
Can LLM attention enable efficient KV 
caching with frugal memory without hurting 
long-context reasoning?

CSCI 601-771 (NLP: Self-Supervised Models)

Ernie Chu, Jonathan Lee

https://self-supervised.cs.jhu.edu/fa2025/



2

KV-Cache Eviction Dimension

▪ Dropping irrelevant tokens. But how to determine the relevancy?

[Figure credit: Arman Cohan]

K/V Cached

Old 

tokens
New



3

KV-Cache Eviction Dimension

▪ Eviction in other dimensions?

▪ Evict non-adjacent tokens? 

K/V Cached

Head / Layer 

dimensions

[Figure credit: Arman Cohan]



4

KV-Cache Eviction

Eviction

Cheap CPU memory / disk Costly GPU memory

Only transfer 

essential caches



5

Analogy to Software Engineering

▪ Static 

o Code analysis

▪ Dynamic

o Runtime state analysis

▪ Redesigned

o Rewriting the code



6

KV-Cache Eviction Types

▪ Static - prefill stage

o Evict KV cache based on the initial prompts (contexts)

o Pros: minimal latency in runtime

o Cons: cannot handle future tokens (generation, follow-up questions)

▪ Dynamic - decode stage

o Evict KV cache based on runtime tokens

o Pros: preserve all info

o Cons: runtime analysis overhead

▪ Redesigned - train stage

o Restricting attending position by finetuning (e.g., use local attn in training)

o Pros: no discrepancy between training/inference

o Cons: cannot generalize to different tasks and models (need FT)



7

KV-Cache Eviction Types

▪ Static - prefill stage

o Evict KV cache based on the initial prompts (contexts)

o Pros: minimal latency in runtime

o Cons: cannot handle future tokens (generation, follow-up questions)

▪ Dynamic - decode stage

o Evict KV cache based on runtime tokens

o Pros: preserve all info

o Cons: runtime analysis overhead

▪ Redesigned - train stage

o Restricting attending position by finetuning (e.g., use local attn in training)

o Pros: no discrepancy between training/inference

o Cons: cannot generalize to different tasks and models (need FT)



8

KV-Cache Eviction Types

▪ Static - prefill stage

o Evict KV cache based on the initial prompts (contexts)

o Pros: minimal latency in runtime

o Cons: cannot handle future tokens (generation, follow-up questions)

▪ Dynamic - decode stage

o Evict KV cache based on runtime tokens

o Pros: preserve all info

o Cons: runtime analysis overhead

▪ Redesigned - train stage

o Restricting attending position by finetuning (e.g., use local attn in training)

o Pros: no discrepancy between training/inference

o Cons: cannot generalize to different tasks and models (need FT)



9

KV-Cache Eviction Types

▪ Static - prefill stage

o Evict KV cache based on the initial prompts (contexts)

o Pros: minimal latency in runtime

o Cons: cannot handle future tokens (generation, follow-up questions)

▪ Dynamic - decode stage

o Evict KV cache based on runtime tokens

o Pros: preserve all info

o Cons: runtime analysis overhead

▪ Redesigned - train stage

o Restricting attending position by finetuning (e.g., use local attn in training)

o Pros: no discrepancy between training/inference

o Cons: cannot generalize to different tasks and models (need FT)



10

Static Token Eviction

▪ Determine evicted tokens in prefill stage

o Local (with sink)

o Strided (new toks have higher resolutions)

o Base on attention score -> H2O, PyramidKV, KVzip

[Figure credit: Zhang et al. H2O]



11

In this seminar

▪ Static - prefill stage

o Previous works

▪ Dynamic - decode stage

o The first paper: OmniKV

▪ Redesigned - train stage

o The second paper: DuoAttention



12

OmniKV: Dynamic Context Selection for 
Efficient Long-Context LLMs

(Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, Sheng Guo. ICLR 2025)



13

Limitations of Static Eviction

▪ The set of important tokens varies depending on the reasoning step

Prefill stage

Decode stage

Greens: <𝛼> attends to

Blues: <𝛽> attends to



14

Limitations of Static Eviction

▪ Given an important token subset from static eviction like H2O

▪ For each generated token, check if the top tokens it attends to are missing

▪ Different tokens attend to different positions



15

Limitations of Static Eviction

▪ Static attention scores cannot indicate the future importance of tokens in subsequent 
generation iterations

▪ Tokens that have low attention scores in the prefill stage may be recalled as 
important tokens in subsequent reasoning steps.



16

OmniKV: Retaining all KV Cache

▪ OmniKV retains all KV cache to ensure that performance remains unaffected, while 
dynamically selecting a sparse subset of tokens for attention computation in the 
decode stage

▪ Spoiler



17

Determine Eviction per Layer

▪ Given a full attention transformer



18

Determine Eviction per Layer

▪ Given a full attention transformer



19

Determine Eviction per Layer

Eviction
Algorithm

▪ Given a full attention transformer, assume adjacent layers have similar attn-score



20

Determine Eviction per Layer

Eviction
Algorithm

▪ Given a full attention transformer, assume adjacent layers have similar attn-score

Figure 1

nearby



21

Determine Eviction per Layer

Eviction
Algorithm

▪ Given a full attention transformer, assume adjacent layers have similar attn-score

nearby

Figure 1



22

Determine Eviction per Layer

▪ Given a full attention transformer, assume adjacent layers have similar attn-score

nearby

Figure 1



23

Eviction Algorithm Details

▪ Obs Window: the most recent tokens (~16 toks)

▪ Aggregation methods:

o Uniform (avg)

o Exponential (emphasize on new toks)

o Last Token (window_size = 1)



24

Eviction Algorithm Details

Figure 3



25

Eviction Algorithm Details

▪ Last Token is the most robust across various benchmarks

o Fast, easy to implement

Table 1



26

Latency

Figure 4



27

Latency & Performance Tradeoff

6400 toks = 30% of full attn

Figure 5 Table 2



28

Specialized Dataset for Runtime Deps

▪ Existing datasets may not require runtime dependency

o Models can “guess” the important tokens using prior knowledge/common sense

▪ 2StageRetr(ieve)

o Similar to NIAH, but the key is computed in the runtime



29

2StageRetr Results

Table 6Figure 3



30

Choices of Full-Attn Layers (Filter Layers)

Llama3-8B

{2, 8, 18}

Llama3.1-70B

{4, 19, 41}



31

Takeaways

▪ Leverage redundancy in per-layer attention scores to identify the most informative 
subset of the KV cache.
o by exploiting Inter-Layer Attention Similarity, allowing selected "filter" layers to identify a shared, sparse index of crucial 

tokens that is propagated to non-filter layers, enabling efficient KV cache retrieval and acceleration during decoding.



32

Takeaways

▪ Leverage redundancy in per-layer attention scores to identify the most informative 
subset of the KV cache.
o by exploiting Inter-Layer Attention Similarity, allowing selected "filter" layers to identify a shared, sparse index of crucial 

tokens that is propagated to non-filter layers, enabling efficient KV cache retrieval and acceleration during decoding.

▪ My comments:

o An in-depth analysis on finding the optimal filter layers would be nice

• Lossy compression theory (rate-distortion)

• Analogy to video compression (I-frame = filter layers, what about P, B?)



33

Takeaways

▪ Leverage redundancy in per-layer attention scores to identify the most informative 
subset of the KV cache.
o by exploiting Inter-Layer Attention Similarity, allowing selected "filter" layers to identify a shared, sparse index of crucial 

tokens that is propagated to non-filter layers, enabling efficient KV cache retrieval and acceleration during decoding.

▪ My comments:

o An in-depth analysis on finding the optimal filter layers would be nice

• Lossy compression theory (rate-distortion)

• Analogy to video compression (I-frame = filter layers, what about P, B?)

o A potential new direction

• Given an LLM, find 𝑘 filter layers that give the lowest distortion in attn-score



34

Takeaways

▪ Leverage redundancy in per-layer attention scores to identify the most informative 
subset of the KV cache.
o by exploiting Inter-Layer Attention Similarity, allowing selected "filter" layers to identify a shared, sparse index of crucial 

tokens that is propagated to non-filter layers, enabling efficient KV cache retrieval and acceleration during decoding.

▪ My comments:

o An in-depth analysis on finding the optimal filter layers would be nice

• Lossy compression theory (rate-distortion)

• Analogy to video compression (I-frame = filter layers, what about P, B?)

o A potential new direction

• Given an LLM, find 𝑘 filter layers that give the lowest distortion in attn-score

o More Information Retrieval (IR) methods other than full attention in filter layers



35

In this seminar

▪ Static - prefill stage

o Previous works

▪ Dynamic - decode stage

o The first paper: OmniKV

▪ Redesigned - train stage

o The second paper: DuoAttention



36

DuoAttention: Efficient Long-Context LLM 
Inference with Retrieval and Streaming Heads

(Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, Song Han. ICLR 2025)



37

Motivation – Long Context LLMs

• Long-context inference in LLM is challenging because the KV cache of all previous 
tokens grows linearly with context length and the attention mechanism’s cost grows 
quadratically

o For the Llama-3-8B model, storing FP16 KV-cache for ~1 million tokens would 
require ~137 GB of memory – beyond a single 80GB GPU.

• Key insight: not all attention heads are equally important for long-context 
dependency; some heads (retrieval) attend globally and need full KV cache, others 
(streaming) mostly focus on recent tokens or sinks and can use a light cache.



38

Key Observation

Retrieval Heads

o Small fraction of heads

o Require full attention across all tokens

o Crucial for long context retrieval

o Significantly alter model outputs when restricted 
to recent tokens and attention sinks.

Stream Heads

o Majority of heads

o Recent tokens and sinks

Sentence: "The best fruit is orange. What is the best fruit? Orange."



39

Motivation to Big Picture

• Training phase:
o Freeze the model and learn one scalar gate α per 

attention head
o These gates represent how much each head depends on 

long-range context.

• Deployment/ Inference:
o Heads with α > τ → Retrieval heads (keep full KV 

cache).
o Heads with α ≤ τ → Streaming heads (keep only 

recent + sink tokens).

Red = Retrieval-heavy heads, Blue = Local heads.



40

How the Model Learns Head Importance (α-Gates)

• Optimization-based head gating using passkey retrieval dataset.

• Step 1. Start with all α = 1 (every head treated equally).

• Step 2. During training, blend full and truncated attention for each head:

α ↑ ⇒ relies on full attention; α ↓ ⇒ prefers local attention.

• Step 3. Adjust α so that the model with truncated cache can imitate the full-cache output.



41

Synthetic Passkey Dataset

• Generate long sequences (hundreds K 
– millions of tokens).

• Insert hidden “passkey” strings at random 
deep positions.

• Ask the model to output the passkeys at 
the end.

• Training signal: heads that recover the 
key get higher α → retrieval heads.

The distillation loss compares teacher (full 

cache) and student (truncated cache + α) 
predictions on this task.



42

Loss Function

• Compare hidden states of the full model vs the α-gated model on passkey data.
• Distillation loss:

• Final loss:

• Regularization:

L₂ term makes α reproduce teacher behavior, L₁ term keeps only the necessary heads active.



43

Deployment
• Head Assignment:

• Head Reordering:

o Group retrieval and streaming heads contiguously in Q, K, V.

o Enables faster slicing and decoding.

• Dual KV-Caches:

o Maintain two caches per layer:

• Retrieval → store all tokens.

• Streaming → store attention sinks + recent tokens.

o Combine outputs during decoding.

• Chunked Pre-filling:

o Use FlashAttention-2 to fill caches chunk-by-chunk.

o Prune old streaming KV after each chunk → lower memory (O(K)).



44

Dataset, Model, Baselines

• Long-context Benchmark: LongBench, Needle-in-a-Haystack (NIAH) 

• Short-context Benchmark: MMLU, MBPP, MT-Bench 

• Models: 

• Short-context:

• LLaMA-2-7B-32K-Instruct (MHA), LLaMA-3-[8B, 70B]-Instruct (GQA)

• Long-Context: 

• LLaMA-2-7B-32K-Instruct (MHA)

• LLaMA-3-8B-Instruct-Gradient-1048k (GQA )

• Mistral-7B-v0.2-Instruct (GQA)

• Baselines: H₂O, TOVA, StreamingLLM



45

Result – Long Context (LongBench)

• DuoAttention ≈ Full 

Attention at 50% KV cache
• Consistent lead across 

retrieval & summarization 

tasks
• Stable across models:

Llama-2-7B & Llama-3-8B



46

Result – Long Context (NIAH)

• Near-perfect recall even 

at 25–50% cache
• Uniform attention across 

document depth

• Best retrieval 
consistency among all 

methods



48

Result – Short Context

• No drop in short tasks: MMLU ≈ 79 %, MBPP ≈ 47 

%
• Beats baselines on all short-context benchmarks
• Generalizes beyond long-context setting



49

Efficiency Study

• Decoding speedup: 

o 2.18× (MHA), 1.50× (GQA).
• Prefill speedup: 

o 1.73× (MHA), 1.63× (GQA).

• Memory reduction: 2.55 ×
(MHA) and 1.67 × (GQA).

• Streaming head complexity:
o Runtime: O(L²) → O(L·K); 
o Memory: O(L) → O(K)



50

Ablation Study

• Synthetic passkey optimization → best 

retrieval & reasoning.
• Profiling / LM loss methods fail to capture 

true retrieval heads.

• Balanced cache (Sink = 64, Recent = 256) 

gives highest performance.
• All-sink or all-recent setups reduce 

generalization.

• Moderate windows (Sink = 32–64, 

Recent = 128–256) ≈ full performance.
• Too small windows sharply degrade 

retrieval accuracy.



53

Main Takeaway 

My Comments

• DuoAttention reduces KV cache and speeds up inference with minimal accuracy loss (limited to 
streaming heads).

• Reveals head-level specialization and differing retrieval roles in LLMs.

• A global τ threshold may overlook layer-specific importance patterns.

• Future direction: test on multimodal or dynamic tasks (image / video).

DuoAttention bridges efficiency and interpretability, but scaling to multimodal and adaptive retrieval 
remains open.



54

Discussion Questions

1. DuoAttention (Redesigned)

a) Do specific heads specialize in particular reasoning or retrieval tasks??

b) Do heads generalize across tasks or domains

c) Could head classification (gating) help interpret model behavior or guide pruning?

2. OmniKV (Dynamic)

a) Given an LLM, find 𝑘 filter layers that give the lowest distortion in attn-score

b) More Information Retrieval (IR) methods other than full attention in filter layers

3. In General

a) Beyond layer- or head-wise eviction, what other dimensions can we slice?

b) More paradigms in addition to Static, Dynamic and Redesigned?


	Slide 1: Can LLM attention enable efficient KV caching with frugal memory without hurting long-context reasoning?
	Slide 2: KV-Cache Eviction Dimension
	Slide 3: KV-Cache Eviction Dimension
	Slide 4: KV-Cache Eviction
	Slide 5: Analogy to Software Engineering
	Slide 6: KV-Cache Eviction Types
	Slide 7: KV-Cache Eviction Types
	Slide 8: KV-Cache Eviction Types
	Slide 9: KV-Cache Eviction Types
	Slide 10: Static Token Eviction
	Slide 11: In this seminar
	Slide 12
	Slide 13: Limitations of Static Eviction
	Slide 14: Limitations of Static Eviction
	Slide 15: Limitations of Static Eviction
	Slide 16: OmniKV: Retaining all KV Cache
	Slide 17: Determine Eviction per Layer
	Slide 18: Determine Eviction per Layer
	Slide 19: Determine Eviction per Layer
	Slide 20: Determine Eviction per Layer
	Slide 21: Determine Eviction per Layer
	Slide 22: Determine Eviction per Layer
	Slide 23: Eviction Algorithm Details
	Slide 24: Eviction Algorithm Details
	Slide 25: Eviction Algorithm Details
	Slide 26: Latency
	Slide 27: Latency & Performance Tradeoff
	Slide 28: Specialized Dataset for Runtime Deps
	Slide 29: 2StageRetr Results
	Slide 30: Choices of Full-Attn Layers (Filter Layers)
	Slide 31: Takeaways
	Slide 32: Takeaways
	Slide 33: Takeaways
	Slide 34: Takeaways
	Slide 35: In this seminar
	Slide 36
	Slide 37: Motivation – Long Context LLMs
	Slide 38: Key Observation
	Slide 39: Motivation to Big Picture
	Slide 40: How the Model Learns Head Importance (α-Gates)
	Slide 41: Synthetic Passkey Dataset 
	Slide 42: Loss Function
	Slide 43: Deployment
	Slide 44: Dataset, Model, Baselines
	Slide 45: Result – Long Context (LongBench)
	Slide 46: Result – Long Context (NIAH)
	Slide 48: Result – Short Context
	Slide 49: Efficiency Study 
	Slide 50: Ablation Study
	Slide 53: Main Takeaway 
	Slide 54: Discussion Questions

