
KV Cache Compression

Gabriel Pernell, Alexander Martin



Background & Motivation



Prefix Caching (Prefilling)

https://blog.squeezebits.com/vllm-vs-tensorrtllm-12-automatic-prefix-caching-38189



4

Token Selection / Eviction

Tokens

Selected 
Tokens



5

Reminder: Longer Context = Longer Inference Time
Long inference times motivate using a KV Cache

• Cache the keys and values to reduce redundancy and save inference time

• Memory required: 2𝑏𝑛𝑑𝐿𝑘
• Larger models → many GBs of memory



6

KV Cache Compression

KV cache memory consumption with larger models motivates cache compression & 
optimization methods.

• Existing methods use a fixed cache size per transformer layer
• Is this efficient? 

• Authors say no, does not take into account attention varying by layer.



7

Goals & Research Questions

• Do LLMs aggregate information in recognizable patterns across layers?
• If so, can this inform a smarter KV cache compression method?

• Goal: develop a compression method that
• Allocates KV cache size based on layer and attention patterns

• Preserve long-context performance while reducing memory



PyramidKV: Dynamic KV Cache Compression 
based on Pyramidal Information Funneling
Zefan Cai , Yichi Zhang , Bofei Gao , Yuliang Liu , 
Yucheng Li , Tianyu Liu , Keming Lu , Wayne 
Xiong , Yue Dong , Junjie Hu , Wen Xiao

Presented by Gabriel Pernell



Background & Motivation



10

Reminder: Longer Context = Longer Inference Time
Long inference times motivate using a KV Cache

• Cache the keys and values to reduce redundancy and save inference time

• Memory required: 2𝑏𝑛𝑑𝐿𝑘
• Larger models → many GBs of memory



11

KV Cache Compression

KV cache memory consumption with larger models motivates cache compression & 
optimization methods.

• Existing methods use a fixed cache size per transformer layer
• Is this efficient? 

• Authors say no, does not take into account attention varying by layer.



12

Goals & Research Questions

• Do LLMs aggregate information in recognizable patterns across layers?
• If so, can this inform a smarter KV cache compression method?

• Goal: develop a compression method that
• Allocates KV cache size based on layer and attention patterns

• Preserve long-context performance while reducing memory



Pyramidal Information Funneling 



14

Observational Study: Information Flow via Attention

Setup: Multi-document QA task on LLaMA: visualized attention scores across layers

• Model given several interrelated documents plus a question.



15

Observational Study: Information Flow via Attention



16

Findings & Interpretation

• Findings:
• Lower Layers: broad, uniform attention

• Middle Layers: localized 

attention (e.g. info within 

documents)

• Upper layers: 

“massive attention” / 
attention sink, focus on a 

few key tokens

• Attention narrows like a 

pyramid 



PyramidKV



18

PyramidKV: Pyramidal KV Cache Compression Method

More cache is allocated at lower levels, less at higher levels.



19

Two Key Components (1)
• Dynamic KV Cache Budget Allocation:

• Retain the KV cache for the last α tokens (instruction tokens)

• Determine the top and bottom layer budgets:

• Use an arithmetic sequence to compute cache 
sizes in between, forming the pyramidal shape.

Total cache budget:

Bottom:

Top:



20

Two Key Components (2)

KV Cache Selection

• Which tokens do we keep?
• Instruction tokens - Keep

• Compute how much each token is attended to by the instruction tokens

• Keep the tokens with the highest attention scores



Experiments & Results



22

Setup

• Models: LLaMA-3-8B, LLaMA-3-70B, Mistral-7B

• Benchmark: LongBench (17 datasets across QA, summarization, code, few-shot 
learning).

• Baselines: FullKV, StreamingLLM, H2O, SnapKV.

• Same total KV budget on average across methods.



23

Results

• PyramidKV consistently outperforms baselines, especially with small cache sizes.

• Maintains near-full performance using only 12% of full KV cache

• Even with 0.7% of KV cache, accuracy drop is minimal

LLaMA-3-8B Mistral-7B LLaMA-3-70B

Avg score across datasets for 64, 96, 128, and 256 cache sizes



24

Results Cont’d

• PyramidKV excels with small cache sizes: 



25

Needle In A Haystack Experiment

• Purpose: test long-context factual retrieval

• Result: LLaMa-3-70B achieves 100% accuracy with 128 KV entries using 
PyramidKV, matching full cache performance

• Significance: PyramidKV preserves long-range memory and retrieval ability.



KVzip: Query-Agnostic KV Cache 
Compression with Context Reconstruction
Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, 
Jae W. Lee , Sangdoo Yun, Hyun Oh Song



27

KVzip



28

KVzip: How to evict?

Evict tokens that don’t contribute to reconstructing the context

Here is some context to 
compress

Here is some context to 
compress

Importance



KVzip: Attention Sparsity



KVzip: Performance 



KVzip: Model Comparison



Conclusions & Critiques



33

Conclusions

• Main takeaway: PyramidKV mirrors attention naturally funneling through layers

• Performance: 
• Preserves accuracy while using only 12% of KV cache

• Preserves long-context understanding ability

• Efficiency: Up to 90% GPU-memory reduction, minimal runtime overhead:



34

Critiques

• My thoughts: Very impressive results, lots of memory reduction with a simple 
implementation.

• Limits:
• Evaluated only on 3 English models.

– No multilingual testing.

• The pyramid could fail on tasks with different attention shapes.

– The observed attention phenomenon was only for multi-doc QA tasks.



Critiques: Attention Sparsity, Do you really want that? 



Thank You!
Any Questions?

Gabriel Pernell, Alexander Martin


