek-OCR (Large)
DeepSeek-OCR (E%Ze)

High Accuracy DeepSeek-OCR (Small)
ED < 0.25 (1 better) .

A MinerU2.0
dots.ocr
Qwen2.5-VL-728
A InternVL3-78B

OCRFlux-3B

GOT-OCR2.0

Qwen2.5-VL-7B

DeepSeek-OCR (Tiny)

OLMOCR

A InternVL2-76B

Vison Tokens > 1500 Vision Tokens < 1000
Average per image (« More) Average per image (- Fewer)

Encoder Series
B DeepEncoder Series
QwenEncoder Series
I InternVLEncoder Series
Other Encoders

SmolDocling

1/

e Achieves better performance with less token

needed compared to other model.

e Shows adaptive performance for diverse

content.

Type :
m Book Slides

Financial
Repo

Exam .
i Textbook Paper Magazine

» Notes Newspaper Overall

7/ T
S & & P SS S ®
S & & & S S
O R . SR SN @

Average Vision Tokens per Image

N Q N
& &

(b) Performance on Omnidocbench
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Tiny  [0.147
Small  |0.085 0.111
Base 0.037 0.08
Large |0.038 0.108
Gundam |0.035 0.085

Guandam-M|0.052 0.09

0.207
0.079
0.027
0.022
0.289
0.034

0.173
0.147
0.1
0.084
0.095
0.091

0.294
0.171
0.13
0.109
0.094
0.079

0.201
0.107
0.073
0.06

0.059
0.079

Academic
Paper:
0.395 0.297
0.131 0.187
0.052 0.176
0.053 0.155
0.039 0.153
0.048 0.1

0.744
0.645
0.353
0.122
0.099

0.32
0.205
0.156
0.117
0.083
0.077

Edit distances for different categories of documents in OmniDocBench
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DeepSeek-OCR: Results

e Deep Parsing: Extracts structured data from non-textual visual elements, such as

converting text into Markdown, chemical formulas into SMILES strings, and geometric

figures into structured data.

e Multilingual Recognition: Supports nearly 100 languages in PDF documents.

e General Vision Understanding: Describing image, object detection, grounding, etc.

<image>\n<|grounding|>Convert the document to markdown.

WO 2013/171642 PCT/IB2013/053771
[00369] The title compound was prepared in an analogous fashion to that described in
Stage 22.1 using 5-bs hloro-N-(4 i icotinami (Stage

22.2) and 2-methylamino-ethanol to afford a white crystalline solid. HPLC (Condition 4) ty = 5.72

min, UPLC-MS (Condition 3) t, = 1.14 min, m/z = 452.2 [M+H]*.
-

[ N-(a-(Chlorodifn )phenvn-6-(cthyl(2 Yamino)-5-(IH-pyrazol-5-|
VDnicotinamide |

Cis o e
7 [
NN
H [ n
NN
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<image>\nldentify all objects in the image and output them in
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DeepSeek-OCR: Discussion

e Simulates human memory forgetting by blurring and reducing tokens for older

visual contexts, allowing distant memories to naturally fade.

e Enables scalable, theoretically unlimited context architectures.

Time —
Memor Just happened 1 hour 1 day 1 week 1 month 1 year
{‘6\
— Distance
Vision 10cm 50cm 1m 3m 10m 20m
.§ Resolution |
@:l:ﬁ ] Text Text token Gundam Large Base Small Tiny
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Questions?



