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Big Picture

Two parts:

- Benchmarking compression methods
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Big Picture

Two parts:

- Benchmarking compression methods

- Estimating weight importance for reasoning
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Background

Distillation:

- Trainer/Student setup

- Teacher logit distribution is used in addition 
to regular token prediction loss

Model Structure Weights

Distillation

Pruning

Quantization



6

Background

Pruning:

- Removal of weights

- Can be individual weights or larger structural 
components

Model Structure Weights

Distillation

Pruning

Quantization
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Background

Quantization:

- Performed over original model

- Weights are compressed from FP16/32 to 
4/3/... -bit

Model Structure Weights

Distillation

Pruning

Quantization
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Background (Quantization)

Original layer:

Layer after Quantization:

Example function:



9

AWQ

AWQ: Activation-aware weight quantization

Some weights are more important than others.

Idea: weight importance is related to activation 
magnitude
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GPTQ / GPTAQ

- Quantize ever layer in order, to reduce the layer output quantization error.

- Leverages an approximation of the inverse Hessian to determine weight importance.

GPTQ

GPTAQ
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Any4/3

▪ A lightweight table for quantization

▪ No need to do preprocess for weights 
and activations

▪ Learn distribution from data itself, not 
trying to match a distribution(nf4,af4)



12

Dynamic

▪ Some weights are more 
important than others:

o down_project in the first 3-
6 layers

o Shared MoE layers

o lm_head and Embeddings

o Layer norms and MoE
router
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Data

Gpt-4o annotated outputs for:

- Uncertainty Estimation

- Adding Knowledge

- Backtracking

- Example Testing
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Results
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Results

- Pruning deteriorates 

performance
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Results

- Pruning deteriorates 

performance
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Results

- Pruning deteriorates 

performance

- MuSiQue experiences the most 

significant performance drop

- AIME 2024, collapses at 3-bit
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Background

Difference of Means

Attribution Patching:

Behaviors:

Uncertainty Estimation

Adding Knowledge

Backtracking

Example Testing
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Importance Metric (compared to base)

- 32_up_project has the highest importance score for the evaluated behaviors

- experiences the biggest change in importance
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Importance Metric (compared to AWQ)

- 32_up_project importance is not preserved for 'Backtracking' and 'Adding Knowledge'
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Verification/Results

- Selectively quantizing components: (4bit)

- Altering AWQ such that the final layer MLP is preserved: (3bit)
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Understanding and Mitigating Numerical 
Sources of Nondeterminism in LLM Inference

Yuan, Jiayi, et al.
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One sentence for the paper?

▪ Different running configurations can lead to variation of results. (Live by FP32, die by 
FP32)
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Precision

▪ Larger Mantissa means more precise and Larger Exponent means larger range of 
values
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Precision

: O
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Precision
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Experiment Settings

▪ Models:

o Reasoning Models:DeepSeek-R1-DistillQwen-7B, DeepSeek-R1-Distill-Llama-8B

o Non-Reasoning Models: Qwen2.5-7B-Instruct, Llama-3.1-8B-Instruct

▪ Benchmarks: AIME’24, MATH500, LiveCodeBench-[Easy,Medium,Hard]

▪ Running Configurations

o GPU Types: NVIDIA L40S, A100

o GPU counts: 2, 4

o Batch Sizes: 8, 16, 32
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Experiment Metrics

▪ Greedy Decoding:

o Std@Acc( ): Standard deviation of accuracy

o Avg_Std@Output_Length( ): Average standard deviation of output length

o Div_Index( ): Model produce identical token sequences up to a certain position, 
but generate different tokens after that position

o Avg_Std@top1_prob( ): Average standard deviation of top-1 token prediction 
probability(0 to Div_Index)

▪ Random Sampling:

o Pass@1( ): Standard deviation of Pass@1



29

Greedy Decoding

▪ FP32 helps a lot

▪ BF16 exhibits substantial 
instability.
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Greedy Decoding

▪ Answer from BF16 will 
diverge more quickly

▪ FP32 doesn't diverge too 
much
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Greedy Decoding

▪ FP32 helps a lot

▪ BF16 exhibits substantial instability.



32

Random Sampling 

▪ Authors: result of dataset size and sampling dynamics, not contradiction
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How Runtime Configurations Affect Reproducibility

▪ More GPUs means more parallel computation

▪ Smaller BS means more sequential processing steps

▪ Hardware-level implementations and memory hierarchies count
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LayerCast

▪ Store as BF16 and 
Compute as FP32
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LayerCast

▪ It is as good as FP32!
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Disccusion

▪ FP32, FP16 or BF16

o What will be the result of INT8 or other quantization settings?

▪ Compression

o Does the compression metric make sense?

▪ Does 'thinking' text actually represent what the model is doing.

▪ Incorrect answers have longer chains of thought.

o Calculate metric on the 4-bit model, apply change only to the 3-bit model.
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