Can KV-cache serve as compact memory module when reasoning over long or unbounded contexts?

Ziyang Huang, Yingfei Xu

Cartridges: Lightweight and general-purpose long context representations via self-study

Sabri Eyuboglu, Ryan Saul Ehrlich, Simran Arora, Neel Guha Dylan Zinsley, Emily Ruoyu Liu, Atri Rudra, James Y. Zou, Azalia Mirhoseini, Christopher Re

Long-context ICL is accurate but expensive: KV ∞ **input length.**

But can we use a swappable KV cache module and reuse it?

Cartridges

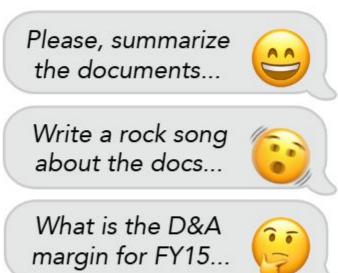
Turning long corpora into tiny, reusable KV prefixes for fast, high-quality answers.

Performance

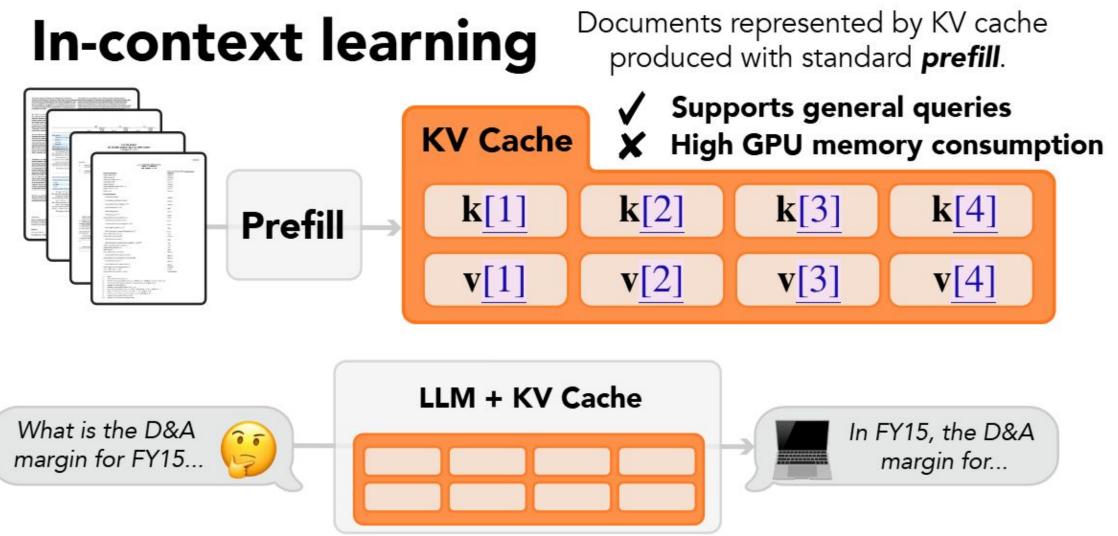
ICL-like quality with dramatically <u>less memory</u> and <u>higher throughput</u> when many queries target the <u>same corpus</u>.

Problem Setting

Document Corpus

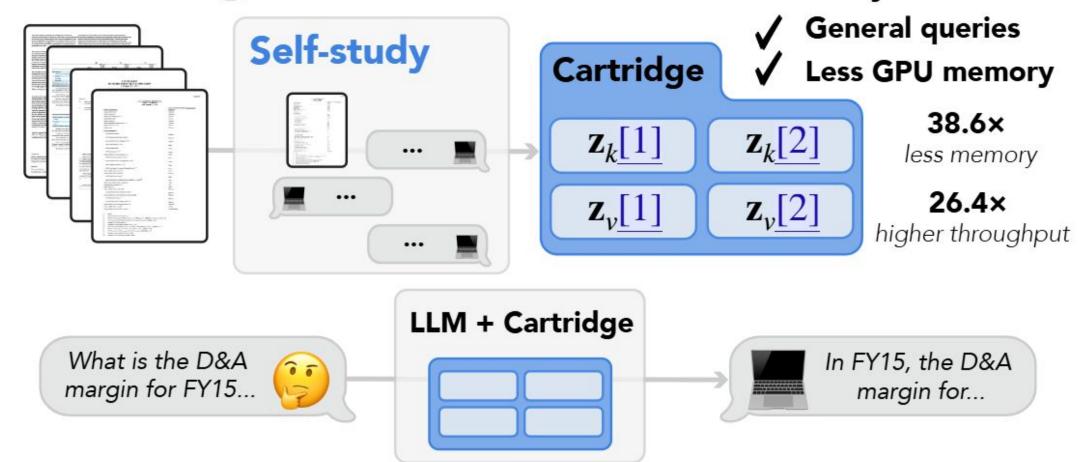


Users send **many** messages grounded in a **single** large corpus of text.



Cartridges

Documents represented with a compressed KV cache that is trained with **self-study**.



What is a Cartridge

- A learned KV prefix of length p (e.g., 128–8192 tokens) attached at inference time.
- No base-model weight updates; just load/unload per corpus.
- A composable module; concatenate multiple cartridges (e.g., Policy ⊕ API Docs ⊕ Codebase) for cross-source reasoning.

$$\underbrace{(\mathbf{k}[1],\mathbf{v}[1]),\ldots,(\mathbf{k}[n_{\mathcal{C}}],\mathbf{v}[n_{\mathcal{C}}])}_{\text{KV pairs for }\mathcal{C}},\underbrace{(\mathbf{k}[n_{\mathcal{C}}+1],\mathbf{v}[n_{\mathcal{C}}+1])\ldots}_{\text{KV pairs for }q}\underbrace{(\mathbf{z}_{\mathbf{k}}[1],\mathbf{z}_{\mathbf{v}}[1]),\ldots,(\mathbf{z}_{\mathbf{k}}[p],\mathbf{z}_{\mathbf{v}}[p])}_{\text{Trainable KV pairs in }Z},\underbrace{(\mathbf{k}[1],\mathbf{v}[1])\ldots}_{\text{KV pairs for }q}$$

Analogy: Like prefix-tuning, but trained to imitate ICL on that corpus.

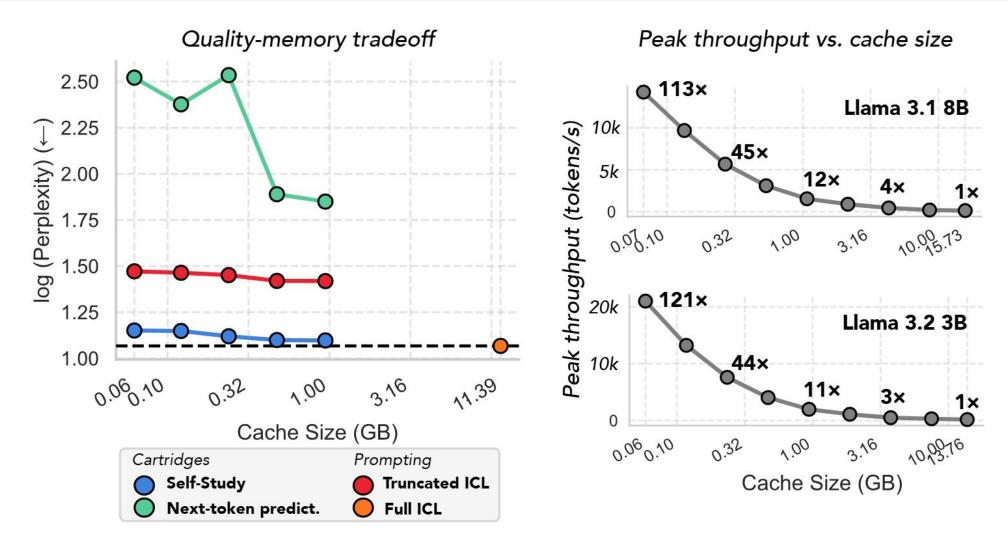
Self-study Training

- Synthesize dialogs about the corpus: For each chunk \tilde{c} , auto-generate Q \leftrightarrow A / instruction traces.
- Teacher = base LLM with \tilde{c} in context; Student = same LLM + trainable cartridge Z without \tilde{c} .

• Objective: minimize step-wise $KL(p_t | p_s)$ over next-token distributions.

Intuition: Student learns to act as if the corpus were present.

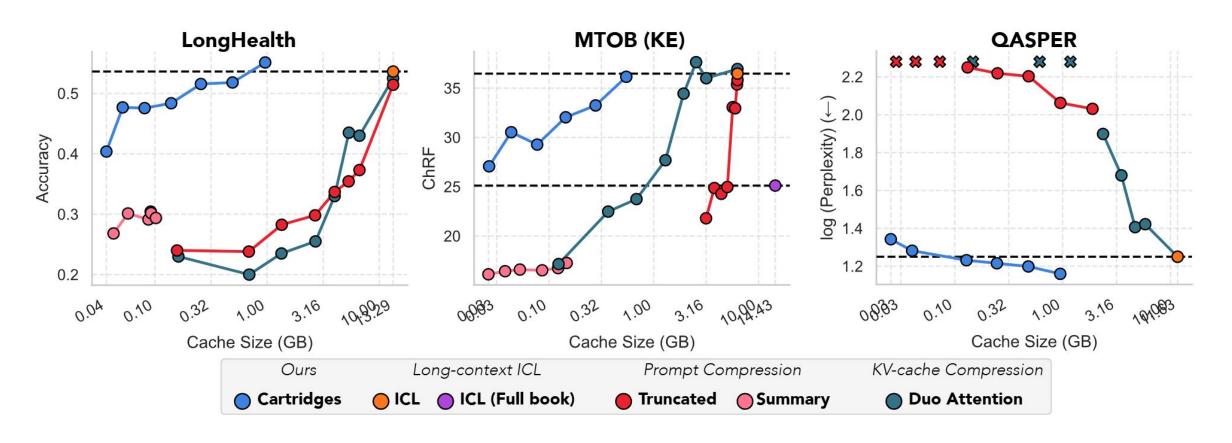
Performance: throughput and cache size



↓38.6x memory consumption and ↑26.4x peak throughput across different tasks

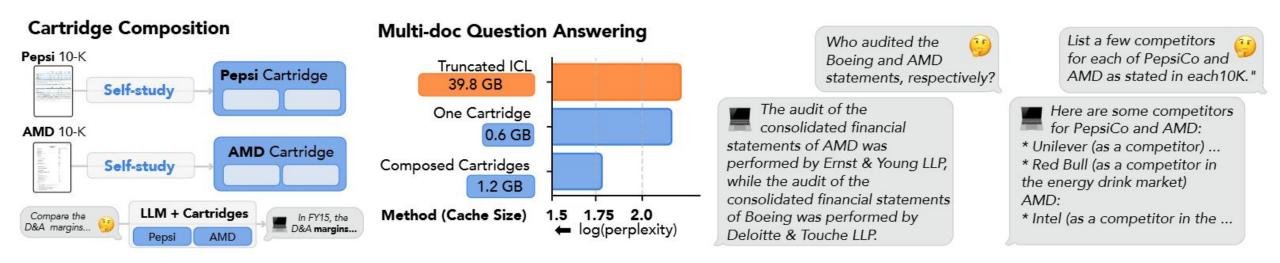
Performance: Cartridges vs baselines

Cartridges matches ICL quality with lower memory costs.



Surprising notes

- Context stretch: Effective context extended (e.g., 128k → ~484k on MTOB)
- Composition: Multiple cartridges combine without re-training.



Cartridges vs RAG? LoRA?

RAG Good for flexible and live updates, but retrieval and long prompts are still costly.

-> Cartridges are optimized on stable, repeatedly-queried corpora.

LoRA Much more expressive for training, but also to serve on infrastructures.

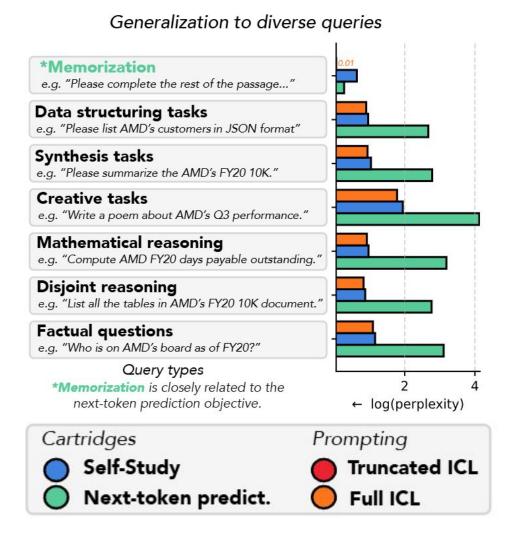
-> Cartridges are prefix-only; also outperperforms LoRA.

Other discussions

 A Cartridge can be served efficiently with minimal changes to existing LLM inference servers (e.g. SGLang)

Limitations:

- Upfront compute: Strong performance but training must be amortized
- Coverage: training rely on synthetic dialogs; bad dialogs cause blind spots
- Timeliness: Corpus changes require re-training or incremental fine-tuning



Takeaways

Cartridges = compact, reusable memory of a corpus with ICL-like behavior.

Use Self-study (synthetic dialogs + context distillation) for training.

For repeated queries, strong performance in terms of larger throughput and reduced memory

BumbleBee: Dynamic KV-Cache Streaming Submodular Summarization for Infinite-Context Transformers

Lilly Kumari, Shengjie Wang, Tianyi Zhou, Nikhil Sarda, Anthony Rowe, Jeff Bilmes

strongly attends to a small subset of tokens

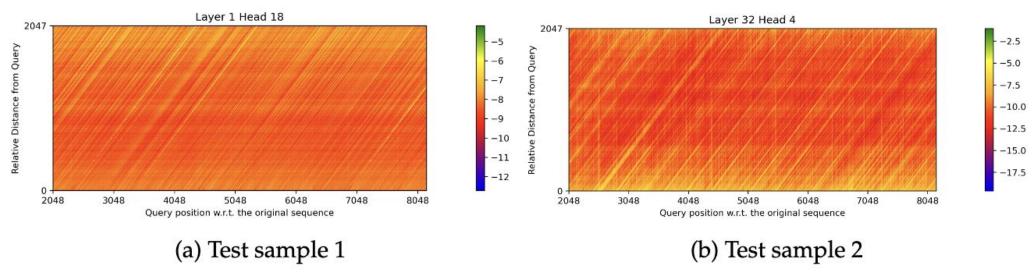


Figure 2: Attention maps for two different WikiText-103 articles using LLaMA-7B model.

Core Idea

- Existing methods use modular scores, where each KV state is evaluated independently
- · Frame the KV cache selection as **subset selection** problem with submodular objective function

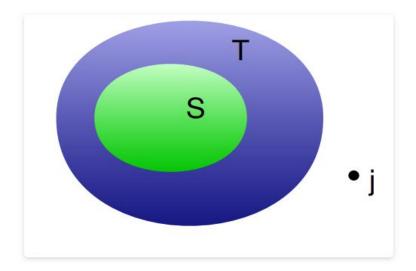
Figure 1: Illustration of the attention mechanism in a selfattention head of one of the BumbleBee's decoder layers. τ_1 and τ_s denote the local context length and the limited t-2 t-1 tglobal summary Global Summary Local history length respectively. Online Submodular **Summarization** Time-point 0 $t-\tau_l-1$

Submodular

A submodular function $f: 2^V \to R$ defined on ground set V, it has **diminishing return property**:

if
$$S \subset T$$
, $j \notin T$, $f(S \cup \{j\}) - f(S) \ge f(T \cup \{j\}) - f(T)$

Greedy algorithm for submodular maximizationa has theoretical (1 - 1/e) guarantee from the optimal solution



Submodularity

facility location (FL) function

how well a subset can represent the whole set

feature-based function

how much total importance is captured

$$f_{\mathrm{FL}}(A) = \sum_{v \in \mathsf{V}} \max_{v' \in A} \mathrm{sim}(v, v'). \tag{2}$$

$$c(A) = \sum_{u \in U} \phi_u(\sum_{v \in A} m_u(v)).$$
 (3)

How to select a subset?

Diversity

Importance

Submodularity

For Bumblebee

- $c(\cdot)$: |U| = 1 and weight $m_u(k_i) = a_n^i$, accumulated attention
- $f_{FL}(\cdot)$: similarity matrix with pairwise cosine, followed by ReLU

Mixture function: trade-off

normalized with $f_{FL}(\emptyset) = 0$ and $f_{FL}(V) = 1$ (and the same for $c(\cdot)$)

$$g_{\lambda}(A) = \lambda f_{\text{FL}}(A) + (1 - \lambda)c(A)$$

Offline algorithm

Algorithm 1 Offline Submodular KV cache Summarization during Prefill/Encoding Phase

- 1: **Input:** Submodular functions capturing diversity f_{FL} in the key embeddings space and importance c via attention frequency for layer l and attention head h; mixture function $g_{\lambda}(\cdot) = \lambda f_{FL}(\cdot) + (1 \lambda)c(\cdot)$; a set of n KV attention states $K_n = \{(k_i)\}_{i=1}^n$, $V_n = \{(v_i)\}_{i=1}^n$ corresponding to the n prompt tokens; budget τ_s .
- 2: **Output:** A final summary S_n such that $S_n \subseteq \{(k_i, v_i)\}_{i=1}^n$ and $|S_n| \leq \tau_s$.
- 3: **Initialize:** $S_n = \emptyset$; compute accumulated attention score vectors a_n for each key $k \in \{k_i\}_{i=1}^n$. a_n^i denotes accumulated attention scores attributed to key k_i across all n query tokens.
- 4: **for** j = 1 to τ_s **do**
- 5: $k_{\text{imp}} \leftarrow \operatorname{argmax}_{e \in K_n \setminus S_n} g_{\lambda}(S_n \cup e) g(S_n)$
- 6: $S_n \leftarrow S_n \cup \{(k_{\text{imp}}, v_{\text{imp}})\}$ where v_{imp} is the value embedding associated with k_{imp} .
- 7: end for

Online algorithm

fill until budget, else greedy choose worst one to evict

for each new token compute costs

```
\mathcal{O}(\tau_s \times d + \tau_s^2)
```

Algorithm 2 *BumbleBee*: Streaming Submodular KV cache Summarization for Transformers

```
1: Input: Submodular functions for diversity f_{\rm FL} in the key embeddings space and impor-
   tance c w.r.t. attention frequency resp. for layer l and attention head h; mixture function
   g_{\lambda}(\cdot) = \lambda f_{\text{FL}}(\cdot) + (1 - \lambda)c(\cdot); stream of QKV attention states \{(q_i, k_i, v_i)\}_{i=1}^n; budget \tau_s.
2: Output: A running summary S_t of for every time step t such that S_t \subseteq \{(k_i, v_i)\}_{i=1}^t.
3: Initialize: S_0 = \emptyset, a_0 = \emptyset where a_t \in \mathbf{R}^{|S_t|} denotes the accumulated attention scores
   corresponding to keys present in S_t across t time steps.
4: for t = 1, ..., n do
      Update a_t for each k \in S_{t-1} by adding a(q_t, k, S_{t-1} \cup k_t)
```

```
if t < \tau_s then
            S_t \leftarrow S_{t-1} \cup \{(k_t, v_t)\}
            Append a(q_t, k_t, S_t) to a_t s.t. |a_t| = |S_t|
 9:
         else
            Let S'_t = S_{t-1} \cup \{(k_t, v_t)\}; \quad k_{\text{discard}} \leftarrow \operatorname{argmin}_{k_i \in S'_t} g_{\lambda}(k_i | S'_t \setminus k_i)
10:
            S_t \leftarrow S_t' \setminus \{(k_{\text{discard}}, v_{\text{discard}})\}
11:
            if k_{\text{discard}} \neq k_t then
                Evict a_t^J (the accumulated attention score for the discarded key k_{discard}) from a_t.
13:
                Append a(q_t, k_t, S_t) to a_t
14:
15:
            end if
         end if
16:
17: end for
```

- Datasets from benchmark: Im-eval-harness, HELM, LongBench
- Models: LLaMA 7B and 13B, LLaMA2 7B and 13B, Llama-2-Chat 7B and LongChat-32k 7B
- Baselines: All, Local, Random+Local, Attention sinks+Local, H2+local
- Submarine software system for submodular computation

Ilm-eval-harness benchmark, **0.1x** the input length as budget

() log-based $\phi(x) = \log(1+x)$

(ϕ) power-based $\phi(x) = g^{-1}(x)$ where $g(y) = \alpha y^{1/\alpha} + \beta y$

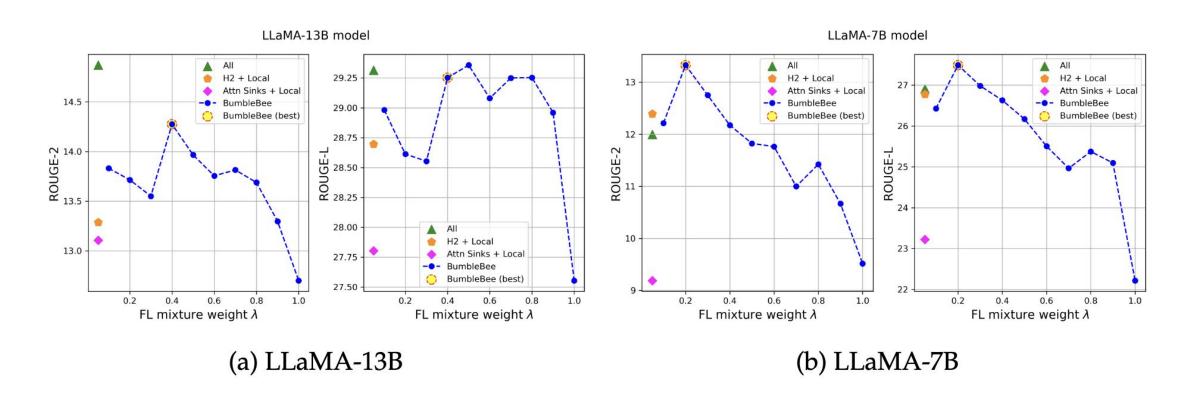
Model	Methods	OpenBookQA	COPA	RTE	MathQA	PiQA	Winogrande
LLaMA-13B	All	47.4	85	73.28	31.86	80.36	75.69
	Local	28.4	64	53.43	23.25	58.32	49.88
	Random + Local	27.6	58	54.63	21.76	54.13	50.64
	Attn Sinks + Local	44.4	80	67.51	29.78	79.22	70.48
	H2 + Local	44.2	83	64.98	29.71	79.49	70.32
	BumbleBee 💙	47.6	85	71.48	31.02	79.38	71.98
	BumbleBee 🔷	46.6	83	67.15	30.82	79.49	73.01
LLaMA-7B	All	44.6	81	68.95	29.85	80.03	71.51
	Local	28.4	56	50.90	23.02	58.27	51.38
	Random + Local	28.0	63	51.26	21.76	53.94	49.30
	Attn Sinks + Local	41.6	82	58.12	27.40	78.07	67.80
	H2 + Local	41.4	78	63.54	27.50	77.31	65.82
	BumbleBee V	43.2	79	68.95	27.74	78.24	68.75
	BumbleBee •	43.2	79	63.90	28.51	78.56	68.19

LongBench benchmark, λ =0.3

Model	Method	Qasper	MultiFieldQA-en	HotpotQA	2WikiMQA	QMSum	TREC
LLaMA-7B-chat	All* All (self)	19.20	36.80	25.40	32.80	20.80	61.5
4k		21.60	36.76	27.55	31.58	20.78	64.0
	Attn Sinks + Local	14.74	22.93	22.08	29.73	19.25	56.0
	H2 (20%)	19.82	26.60	26.28	25.69	21.45	60.0
	BumbleBee (20%) ♥	19.37	27.73	26.14	27.67	20.68	61.5
	BumbleBee (20%) ♦	19.59	28.60	28.99	30.19	21.05	59.0
LongChat-7B	H2 (SW, 20%)	21.64	30.72	14.07	15.10	18.11	40.5
32k	BumbleBee (SW, 20%) ◆	23.27	33.16	22.52	17.58	20.27	44.5

XSUM dataset, few-shot summarization task

 λ =0.2 still better than H2+local (which equals to λ =0 and ϕ is identity function)



Context reduction ratio	Original Context Length			
3	16k	100k		
1:1	59.30 ± 0.39	OOM		
5:1	47.49 ± 4.16	71.50 ± 0.10		
10:1	39.74 ± 1.31	48.16 ± 0.09		

Table 6: Decoding speed (in ms/token) for two KV cache reduction ratios (5:1 and 10:1) and the baseline KV cache method using the entire context (1:1) across all heads. All experiments are performed on an A100 80GB GPU using the LongChat-7B-32k with a batch size of 1.

Takeaways

- introduce diversity into selection aside from only importance(H2O)
- reframe eviction as subset selection problem, and submodularity guarantees that a simple Greedy Algorithm achieves a near-optimal solution

Discussion:

- rely on submodular optimization tool(not open-source)
- redundancy/diversity matters
 - R-KV: heuristic ranking $Z = \lambda \cdot Imp (1-\lambda) \cdot Redu$
 - OmniKV: inter-layer redundancy

Thank You!

jhu.edu

