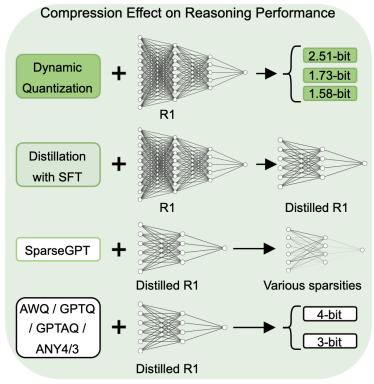


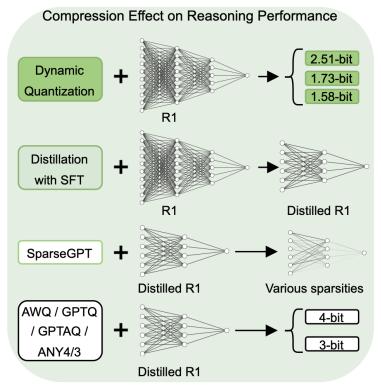
Can we preserve reasoning integrity under efficiency and precision constraints?


Dengjia Zhang, Elisabeth Fittschen

When Reasoning Meets Compression: Understanding the Effects of LLM Compression on Large Reasoning Models

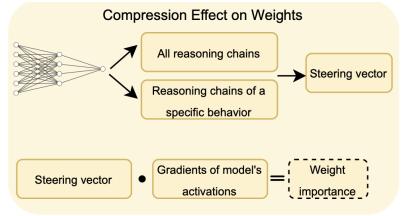
Zhang, et al.

Big Picture

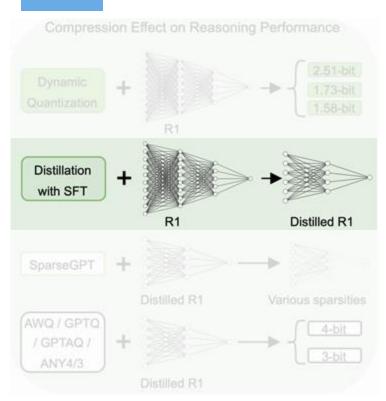


Two parts:

- Benchmarking compression methods

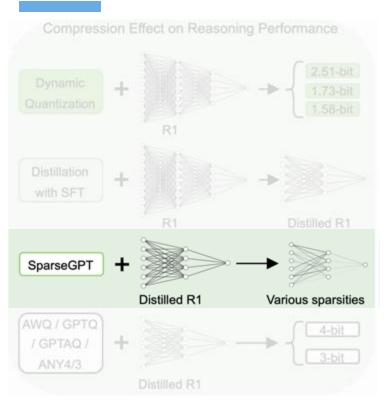


Big Picture



Two parts:

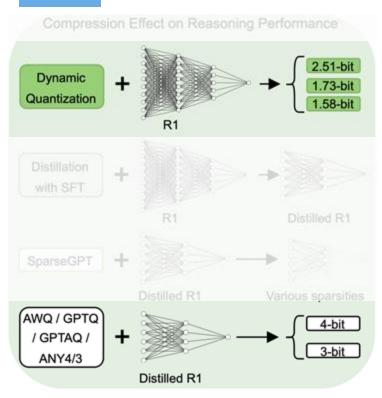
- Benchmarking compression methods
- Estimating weight importance for reasoning



Distillation:

- Trainer/Student setup
- Teacher logit distribution is used in addition to regular token prediction loss

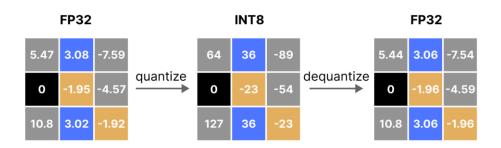
	Model Structure	Weights
Distillation	×	×
Pruning		
Quantization		



Pruning:

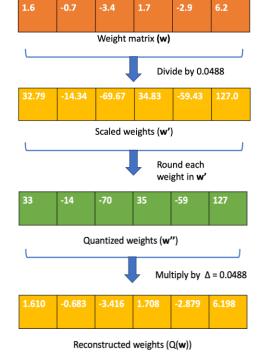
- Removal of weights
- Can be individual weights or larger structural components

	Model Structure	Weights
Distillation	×	×
Pruning	×	
Quantization		


Quantization:

- Performed over original model
- Weights are compressed from FP16/32 to 4/3/... -bit

	Model Structure	Weights
Distillation	×	×
Pruning	×	
Quantization		×


Background (Quantization)

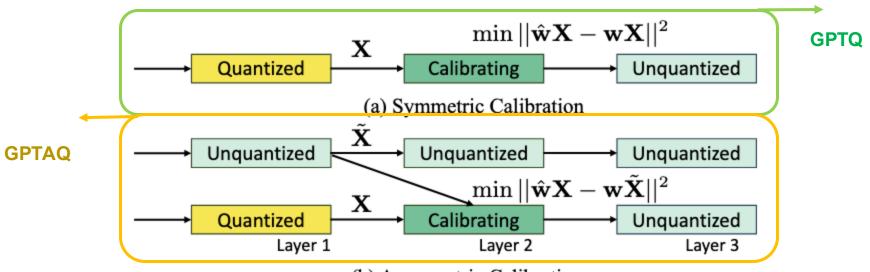
Original layer: $y = \mathbf{w}\mathbf{x}$,

Layer after Quantization: $y = Q(\mathbf{w})\mathbf{x}$.

Example function: $Q(\mathbf{w}) = \Delta \left[\text{Round}(\frac{\mathbf{w}}{\Delta}), \right] \Delta = \frac{\max(|\mathbf{w}|)}{2^{N-1}},$ (1)

AWQ: Activation-aware weight quantization

Some weights are more important than others.

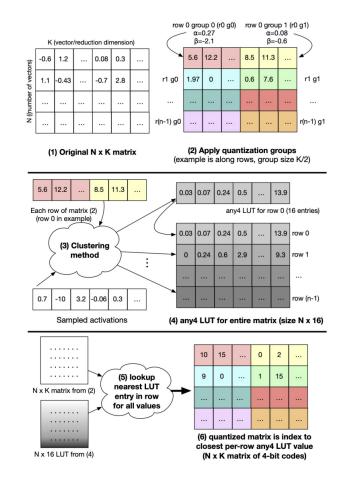

Idea: weight importance is related to activation magnitude

$$Q(\mathbf{w}) = \Delta \cdot \text{Round}(\frac{\mathbf{w}}{\Delta}),$$
 $Q_{int}(w_i \cdot s_i) = \text{Round}(\frac{w_i \cdot s_i}{\Delta})$

$$Q_{int}(w_i \cdot s_i) = \text{Round}(\frac{w_i \cdot s_i}{\Delta})$$

GPTQ / GPTAQ

- Quantize ever layer in order, to reduce the layer output quantization error.
- Leverages an approximation of the inverse Hessian to determine weight importance.



(b) Asymmetric Calibration

Any4/3

- A lightweight table for quantization
- No need to do preprocess for weights and activations
- Learn distribution from data itself, not trying to match a distribution(nf4,af4)

Dynamic

- Some weights are more important than others:
 - down_project in the first 3-6 layers
 - Shared MoE layers
 - Im_head and Embeddings
 - Layer norms and MoE router

MoE Bits	Туре	Disk Size	Accuracy	Link	Details
1.58bit	UD-IQ1_S	131GB	Fair	<u>Link</u>	MoE all 1.56bit. down_proj in MoE mixture of 2.06/1.56bit
1.73bit	UD-IQ1_M	158GB	Good	<u>Link</u>	MoE all 1.56bit. down_proj in MoE left at 2.06bit
2.22bit	UD- IQ2_XXS	183GB	Better	<u>Link</u>	MoE all 2.06bit. down_proj in MoE mixture of 2.5/2.06bit
2.51bit	UD- Q2_K_XL	212GB	Best	<u>Link</u>	MoE all 2.5bit. down_proj in MoE mixture of 3.5/2.5bit

Data

	Tasks
AIME 2024	Top math chilenges
FOLIO	Logical reasoning
Temporal	Event temporal reasoning
MuSiQue	Multihop reasoning

Gpt-4o annotated outputs for:

- Uncertainty Estimation
- Adding Knowledge
- Backtracking
- Example Testing

Table 5: Dataset statistics of selected reasoning benchmarks.

	Size	Answer Type	Metric	Knowledge
AIME 2024	30	Integer	Accuracy	False
FOLIO	203	True/False/Uncertain	Accuracy	False
Temporal	250	(A)/(B)/(C)/(D)	Accuracy	False
MuSiQue	100	A few words	(EM, F1)	True

Results

IOHNS HOPKINS

N
Deep
Deep
Deep
Deep
R1-Di
R1-Di R1-Di
R1-Di
R1-Di R1-Di
R1-Di
 K1-D

	Model
-	DeepSeek-R1 [†]
	R1-Distill-Llama
	R1-Distill-Llama
]	R1-Distill-Llama
	R1-Distill-Llama
]	R1-Distill-Llama R1-Distill-Llama
]	R1-Distill-Llama
]	R1-Distill-Llama
	R1-Distill-Qwen
j	R1-Distill-Llama
]	R1-Distill-Llama
]	R1-Distill-Llama
	R1-Distill-Llama
]	R1-Distill-Llama
	R1-Distill-Llama
	R1-Distill-Llama
]	R1-Distill-Llama
	R1-Distill-Qwen

Models

Compression

2.51-bit

1.73-bit

1.58-bit

Distillation

Distillation & 50% sparse

Distillation & 4-bit AWO

Distillation & 4-bit GPTQ

Distillation & 4-bit GPTAQ

Distillation & 3-bit GPTQ

Distillation & 3-bit GPTAO

Distillation

Distillation & 50% sparse

Distillation & 4-bit AWO

Distillation & 4-bit GPTO

Distillation & 4-bit GPTAO

Distillation & 4-bit ANY4

Distillation & 3-bit GPTO

Distillation & 3-bit GPTAQ

Distillation & 3-bit ANY3

Distillation

Distillation & 4-bit AWO

Distillation & 4-bit GPTO

Distillation & 4-bit GPTAO

Distillation & 4-bit ANY4

Distillation & 3-bit GPTO

Distillation & 3-bit GPTAQ

Distillation & 3-bit ANY3

Distillation

Distillation & 4-bit AWO

Distillation & 4-bit GPTO

Distillation & 4-bit GPTAQ

Distillation & 4-bit ANY4

Distillation & 3-bit GPTQ

Distillation & 3-bit GPTAO

Distillation & 3-bit ANY3

#Param

671B

671B

671B

671B

70B

70B

70B

70B

70B

70B

70B

32B

32B

32B

32B

32B

32B

32B

32B

32B

8B

8B

8B

8B

8B

8B

8B

8B

7B

7B

7B

7B

7B

7B

7B

7B

Accuracy

Temporal

99.6

100.0

99.6

94.0

99.9

97.6

99.3

99.9

99.6

99.3

99.7

99.9

97.9

99.1

99.6

99.7

99.7

98.9

99.5

99.9

81.5

84.0

65.9

69.3

88.7

67.3

57.2

34.9

75.6

74.9

70.3

67.7

77.1

31.7

48.7

30.1

Avg

83.1

84.8

81.5

78.7

81.8

64.2

80.4

81.2

80.9

72.6

77.1

82.2

66.2

83.1

83.0

81.5

82.2

72.5

74.2

78.6

65.2

66.6

58.1

58.6

66.1

47.8

43.5

29.4

66.8

65.7

60.7

63.3

66.8

38.4

45.9

43.9

MuSiQue (EM, F1)

(17.0, 27.51)

(17.0, 24.43)

(15.0, 22.11)

(14.0, 22.34)

(13.3, 21.57)

(6.7, 13.49)

(10.7, 19.23)

(10.3, 18.17)

(12.0, **21.57**)

(4.7, 11.92)

(5.7, 13.21)

(2.7, 10.95)

(2.3, 9.01)

(3.3, 10.28)

(4.0, 11.78)

(2.7, 11.88)

(5.7, 12.68)

(4.0, 11.55)

(2.3, 9.18)

(3.7, 10.27)

(0.0, 4.43)

(0.3, 5.05)

(0.3, 4.68)

(0.0, 3.73)

(0.0, 3.54)

(0.0, 2.89)

(0.0, 3.45)

(0.7, 2.35)

(0.0, 3.57)

(0.0, 3.14)

(1.0, 4.27)

(0.0, 3.96)

(0.0, 3.05)

(0.0, 3.12)

(0.0, 3.06)

(0.0, 3.89)

FOLIO

76.4

77.8

78.3

75.4

79.8

71.6

78.5

77.0

78.8

71.8

77.3

82.3

75.1

82.3

80.6

81.5

78.0

74.2

77.5

82.6

71.9

68.0

66.2

66.4

68.5

65.0

65.5

50.1

78.0

75.5

72.9

74.4

75.6

65.7

64.5

69.3

AIME 2024

73.3

76.7

66.7

66.7

65.6

23.3

63.4

66.7

64.4

46.7

54.4

64.4

25.6

67.8

68.9

63.3

68.9

44.4

45.6

53.3

42.2

47.8

42.2

40.0

41.1

11.1

7.8

3.3

46.7

46.6

38.9

47.8

47.8

17.8

24.4

32.2

Results

Pruning deterior performance

IOHNS HOPKINS

orates	

De
De
De
De
D 1
R1-
R1- R1-
R1-
R1-
R1-
R1-
R1
RI- RI- R1-
R1.
R1
R1
R1
R1-
R1
R1
R1-
R1-
R1
R1

	Model
	DeepSeek-R1 [†]
	R1-Distill-Llama
	R1-Distill-Llama
•	R1-Distill-Llama
	R1-Distill-Llama
	R1-Distill-Llama
	R1-Distill-Llama
	R1-Distill-Llama
_	R1-Distill-Qwen
	R1-Distill-Llama
	R1-Distill-Qwen

Models

Compression

2.51-bit

1.73-bit

1.58-bit

Distillation

Distillation & 50% sparse

Distillation & 4-bit AWQ

Distillation & 4-bit GPTQ

Distillation & 4-bit GPTAQ

Distillation & 3-bit GPTQ

Distillation & 3-bit GPTAO

Distillation

Distillation & 50% sparse

Distillation & 4-bit AWO

Distillation & 4-bit GPTO

Distillation & 4-bit GPTAO

Distillation & 4-bit ANY4

Distillation & 3-bit GPTQ

Distillation & 3-bit GPTAQ

Distillation & 3-bit ANY3

Distillation

Distillation & 4-bit AWQ

Distillation & 4-bit GPTO

Distillation & 4-bit GPTAO

Distillation & 4-bit ANY4

Distillation & 3-bit GPTO

Distillation & 3-bit GPTAQ

Distillation & 3-bit ANY3

Distillation

Distillation & 4-bit AWQ

Distillation & 4-bit GPTO

Distillation & 4-bit GPTAQ

Distillation & 4-bit ANY4

Distillation & 3-bit GPTQ

Distillation & 3-bit GPTAQ

Distillation & 3-bit ANY3

#Param

671B

671B

671B

671B

70B

70B

70B

70B

70B

70B

70B

32B

32B

32B

32B

32B

32B

32B

32B

32B

8B

8B

8B

8B

8B

8B

8B

8B

7B

7B

7B

7B

7B

7B

7B

7B

Accuracy

Temporal

99.6

100.0

99.6

94.0

99.9

97.6

99.3

99.9

99.6

99.3

99.7

99.9

97.9

99.1

99.6

99.7

99.7

98.9

99.5

99.9

81.5

84.0

65.9

69.3

88.7

67.3

57.2

34.9

75.6

74.9

70.3

67.7

77.1

31.7

48.7

30.1

Avg

83.1

84.8

81.5

78.7

81.8

64.2

80.4

81.2

80.9

72.6

77.1

82.2

66.2

83.1

83.0

81.5

82.2

72.5

74.2

78.6

65.2

66.6

58.1

58.6

66.1

47.8

43.5

29.4

66.8

65.7

60.7

63.3

66.8

38.4

45.9

43.9

MuSiQue (EM, F1)

(17.0, 27.51)

(17.0, 24.43)

(15.0, 22.11)

(14.0, 22.34)

(13.3, 21.57)

(6.7, 13.49)

(10.7, 19.23)

(10.3, 18.17)

(12.0, **21.57**)

(4.7, 11.92)

(5.7, 13.21)

(2.7, 10.95)

(2.3, 9.01)

(3.3, 10.28)

(4.0, 11.78)

(2.7, 11.88)

(5.7, 12.68)

(4.0, 11.55)

(2.3, 9.18)

(3.7, 10.27)

(0.0, 4.43)

(0.3, 5.05)

(0.3, 4.68)

(0.0, 3.73)

(0.0, 3.54)

(0.0, 2.89)

(0.0, 3.45)

(0.7, 2.35)

(0.0, 3.57)

(0.0, 3.14)

(1.0, 4.27)

(0.0, 3.96)

(0.0, 3.05)

(0.0, 3.12)

(0.0, 3.06)

(0.0, 3.89)

FOLIO

76.4

77.8

78.3

75.4

79.8

71.6

78.5

77.0

78.8

71.8

77.3

82.3

75.1

82.3

80.6

81.5

78.0

74.2

77.5

82.6

71.9

68.0

66.2

66.4

68.5

65.0

65.5

50.1

78.0

75.5

72.9

74.4

75.6

65.7

64.5

69.3

AIME 2024

73.3

76.7

66.7

66.7

65.6

23.3

63.4

66.7

64.4

46.7

54.4

64.4

25.6

67.8

68.9

63.3

68.9

44.4

45.6

53.3

42.2

47.8

42.2

40.0

41.1

11.1

7.8

3.3

46.7

46.6

38.9

47.8

47.8

17.8

24.4

32.2

Results

JOHNS HOPKINS

Pruning deteriorates	3
performance	
_ p	1_

deteriora	ntes
	<u> </u>
ance	
	Model
	R1-Distill-I
	R1-Distill-I
	R1-Distill-I R1-Distill-I

			DeepSeek	-R1 [†]
			R1-Distill-l	Llama
			R1-Distill-l	Jama
ate	es		R1-Distill-l	
-		odels	P.1-Dietill-l	lama
	Model	#Param	Sparsity	AIM
	R1-Distill-Llama	70B	0%	(
	R1-Distill-Llama	70B	10%	(
	R1-Distill-Llama	70B	30%	(
	R1-Distill-Llama	70B	40%	4
	R1-Distill-Llama	70B	50%	2
	R1-Distill-Llama	70B	60%	
	R1-Distill-Llama	70B	70%	
	R1-Distill-Llama	70B	80%	

R1-Distill-Owen

R1-Distill-Owen

R1-Distill-Qwen

R1-Distill-Qwen

R1-Distill-Qwen

R1-Distill-Qwen

R1-Distill-Qwen

R1-Distill-Qwen

Models

Compression

2.51-bit

1.73-bit

1.58-bit

Distillation

Distillation & 50% sparse

Distillation & 4-bit AWO

Distillation & 4-bit GPTO

Temporal

100.0

99.6

99.6

98.8

97.2

95.6

15.6

12.4

100.0

100.0

100.0

100.0

96.0

87.2

19.6

2.0

Distillation & 3-bit ANY3

Distillation

Distillation & 4-bit AWO

Distillation & 4-bit GPTO

Distillation & 4-bit GPTAQ

Distillation & 4-bit ANY4

Distillation & 3-bit GPTO

Distillation & 3-bit GPTAQ

Distillation & 3-bit ANY3

Avg

80.7

80.3

80.7

76.8

64.9

53.5

21.8

8.1

83.0

83.8

79.3

77.2

67.1

50.7

17.4

3.6

Accuracy

FOLIO

78.8

81.3

79.3

73.9

70.9

65.0

49.8

11.8

82.3

81.3

81.3

78.3

75.4

65.0

32.5

8.7

#Param

671B

671B

671B

671B

70B

70B

70B

70R

AIME 2024

63.3

60.0

63.3

56.7

26.7

0.0

0.0

0.0

66.7

70.0

56.7

53.3

30.0

0.0

0.0

0.0

818

7B

7B

7B

7B

7B

7B

7B

7B

Model

DeepSeek-R1[†]

DeepSeek-R1[†]

DeepSeek-R1[†]

0%

10%

30%

40%

50%

60%

70%

80%

K1-Distill-Llama

R1-Distill-Owen

R1-Distill-Owen

R1-Distill-Owen

R1-Distill-Owen

R1-Distill-Owen

R1-Distill-Owen

R1-Distill-Owen

R1-Distill-Owen

32B

32B

32B

32B

32B

32B

32B

32B

Accuracy

Avg

83.1

84.8

81.5

78.7

81.8

64.2

80.4

81.2

80.9

72.6

77.1

82.2

66.2

83.1

83.0

81.5

82.2

72.5

74.2

78.6

65.2

66.6

58.1

58.6

66.1

47.8

43.5

29.4

66.8

65.7

60.7

63.3

66.8

38.4

45.9

43.9

Temporal

99.6

100.0

99.6

94.0

99.9

97.6

99.3

99.9

99.6

99.3

99.7

99.9

97.9

99.1

99.6

99.7

99.7

98.9

99.5

99.9

81.5

84.0

65.9

69.3

88.7

67.3

57.2

34.9

75.6

74.9

70.3

67.7

77.1

31.7

48.7

30.1

MuSiQue (EM, F1)

(17.0, 27.51)

(17.0, 24.43)

(15.0, 22.11)

(14.0, 22.34)

(13.3, 21.57)

(6.7, 13.49)

(10.7, 19.23)

(10.3, 18.17)

(12.0, 21.57)

(4.7, 11.92)

(5.7, 13.21)

(2.7, 10.95)

(2.3, 9.01)

(3.3, 10.28)

(4.0, 11.78)

(2.7, 11.88)

(5.7, 12.68)

(4.0, 11.55)

(2.3, 9.18)

(3.7, 10.27)

(0.0, 4.43)

(0.3, 5.05)

(0.3, 4.68)

(0.0, 3.73)

(0.0, 3.54)

(0.0, 2.89)

(0.0, 3.45)

(0.7, 2.35)

(0.0, 3.57)

(0.0, 3.14)

(1.0, 4.27)

(0.0, 3.96)

(0.0, 3.05)

(0.0, 3.12) $(0.0, 63.06) \atop (0.0, 63.89)$

FOLIO

76.4

77.8

78.3

75.4

79.8

71.6

78.5

77.0

AIME 2024

73.3

76.7

66.7

66.7

65.6

23.3

63.4

66.7

MuSiQue (EM, F1)

(13.0, 21.80)

(12.0, 21.69)

(14.0, 21.40)

(6.0, 13.79)

(6.0, 12.75)

(0.0, 6.42)

(0.0, 2.23)

(0.0, 0.94)

(1.0, 9.38)

(5.0, 13.19)

(1.0, 10.47)

(2.0, 10.16)

(3.0, 9.29)

(0.0, 4.13)

(0.0, 1.72)

(0.0, 1.29)

50.1

78.0

75.5

72.9

74.4

75.6

65.7

64.5

69.3

5.5

46.7

46.6

38.9

47.8

47.8

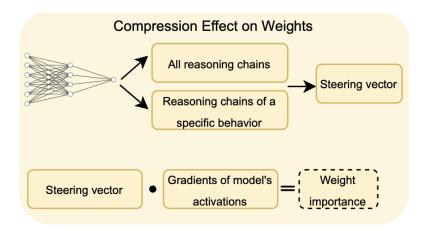
17.8

24.4

32.2

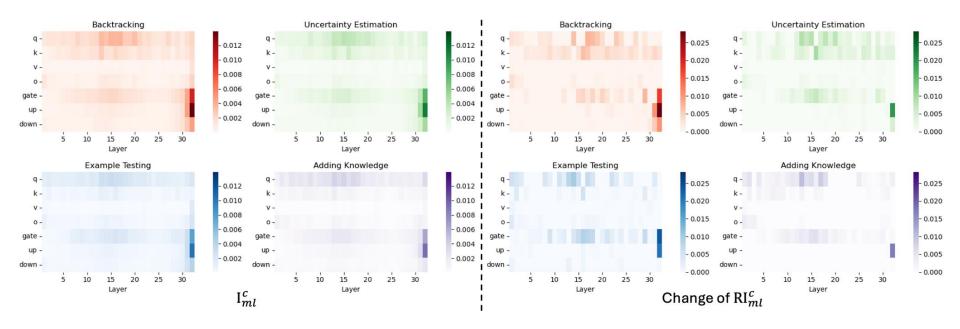
	Models			Accuracy				
	Model	#Param	Compression	AIME 2024	FOLIO	Temporal	Avg	MuSiQue (EM, F1)
	DeepSeek-R1 [†]	671B	-	73.3	76.4	99.6	83.1	(17.0, 27.51)
Doculto	DeepSeek-R1 [†]	671B	2.51-bit	76.7	77.8	100.0	84.8	(17.0 , 24.43)
Results	DeepSeek-R1 [†]	671B	1.73-bit	66.7	78.3	99.6	81.5	(15.0, 22.11)
	DeepSeek-R1 [†]	671B	1.58-bit	66.7	75.4	94.0	78.7	(14.0, 22.34)
	R1-Distill-Llama	70B	Distillation	65.6	79.8	99.9	81.8	(13.3, 21.57)
	R1-Distill-Llama	70B	Distillation & 50% sparse	23.3	71.6	97.6	64.2	(6.7, 13.49)
Pruning deteriorates	R1-Distill-Llama	70B	Distillation & 4-bit AWQ	63.4	78.5	99.3	80.4	(10.7, 19.23)
•	R1-Distill-Llama	70B	Distillation & 4-bit GPTQ	66.7	77.0	99.9	81.2	(10.3, 18.17)
performance	R1-Distill-Llama	70B	Distillation & 4-bit GPTAQ	64.4	78.8	99.6	80.9	(12.0, 21.57)
•	R1-Distill-Llama	70B	Distillation & 3-bit GPTQ	46.7	71.8	99.3	72.6	(4.7, 11.92)
	R1-Distill-Llama	70B	Distillation & 3-bit GPTAQ	54.4	77.3	99.7	77.1	(5.7, 13.21)
MuSiQue experiences the most	R1-Distill-Qwen	32B	Distillation	64.4	82.3	99.9	82.2	(2.7, 10.95)
•	R1-Distill-Qwen	32B	Distillation & 50% sparse	25.6	75.1	97.9	66.2	(2.3, 9.01)
significant performance drop	R1-Distill-Qwen	32B	Distillation & 4-bit AWQ	67.8	82.3	99.1	83.1	(3.3, 10.28)
	R1-Distill-Qwen	32B	Distillation & 4-bit GPTQ	68.9	80.6	99.6	83.0	(4.0, 11.78)
	R1-Distill-Qwen	32B	Distillation & 4-bit GPTAQ	63.3	81.5	99.7	81.5	(2.7, 11.88)
AIME 2024, collapses at 3-bit	R1-Distill-Qwen	32B	Distillation & 4-bit ANY4	68.9	78.0	99.7	82.2	(5.7, 12.68)
, mile 2021, conspect at a late	R1-Distill-Qwen	32B	Distillation & 3-bit GPTQ	44.4	74.2	98.9	72.5	(4.0, 11.55)
	R1-Distill-Qwen	32B	Distillation & 3-bit GPTAQ	45.6	77.5	99.5	74.2	(2.3, 9.18)
	R1-Distill-Qwen	32B	Distillation & 3-bit ANY3	53.3	82.6	99.9	78.6	(3.7, 10.27)
	R1-Distill-Llama	8B	Distillation	42.2	71.9	81.5	65.2	(0.0, 4.43)
	R1-Distill-Llama	8B	Distillation & 4-bit AWQ	47.8	68.0	84.0	66.6	(0.3, 5.05)
	R1-Distill-Llama	8B	Distillation & 4-bit GPTQ	42.2	66.2	65.9	58.1	(0.3 , 4.68)
	R1-Distill-Llama	8B	Distillation & 4-bit GPTAQ	40.0	66.4	69.3	58.6	(0.0, 3.73)
	R1-Distill-Llama	8B	Distillation & 4-bit ANY4	41.1	68.5	88.7	66.1	(0.0, 3.54)
	R1-Distill-Llama	8B	Distillation & 3-bit GPTQ	11.1	65.0	67.3	47.8	(0.0, 2.89)
	R1-Distill-Llama	8B 8B	Distillation & 3-bit GPTAQ	7.8	65.5	57.2	43.5	(0.0, 3.45)
	R1-Distill-Llama		Distillation & 3-bit ANY3	3.3	50.1	34.9	29.4	(0.7, 2.35)
	R1-Distill-Qwen	7B	Distillation	46.7	78.0	75.6	66.8	(0.0, 3.57)
	R1-Distill-Qwen	7B	Distillation & 4-bit AWQ	46.6	75.5	74.9	65.7	(0.0, 3.14)
	R1-Distill-Qwen	7B	Distillation & 4-bit GPTQ	38.9	72.9	70.3	60.7	(1.0, 4.27)
	R1-Distill-Qwen	7B	Distillation & 4-bit GPTAQ	47.8	74.4	67.7	63.3	(0.0, 3.96)
	R1-Distill-Qwen	7B	Distillation & 4-bit ANY4	47.8	75.6	77.1	66.8	(0.0, 3.05)
TOHNS HOPKINS	R1-Distill-Qwen R1-Distill-Owen	7B 7B	Distillation & 3-bit GPTQ Distillation & 3-bit GPTAO	17.8	65.7 64.5	31.7 48.7	38.4 45.9	(0.0, 3.12) (0.0, 3.06)
WHITING SCHOOL	R1-Distill-Qwen R1-Distill-Qwen	7В 7В	Distillation & 3-bit GP1AQ Distillation & 3-bit ANY3	24.4 32.2	64.5 69.3	48.7 30.1	45.9 43.9	(0.0, 3.06) (0.0, 3.89)
of ENGINEERING	K1-Distin-Qwell	7.0	Distribution & 5-bit AN 15	32.2	07.5	50.1	73.7	(0.0, 5.07)

Difference of Means


$$\mathbf{u}_{m\ell}^c = \frac{1}{|\mathcal{D}_+|} \sum_{s_i^c \in \mathcal{D}_+} \overline{\mathbf{a}}_{m\ell}^c(s_i^c) - \frac{1}{|\mathcal{D}_-|} \sum_{s_j \in \mathcal{D}_-} \overline{\mathbf{a}}_{m\ell}(s_j), \quad \text{with} \quad \overline{\mathbf{a}}_{m\ell}^c(s_i^c) = \frac{1}{|s_i^c|} \sum_{t \in s_i^c} \mathbf{a}_{m\ell}(t)$$

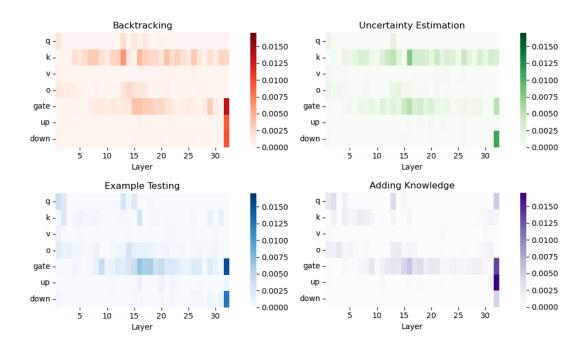
Uncertainty Estimation Adding Knowledge Backtracking Example Testing

Behaviors:


Attribution Patching:

$$\mathbf{I}_{m\ell}^c pprox rac{1}{|\mathcal{D}_+|} \left| \sum_{s_i^c \in \mathcal{D}_+} \left(\tilde{\mathbf{u}}_{m\ell}^c
ight)^ op rac{\partial}{\partial \mathbf{a}_{m\ell}} \mathcal{L}(s_i^c)
ight|$$

Importance Metric (compared to base)


- 32 up project has the highest importance score for the evaluated behaviors
- experiences the biggest change in importance

Importance Metric (compared to AWQ)

32 up project importance is not preserved for 'Backtracking' and 'Adding Knowledge'

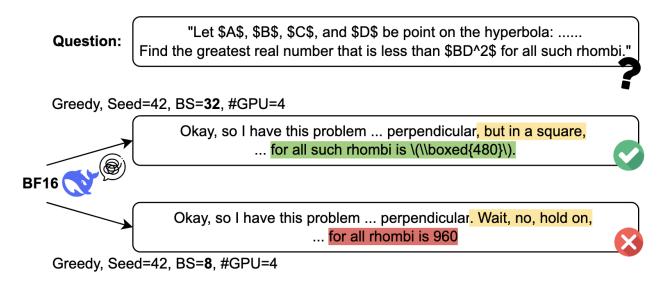
Verification/Results

Selectively quantizing components: (4bit)

Quantized Component	Rank	AIME 2024	FOLIO	Temporal	Avg
32_up	1st overall	20.0	63.1	63.6	48.9
32_gate	2nd col	33.3	62.1	67.2	54.2
32_v	last col	43.3	68.0	79.6	63.6
31_up	2nd row	33.3	70.0	64.4	55.9
1_{μ}	last row	6.7	64.5	80.4	50.5

- Altering AWQ such that the final layer MLP is preserved: (3bit)

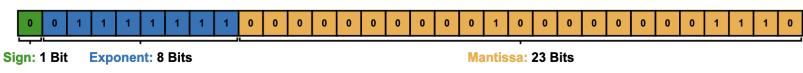
Model	Compression	Full-Precision Anywhere?	AIME 2024	FOLIO	Temporal	Avg	MuSiQue
R1-Distill-Llama-8B	3-bit AWQ	-	10.0	59.6	68.4		(0.0, 3.50)
R1-Distill-Llama-8B	3-bit AWQ	Final-layer MLP	16.7	67.0	74.0		(1.0, 3.62)

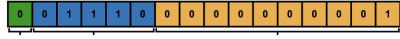

Understanding and Mitigating Numerical Sources of Nondeterminism in LLM Inference

Yuan, Jiayi, et al.

One sentence for the paper?

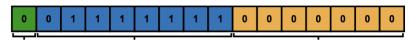
Different running configurations can lead to variation of results. (Live by FP32, die by FP32)




Precision

 Larger Mantissa means more precise and Larger Exponent means larger range of values

IEEE 754 Single Precision 32-bit Float (IEEE FP32)



IEEE 754 Half Precision 16-bit Float (IEEE FP16)

Sign: 1 Bit Exponent: 5 Bits Mantissa: 10 Bits

Google Brain Float (BFloat16 or BF16)

Sign: 1 Bit Exponent: 8 Bits Mantissa: 7 Bits

Precision

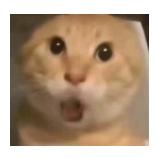
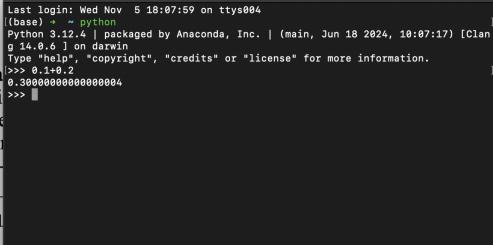


Table 2: Two illustrative cases demonstrate how rounding error, together with the non-associativity of floating-point addition, can affect numerical results. Example 1 reveals accumulation error at both precisions; Example 2 exhibits a discrepancy only in BF16, while FP32 delivers identical results, illustrating higher-precision numeric types are more tolerant of rounding errors.

Example	Sum Order	FP32	BF16
a, b, c = 0.1, -0.1, 0.2	a+b+c	001111100100110011001100110011 01	00111110010011 <mark>01</mark>
a, b, c = 0.1, -0.1, 0.2	a+c+b	00111110010011001100110011001110	00111110010011 <mark>10</mark>
a, b, c = 0.0016, 0.0027, 1.0	a+b+c	001111111100000001000110011100111	0011111111000000 <mark>1</mark>
a, 0, 0 0.00 21 , 1.0	a+c+b	001111111100000001000110011100111	00111111110000000



Precision

Example

$$a, b, c = 0.1, -0.1$$

a, b, c = 0.0016, 0.00

zephyria — python — python — python — 80×24

non-associativity of ulation error at both ers identical results,

BF16
00111110010011 <mark>01</mark>
00111110010011 <mark>10</mark>
0011111111000000 <mark>1</mark>
00111111110000000

Experiment Settings

- Models:
 - Reasoning Models:DeepSeek-R1-DistillQwen-7B, DeepSeek-R1-Distill-Llama-8B
 - Non-Reasoning Models: Qwen2.5-7B-Instruct, Llama-3.1-8B-Instruct
- Benchmarks: AIME'24, MATH500, LiveCodeBench-[Easy,Medium,Hard]

Running Configurations

- o GPU Types: NVIDIA L40S, A100
- o GPU counts: 2, 4
- Batch Sizes: 8, 16, 32

Experiment Metrics

• Greedy Decoding:

- Std@Acc(↓): Standard deviation of accuracy
- Avg_Std@Output_Length(\$\frac{1}{2}\$): Average standard deviation of output length
- Div_Index(1): Model produce identical token sequences up to a certain position, but generate different tokens after that position
- Avg_Std@top1_prob(\$\frac{1}{2}\$): Average standard deviation of top-1 token prediction probability(0 to Div_Index)

Random Sampling:

Pass@1(↓): Standard deviation of Pass@1

Greedy Decoding

- FP32 helps a lot
- BF16 exhibits substantial instability.

Table 3: Std@Acc of greedy decoding across 12 different settings (GPU types, GPU counts, and batch sizes) under BF16, FP16, and FP32 Numerical Precisions. Reasoning models also exhibit larger variance compared to non-reasoning counterparts. More results can be found in Appendix C.

	AIME'24			MATH500			LiveCodeBench-Easy		
	BF16	FP16	FP32	BF16	FP16	FP32	BF16	FP16	FP32
DeepSeek-R1-Distill-Qwen-7B	9.15%	5.74%	0	1.04%	1.12%	0.12%	1.67%	1.28%	0.37%
DeepSeek-R1-Distill-Llama-8B	4.60%	6.00%	5.8e-17	1.59%	0.73%	0.23%	2.31%	1.92%	0.29%
Qwen2.5-7B-Instruct	1.71%	1.45e-17	1.45e-17	0.83%	0.36%	1.16e-16	0.79%	0.48%	1.16e-16
Llama-3.1-8B-Instruct	1.92%	1.30%	0	0.94%	0.34%	0.13%	1.00%	0.67%	0.25%

Table 4: Standard deviation of output length of greedy decoding across 12 different settings (GPU types, GPU counts, and batch sizes) under BF16, FP16, and FP32 numerical precisions. The output length of reasoning models exhibit large variance. More results can be found in Appendix C.

	AIME'24			MATH500			LiveCodeBench-Easy		
	BF16	FP16	FP32	BF16	FP16	FP32	BF16	FP16	FP32
DeepSeek-R1-Distill-Qwen-7B	9189.53	5990.32	0	2774.28	2090.46	138.75	5507.52	4282.78	262.55
DeepSeek-R1-Distill-Llama-8B	9348.59	7822.43	0	4015.00	2518.38	146.03	4732.85	3652.16	105.85
Qwen2.5-7B-Instruct	211.47	48.14	0	52.61	15.37	0	7.79	0.71	0
Llama-3.1-8B-Instruct	119.21	49.73	0	124.43	40.57	2.76	31.03	4.70	0.49

Greedy Decoding

- Answer from BF16 will diverge more quickly
- FP32 doesn't diverge too much

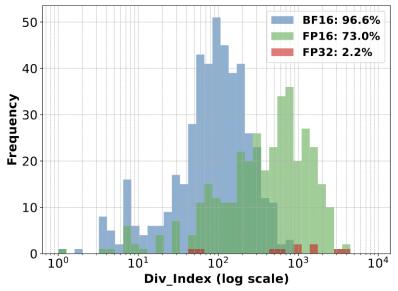


Figure 5: Distribution of Div_Index for DeepSeek-R1-Distill-Qwen-7B on MATH500 under BF16, FP16, and FP32. Higher numerical precisions lead to fewer divergent examples and a shift of divergence point to later token positions.

Greedy Decoding

- FP32 helps a lot
- BF16 exhibits substantial instability.

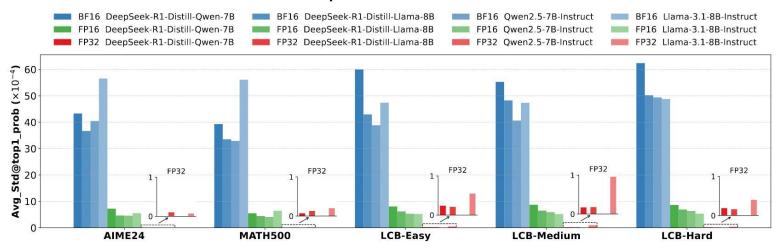
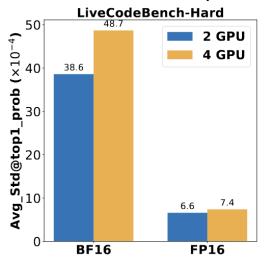
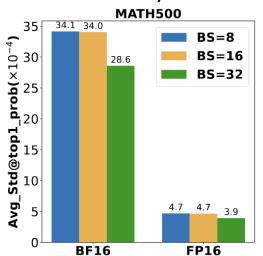


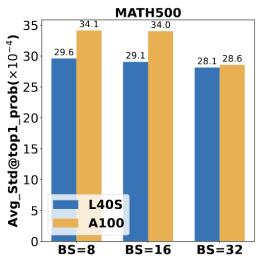
Figure 4: Avg_Std@top1_prob across 12 different settings for 4 models and 5 tasks, under BF16, FP16 and FP32. FP16 shows significantly lower variance compared to BF16. FP32 yields near-zero variance, demonstrating strong robustness to floating-point rounding errors.

Random Sampling

Authors: result of dataset size and sampling dynamics, not contradiction

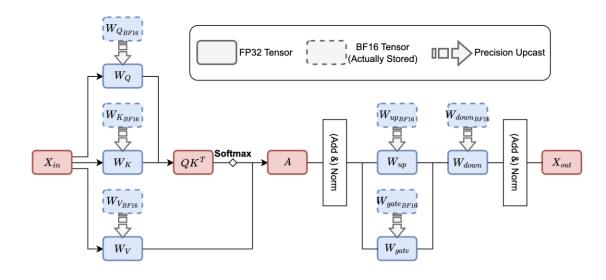

Table 5: Standard deviation of Pass@1 performance (%) under different GPU counts and precisions. We emphasize that the reported values reflect **the variability of Pass@1 performance across 6 different system configurations** (3 batch sizes × 2 GPU counts), *not* across repeated runs of the same configuration.


	MATH500 (n=4)			AIME'24 (n=16)			AIME'24 (n=64)		
	BF16	FP16	FP32	BF16	FP16	FP32	BF16	FP16	FP32
DeepSeek-R1-Distill-Qwen-7B	0.3158	0.1463	0.1021	1.7151	0.8273	1.1785	0.3749	0.5391	0.7377
DeepSeek-R1-Distill-Llama-8B	0.3602	0.3371	0.1211	1.5124	1.8792	0.8606	0.8774	0.8539	0.5034
Qwen2.5-7B-Instruct	0.4663	0.1686	0.0274	0.7056	0.2523	0	0.1784	0.1382	0
Llama-3.1-8B-Instruct	0.6020	0.1725	0.3293	0.5992	0.2282	0.7759	0.4216	0.2898	0.1296

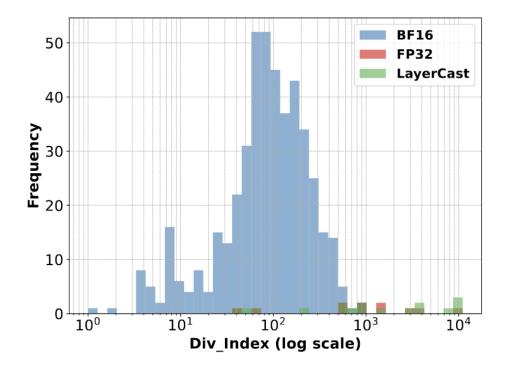


How Runtime Configurations Affect Reproducibility

- More GPUs means more parallel computation
- Smaller BS means more sequential processing steps
- Hardware-level implementations and memory hierarchies count



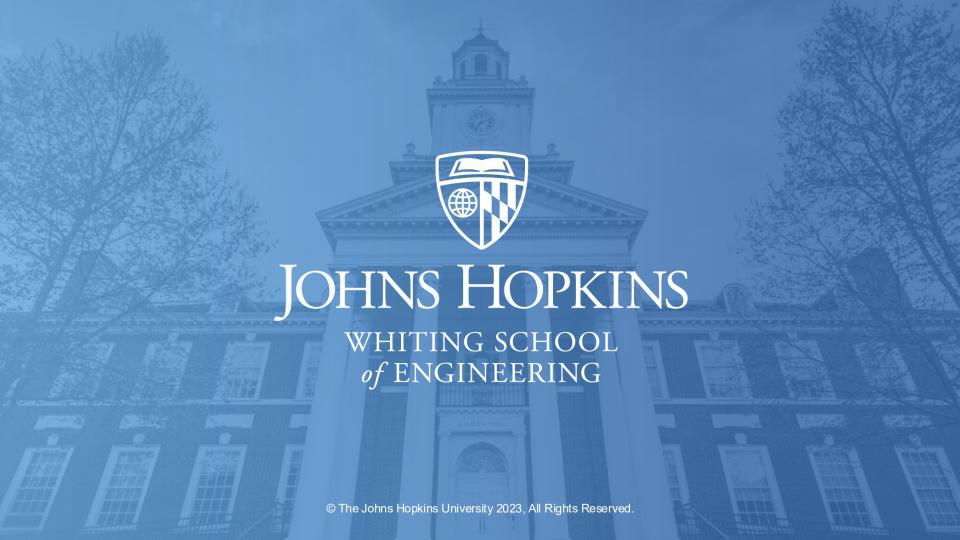
LayerCast


 Store as BF16 and Compute as FP32

LayerCast

• It is as good as FP32!

Disccusion


- FP32, FP16 or BF16
 - What will be the result of INT8 or other quant
- 0.0150 0.0150 0.0125 0.0100 0.0075 0.0050 - 0.0025 - 0.0000 - 0.0000 Example Testing Adding Knowledge - 0.0150 - 0.0150 0.0125 0.0125 0.0100 0.0100 0.0075 0.0050 - 0.0025 0.0025 - 0.0000 - 0.0000

Uncertainty Estimation

- Compression
 - o Does the compression metric make sense?
 - Does 'thinking' text actually represent what the model is doing.
 - Incorrect answers have longer chains of thought.
 - Calculate metric on the 4-bit model, apply change only to the 3-bit model.

Quantized Component	Rank	AIME 2024	FOLIO	Temporal	Avg
32_up	1st overall	20.0	63.1	63.6	48.9
32_gate	2nd col	33.3	62.1	67.2	54.2
$32_{-}v$	last col	43.3	68.0	79.6	63.6
31_up	2nd row	33.3	70.0	64.4	55.9
1_up	last row	6.7	64.5	80.4	50.5

