
Does Rethinking Text as Vision Allow us to Scale LLMs
Better?

DeepSeek-OCR: Contexts Optical Compression
Glyph: Scaling Context Windows via Visual Text Compression

Authors:

- Wei et al. @ DeepSeek
- Cheng et al. @ Tsinghua University

2

Outline

1. Background: OCR and VLMs

2. Glyph: Introduction & Motivation

3. Glyph: Method & Novelty

4. Glyph: Results

5. DeepSeek OCR: Introduction & Motivation

6. DeepSeek OCR: Method & Novelty

7. DeepSeek OCR: Results

8. Discussion and Open Questions

Some Background

4

Long Context Problem
The Problem: Long context problem.

- OOD for the model. (performance drop).
- Inference cost increase.
- GPU CUDA memory limit.

Solutions:
- Extend position encoding. e.g. YaRN
- KV cache eviction, sparse attention.
- OCR: compress text into visual tokens. ← Today’s papers

Visual Tokens vs Text Tokens:
A picture have many patches, each patch has its own “local”
semantic (i.e. a cat, a table edge), and have dependencies /
connections in between. This is similar to tokens in natural
language.

=> We can treat image as “bag of word”

5

Background: VLM
We have good text LLM already. Can we leverage
natural language data to understand image?
Key: Representation can be shared shared.

Solution: Align visual token (of an image) to word
token (of the caption) via contrastive pretraining.
(=>CLIP)

Then we can fuze the visual encoder and the text
encoder and just use a single LLM . (VLM)

Now with a VLM, what can we get?
=> Generic image understanding.
-> OCR ability!
-> Can we represent text as image? Just like how
human read books.

Glyph: Scaling Context Windows via Visual
Text Compression

7

Glyph: Introduction

Analogy from prior work: Visual processing can aggregate
shape/word cues into fewer units: used here only to motivate

Glyph’s visual-text compression.

Motivating the Problem

Reading isn’t a character-by-character computation; the visual stream aggregates shapes into word forms that the linguistic stream maps to meaning.

Pure text tokenizers ignore this pipeline and over-segment (especially across scripts and morphologies), inflating sequence length with units that are visually
redundant.

If we let the model ingest the visual bundles directly, a few visual tokens can carry the same semantic payload as many subwords—compressing
context without discarding meaning.

Why Current Solutions Don’t Work!

● Extractive prompt compression (LLMLingua
family): Removes “less important” tokens to hit
budgets; helpful but task-dependent.

● Context-extension via RoPE scaling (YaRN /
NTK-aware): Increases the window size but doesn’t
reduce tokens—compute and memory still grow with
the raw sequence length.

8

Glyph: Introduction & Motivation

How Glyph Presents the Problem

Modern LLMs need to reason over long inputs, but compute and memory grow with sequence
length, not semantic content density!

Scaling to million-token contexts is impractical due to prohibitive compute and memory; existing
approaches either extend windows or prune tokens with trade-offs.

Render → VLM: Convert long text to images so each visual token aggregates many words,
attacking the bottleneck by changing the representation, not just the window.

What it Proposes to Solve the Problem

Framework: A practical pipeline that renders long text to images and processes them with a
VLM, enabling large effective context with fewer tokens and stable accuracy.

LLM-driven rendering search: A genetic search over fonts/layout/DPI to optimize the
readability ↔ compression trade-off automatically.

Training recipe + scaling result: Continual pre-training on rendered corpora →
post-training (SFT/RL) with an auxiliary OCR-style loss.

9

Glyph: Demo to Motivate

https://docs.google.com/file/d/1g9HBb_lyJoBGRQBA256ukzHLk2DnmHUV/preview

10

Some Basics

Any task is defined by the triplet: - I is a user instruction that specifies the core goal C,
where is an ultra-long textual context.

R is target response.

Traditionally, we would do: P(R | I, C).

GLYPH: Render C as visual pages each containing glyph’s of multiple text
segments. Hence, Glyph does:

P (R | I, V) and a task is defined by (I, V, R)

11

Glyph: Method

12

Glyph: Method

CONTINUAL PRE TRAINING

Goal: Transfer long-context from text tokens → visual tokens by exposing a VLM to massive
rendered long-text with diverse typography/layout, so the model learns to read pages as compact
carriers of text.

Three tasks:

- OCR reconstruction: read one/many rendered pages and transcribe all text verbatim.
- Interleaved LM: mix text and rendered spans and predict next tokens while switching

modalities.
- Generation/completion: given partial pages (beginnings/ends), complete the missing

content, exercising long-range dependencies.

Gives us Glyph-Base. Where does the ‘theta’
in V come from? Those are the configs of the
‘page’ -> Next step!

13

Glyph: Method

Rendering Search

Why? Remember the photos are not ‘real’
but instead generated from text. Need
configs for how the photo ‘looks’.

Examples:
- DPI & Page Size
- Font Family and Size
- Borders and Spacing
- Colors

Parametrized by 𝚹. Controlling this controls
compression ratio from text to vision.

Genetic Algorithm Approach

What is being evolved. A rendering genome θ.
Each θ renders the same long text into images Vθ ,
changing compression (visual tokens/page) vs
readability.

Mutation-only evolutionary loop. Start from seed
styles (web/code).

For each generation: Render, external LLM
critiques outputs (where/why errors happen,
readability issues), Rank & sample promising
candidates, Mutate parameters.

Objective/selection signal. Keep candidates that
maximize task utility under high compression,
effectively searching the Pareto front between
accuracy and compression ratio; the chosen θ⋆ is
the best trade-off.

14

Glyph: Method

Post Training

Two tasks to improve “Glyph-Base”: Supervised FT and RL & Auxiliary OCR Alignment Task

SFT: Similar to what you would do with a Language Model except C is now V. Loss function
is written as:

RL: Again, like basic LLM training, they use GRPO (C is now V). Importance sampling weight
defined as:

Reward r is {0,1}
integrating Verifiable
Rewards and Format

Rewards.

15

Glyph: Method

Post Training OCR Alignment

Reconstruct all text from a generated ‘V’ and fine tune to improve on that task - similar to
Continual Pre-Training Step.

They do this in both the SFT and RL Step:

1. For SFT - Its same as Pre-Training. Just minimize CE.
2. For RL - Its basic GRPO but reward is Levenshtein Distance.

16

Glyph: Controllable Factors and Sampling

Experiments and Results

18

Glyph: Experimental Setup

Benchmarks:
- LongBench: a bilingual , multitask long context understanding benchmark
- MRCR: A multi-document / “needle in haystack” style long-context retrieval QA

benchmark.
- Ruler: long-context benchmark with various sub-tasks including UUID recognition

etc (where they ignore the UUID recognition.
- MMLongBench‑Doc: A long document understanding benchmark (multimodal

PDF documents with images/layout) used for cross-modal generalisation.
Backbone VLM: GLM‑4.1V‑9B‑Base

19

Glyph: Results
Main performance
on LongBench =>
Matches GPT-4.1

(And in Appendix
the rest results)

More degradation in
Single-Doc QA
(Glyph has a more
blurry
understanding?)
and summarization.

20

Glyph: Results
Main performance
on MRCR => small
gap below GPT-4.1
match open-source.

2 needle is less
performant (so they
defer to appendix
and didn’t explain
why)

21

Compression Ratio

22

Varying Compression Ratio.

Higher DPI → larger rendered doc → More 14*14 pixel patch → More visual token.

23

Efficiency

24

As context grow…

Glyph has slower degradation.
(what about making axis the number
of token? Is the degradation tied
deeply to the attention mechanism -
some retrieval efficiency upper bound)

25

Better than base VLM

On MMLongBench-Doc
(multimodal document
understanding)

The full Glyph version
outperform Base VLM.
→ Cross modality
post-training/RL actually
improves model’s ability.

26

Ablation: Is Genetic Search necessary

27

Ablation: Is Aux. Objective necessary

28

Sensitivity to rendering parameters.
- Model’s performance noticeably affected by rendering configurations such as

resolution, font, and spacing.
OCR-related challenges.
- UUID task especially challenging. (quote - even the strongest models [e.g.,

Gemini-2.5-Pro] often fail to reproduce them correctly.)
Task diversity.
- More tasks besides long-context understanding.
- e.g. agentic, reasoning.
- “We also observe that, compared with textual models, the visual-text model tends

to generalize less effectively across tasks”

Limitations

29

Questions?

Is patch based visual token necessary or sufficient? (What are we actually gaining
through using VLM, is it just a dense tokenization that encompass multiple token.)

DeepSeek-OCR: Contexts Optical
Compression

31

DeepSeek-OCR: Introduction & Motivation

● Significant compute challenges with long textual content.
○ One solution: use single image containing document text → rich information

while using substantially fewer tokens.
● OCR tasks establish natural compression-decompression mapping between visual

and textual representations
○ Motivated DeepSeek-OCR

DeepSeek-OCR: A Picture is Worth a Thousand Words, Towards AI (2024)
https://pub.towardsai.net/deepseek-ocr-a-picture-is-worth-a-thousand-words-e2a8b9d74c7f

https://pub.towardsai.net/deepseek-ocr-a-picture-is-worth-a-thousand-words-e2a8b9d74c7f

32

DeepSeek-OCR: Introduction & Motivation

● Types of Vision Encoders in current VLMs:
○ Dual-tower architecture: two parallel encoders
○ Tile-based method: split image into small tiles
○ Adaptive-resolution encoder: process full image using patch segmentation

● One question not addressed: What is the least amount of vision tokens we need
to decode a document of x words?

33

DeepSeek-OCR: Methodology

● Encoder three part architecture:
○ SAM base
○ 2 layer convolutional model (downsampler)
○ CLIP

● DeepSeek-3B MoE Decoder

34

DeepSeek-OCR: Methodology

● Segment Anything Model (SAM) base: vision model designed to separate/segment

regions or objects in an image and extract visual perception features.

● Breaks image into 16x16 patches and creates local feature tokens to then be sent

into downsampling module → Downsampler reduces number of vision tokens

35

DeepSeek-OCR: Methodology

● CLIP: Embedding layer with global attention

○ Vision Encoder that learns to connect images and text.

○ The downsampled tokens are fed into CLIP which applies dense global

attention, how pieces fit together as “text”

36

DeepSeek-OCR: Methodology

● During inference, model activates 8 out of 64 experts (specialized sub-networks)

● Z are the compressed latent (vision) tokens from DeepEncoder

● X̂ hat is the reconstructed text representation.

● ƒdec is a non linear mapping that can be learned.

37

DeepSeek-OCR: Data

● OCR 1.0 data: ~30M PDF pages + natural scene text (English, Chinese, ~100

languages)

● OCR 2.0 data: synthetic charts, geometry, and chemical formulas for structured

parsing

● General vision data: small portion of image-caption, grounding, detection

● Text-only data: 10% of training to maintain language modeling ability

38

DeepSeek-OCR: Results

● 97% OCR precision with text

compressed by up to 10 times.

● 60% OCR precision even at a 20x

text compression ratio

● Promising for handling long context

39

DeepSeek-OCR: Results

● Achieves better performance with less token

needed compared to other model.

● Shows adaptive performance for diverse

content.

Edit distances for different categories of documents in OmniDocBench

40

DeepSeek-OCR: Results

● Deep Parsing: Extracts structured data from non-textual visual elements, such as

converting text into Markdown, chemical formulas into SMILES strings, and geometric

figures into structured data.

● Multilingual Recognition: Supports nearly 100 languages in PDF documents.

● General Vision Understanding: Describing image, object detection, grounding, etc.

41

DeepSeek-OCR: Discussion

● Simulates human memory forgetting by blurring and reducing tokens for older

visual contexts, allowing distant memories to naturally fade.

● Enables scalable, theoretically unlimited context architectures.

Questions?

