JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

How can language models dynamically
allocate resources for parallel thinking?
Wufei Ma and Jalil Rezek

Nov 11, 2025



Inference-Time Computation

Single model: -
= Data: s1k-1.1 (math :

reasoning) 3
= Top: Gemini; bottom: *'L

deepseek. "
= Orange: attempt; blue:

thinking trajectory; green:

human baseline. s 2500 5000 7500 10000 12500 15000 17500 20000
[1] Muennighoff et al. s1: Simple test-time scaling.

=
o9
Al



Inference-Time Computation

= Tool use (math reasoning & proof)

Python REPL  CAS (Mathematica)

-

CAS (Mathematica): Resolve
verifies the truth value of the
estimate via quantifier elimination

. Frontier LLM
e oy proposes domain
A
I4TEXor natural language st

Proof of inequality
f<Cyg

|

N

L=, |
o«



Inference-Time Computation

Visual Input Question

= Tool use (multi-modal) -6 (&)

~
<think> To determine the location... </think>
<action> Select frame-2, draw two bounding boxes ... G O
Select frame-3, draw an auxiliary line ... </action> —
(.

VILASR

Edited Image

)

)

Supplementing
spatial information

Target: Direction of facing away from the wall in the clock area.

Renderer 0 Input: <img_coarse><prompt> e Input: <img_fine><prompt> <think> Wait, let me check and modify... </think>
§Output: <Reasoning> Vectorl <action> Select frame-2, draw two new bounding OO

Output: <Reasoning> Vector3. boxes .. </action>

/i - <Render around vector3> Return: <xq,y1,21> =
‘ ’
\

Camera Est.Depth

VILASR

Supplementing
spatial information

<think> | can determine the spatial relation ... </think>
<answer> ... </answer>

VILASR

7™\
1) =

Target 3D Vecs

B9 JoHNS HOPKINS
v



Inference-Time Computation

= Multi-agent debate

=

¥

JOHMS ROPRINS

User Input: A treasure hunter found a buried treasure chest filled with gems. There were 175 diamonds, 35 fewer rubies than
diamonds, and twice the number of emeralds than the rubies. How many of the gems were there in the chest?

Agent 1: Let x be the number of rubies. Then the number of diamonds is 175. Agent 2: If there were 175 diamonds,

And the number of emeralds is 2(x-35), since there are twice as many then the number of rubies is 35 fewer,

emeralds as rubies and there are 35 fewer rubies than diamonds. or 175 - 35 = 140 rubies.

To find the total number of gems, we add the number of diamonds, rubies, And since there were twice as many

and emeralds: Total gems = 175 + x + 2(x-35) = 3x + 105. emeralds as rubies, we can represent the
number of emeralds as 2 * 140 = 280

‘We don't know the exact value of x, but we do know that it represents the emeralds.

number of rubies, which is less than 175 (since there are 35 fewer rubies than
diamonds). Let's try some values of x: If x = 50, then the total gems = 3(50) + To find the total number of gems in the

105 = 255. If x = 100, then the total gems = 3(100) + 105 = 405. chest, we can add up the number of
diamonds, rubies, and emeralds:

Since we know there were fewer rubies than diamonds, the answer must be 175 + 140 + 280 = 595. Therefore, there

closer to 255 than to 405. After some trial and error, we can find that x = 40 were 595 gems in the chest.

gives us: Total gems = 3(40) + 105 = 225. ‘:’ 0

User Input: Using the solutions from other agents as additional information, can you give an updated response....
(Copy Agent 2’s reply) (Copy Agent 17s reply)

Agent 1: Given the information provided in other agents' solutions, we have Agent 2: After reviewing the solutions

two answers: One agent found that the number of rubies is 40 and the total provided by other agents, I agree with

number of gems is 225. Another agent found that the number of rubies is the second agent who found that the

140 and the total number of gems is 595. number of rubies is 140 and the total
number of gems in the chest is 595.

We know that the number of rubies is 35 fewer than the number of Therefore, my answer to the math

diamonds, which is 175. So the number of rubies should be 175 - 35 = 140, problem is 595.

as the second agent found. However, the agent who found 225 gems

assumed that the number of emeralds is twice the number of rubies minus

35, rather than twice the number of rubies. If we use this assumption, we

get: Number of rubies = 140. Number of emeralds = 2 * 140 - 35 = 245,

Total number of gems = 175 + 140 + 245 = 560. Our final answer is 560. ‘, 0

User Input: Using the solutions from other agents as additional information, can you give an updated response....



Inference-Time Computation

= Guidance from judger

@ Question

fg Chain-of-Thought Answer

e

~

[ Answer by Opponent 1 @1 [ Critique by Adv-Reasoner

Self-Reflection

Wait, let’s reevaluate this

[ Answer by Opponent 2 @ [ Guidance by Adv-Reasoner ]
step-by-step...

B 9

3 [ Final Answer by Judge @[ Better Answer J

(a) Self-reflection (b) Multi-agent debate (c) Adversary-Augmented Generation

57 JoHNS HOPKINS
.



Inference-Time Computation

= Divergent thinking

The two circles are externally tangent and there is no relative sliding. The radius of circle A is 1/3 the radius of circle
| B. Circle A rolls around circle B one trip back to its starting point. How many times will circle Arevolve in total?

{ Counter-Intuitive Question ) ~\

—(_ Chain-of-Thought }

Let the radius of circle A be r and the radius of circle B be 3r. The distance circle A travels along the circumference
of circle B is equal to the circumference of circle B, which is 61r. The number of revolutions = (61r) / (21r) = 6111 /
21r = 3. So, circle A will revolve 3 times in total as it rolls around circle B once.

~

S

<~
/—( Self-Reflection %

Reflection:

(1) I have a clear understanding
of the problem.

(2) | have used the correct
formula for the circumference of a
circle and applied it to both circles
to find the number of revolutions.
(3) | have correctly calculated the
number of revolutions of circle A.

Based on the results of my self-
reflection, | am confident that my
answer is correct. Therefore,
circle A will revolve 3 times in total
as it rolls around circle B once.

\ x)

1 to consider both the rotation around circle B and the rotation of circle
| ﬁ A itself. Therefore, circle A will revolve 3 times around its own center
L

and 1 time around circle B, making a total of 4 revolutions.
I N
| && | see your point, but...
' )

| Ei <That's a valid point, however...

I | disagree with you. To find the total number of revolutions, we need ]

around its own center and its rotation around circle B, while the
affirmative side only considers the rotation around circle B.
Therefore, the answer is 4.

________________________ 7

The negative side correctly considers both the rotation of circle A }




Challenge

= \ery long reasoning at test-time.
o Self-reflection, tool-use, multi-agent, etc.

= One solution: parallelism



Parallelism

= Saves memory

= Running larger models
= Bigger batch size

= Improving latency or
throughput

53 JOoHNS HOPEINS
e

Data Parallelism

Model (Tensor) Parallelism

Pipeline Parallelism

Sequence Parallelism

MoE Parallelism

Task (Thinking) Parallelism




Challenge

Problem

A 4

= Sequential

10



Challenge

Problem

| J
/ ] '\
< Vs ~N >

= Well-defined sub-tasks

o Synthetic datasets
J where each sample

consists of 5 math
guestions

o Real-world problems
where we consider
different conditions?

= Nice parallelism

11



Challenge

__Problem = Multi-agent solving
—_— v similar problems

=

g J [ o Communication
(dependency) between
agents

] o Multi-agent “debate”
= Not fully parallelizable

12



Challenge

Problem

= Multi-agent solving

imilar problems
o Communication

(dependency) between

agents

] o Multi-agent “debate”

= Not fully parallelizable
= Straggler effect

13



Hogwild! Inference: Parallel LLM Generation
via Concurrent Attention




Challenge

Problem

= \We don’t want threads

aiting long for each
J ther:

o Better parallelism and

efficiency

] o Effective reasoning in

one agent can quickly
benefit other agents too

15



KV Cache Structure
= When is KV cache shared?

= When a worker generates “\n\n”, copy and share the KV
cache, resume the decoding.

16



KV Cache Structure

Problem: Compute 1/(31)(30)(29)(28) + 1.

Alice [1]: Hi, I'm Alice. Here’s how we can solve the problem step by step... P ro bI em

Bob [1]: Hi, I'm Bob. Let me see... We need to compute the square root of (31 - 30 - 29 - 28) plus 1.

That’s +/31 - 30 - 29 - 28 +1. /‘\

Alice [2]: The expression is /31 - 30 - 29 - 28 4 1. Hmm, maybe there’s a pattern here. I remember [ - ] [ ] [ . ]
that sometimes products of consecutive numbers plus 1 have square roots that are integers. Like,

for example, n(n — 1)(n — 2)(n — 3) + 1 might form a square. Wait, but here it's four consecutive > <

numbers? Or maybe three? e I\ e —— N

Bob [2]: Let me calculate the product first. 31 - 30 is 930, then 29 - 28 is 812. So 930 - 812. Let me [ ] [ ] [ ]
multiply those. 930-800 = 744, 000 and 930 - 12 = 11, 160. Total is 744, 000+ 11, 160 = 755, 160.

Then add 1: 755, 161. Now /755, 161. Hmm, +/755161. Let me see, 870 squared is 756, 900 which v K v

is higher. So maybe 869 squared? [— < I [ ] [ > —]

Alice [3]: Alternatively, maybe there’s a formula for the product of four consecutive numbers plus one?
Wait, actually, let me think of smaller numbers to test. Let'stryn = 4:4-3-2-1+1=24+1 =25,

V25 = 5. Which is 5, which is 4 + 1? Wait, 4 + 1 = 5, yes. Wait, maybe for n, the sqrt is . . .
n? 4 (n — 1)?? Wait 4% + 32 = 16 + 9 = 25, which is 5 squared. Hmm interesting. . . .

Bob [3]: Wait, 869 squared is (870 — 1)* = 870% — 2- 870 + 1 = 756900 — 1740 + 1 = 755161.

Oh! That's exactly the number we had earlier. So +/755161 is 869. Therefore the answer is 869. But
let me check Alice’s idea too. \A//

Alice [4]: Let me test another number. Let's taken = 5. Then5-4-3-24+1=120+1 = 121.
V121 = 11. 11 is 54 6? No, 5 + 6 = 11. Wait 5% + 4% = 25 + 16 = 41, which is not 121. Hmm.
Alternatively, maybe (n(n — 3) +1)?? Let’s see with n = 4: 4+ 1+ 1 = 5, squared is 25. For n = 5:
5-2+1 =11, squared is 121. So that works! So the formula is (n(n — 3) + 1)2. ‘Wait, let me check
with n = 31. Thenn = 31, s0 31 - 28 + 1 = 868 + 1 = 869. Then 869 squared is the value. So that
works. So the answer is 869, That matches Bob’s calculation!

B9 JoHNS HOPKINS

17



Hogwild!: Shared KV Cache

Common Cache

Task: compute x2 + x* for x in {1, 2, 3}.
Workers history:

Alice [1]: Hey! Let's decide how we should
collaborate.

Bob [1]: Hi, Alice! Let me suggest that | do x=1
and x=3, and you will do x=2. What do you think?

Alice [2]: Okay, let's go with that plan.

[Alice] Current Cache

Cache Blocks

Commonl | Alice | Bob

Alice [3]: For x=2: | - €

[Bob] Current Cache

Alice view Bob view

/ LLM.forward() /
v

Bob [2]: Perfect. Starting with x=1: | ... |

L]

18



Token Ordering

= Shuffle ordering of cache blocks from other agents
o We want randomness in ensemble models.

= Assume base LLM uses RoPE.
= How to deal with new token positions?

= Naive way: KV cache before RoOPE; overhead scales
cubically.

19



Token Ordering

= Assumption: a lot of “key” tokens from other (n-1)
agents.

= Better way: rotate query to accommodate new positions.

Alice View Implementation

Positions 0 C C+B C+B+A—> v () )
Query Alice > Alice Cache
Common
ccccc Bob Cache | Alice Cache |( Query Alice
Query Alice Query Alice ———> Bob Cache
Bob View

Positions 0 C C+A+B—>

Common
Query Alice —t>
Cg;r::n Alice Cache | Bob Cache . g




Trick: Prompting

= System prompt: describe the rules of “shared cache”.

= Collaboration prompt: “"Wait, am I doing redundant
work? (yes/no):".

21



Experiments: Baseline Methods

1. Sekeleton-of-thought (SoT)
o A planner LLM generates outline and sub-tasks
o Parallel threads solve sub-tasks
o Aggregate results for final prediction

2. Self-consistency:
o LLM instances solve problem independently
o View concatenated solutions before final prediction

22



Experiments: Results

SoT performs well when there are well-defined sub-tasks.

10-
0.8 -
0.9 -
0.8 - /
—~ 0.6 -
0.7
2 2
S 0s- s
= ) / = 04
Q ) Q
é:) 03 v Baseline ' é’:)
04- —o— Self-Consistency —o— Baseline (naive)
SoT (unlimited) 0.2- Baseline
03~ —o— SoT (2 threads) —o— Self-Consistency
Hogwild! 2w SoT (unlimited)
0.2 ¢ Hogwild! 4w 00- Hogwild! 2w
250 500 750 1000 1250 1500 1750 2000 0 1000 2000 3000 4000 5000 6000 7000 8000
Forward passes Forward passes
Synthetic tasks with LIMO
= Tobns Hork N H
5 GSM8k questions




Experiments: Results

Hogwild! and self-consistency outperforms when planning ahead is hard.

10 -
0.8-
0.9-
0.8 - /
—~ 0.6-

0.7

2 2

S 0s- s

= ) / = 04

Q y Q

é:) 03 v Baseline ' é’:)
04- —o— Self-Consistency —o— Baseline (naive)

SoT (unlimited) 0.2- Baseline
03~ —o— SoT (2 threads) —o— Self-Consistency
Hogwild! 2w SoT (unlimited)
0.2 ¢ Hogwild! 4w 00- Hogwild! 2w
250 500 750 1000 1250 1500 1750 2000 0 1000 2000 3000 4000 5000 6000 7000 8000
Forward passes Forward passes
Synthetic tasks with LIMO
ER 1onns HOPK NS -
5 GSM8k questions




How many workers?

- D|m|n|Sh|ng returns 09 emeemeeedoeee e g

0.8 -

0.7 -

Accuracy

=
L

Baseline
Hogwild! 2w
—e— Hogwild! 3w
Hogwild! 4w
........... Upper bound

I 1 | 1
5000 6000 7000 8000

Forward passes

25



“Collaborativeness”

= | M-as-a-judge: GPT-40 score collaboration

o 1 as “no collaboration” and 6 as “optimal
collaboration”

4.0
Qwen3-8B
N Phi-4-R+

- QwQ-32B Figure 7: Mean collaborativeness score from
GPT-40. No sync is independent generation,
Step-wise is restricted Hogwild! where worker
can only see each-other’s past steps, Token-wise
is full Hogwild! with instant cache exchange.

w b
(=] n

Mean collaborative score
(3]
wn

No sync Step-wise Token-wise



Efficiency

= Small latency overhead
= Near-linear scaling

= (However, a lot of duplicate
reasoning & diminishing
returns of performance.)

# Workers | 1024 2048 4096 8192 16384
Tokens per second
1 20.1  20.0 19.7 193 18.3
2 36.3 36.2 36.1 36.1 34.3
4 68.9 69.0 69.1 66.3 60.3
Latency per forward (ms)
1 49.7 50.0 50.9 51.7 54.5
2 55.1 55.3 55.4  55.3 58.3
4 58.1 58.0 579 604 66.4
Time to generate # tokens (s)

1 52.3 103.3 206.5 416.7 853.5
2 29.9 58.1 114.6 228.0 4544
4 16.7 31.6 61.3 120.7 239.2

27



How Hogwild! improves performance?

= Model self-ensemble

= More timely interaction (compared to standard muilti-
agent systems)

= Divergent thinking

28



How Hogwild! Inference works?

Example: divergent thinking

4=

o«

Task 122

> Alice: Quick check: am I doing redundant work? (yes/no): no. Bob, I see you’re working on the
same product. Let me think of another approach. Let me write the product as Hz;ll %’—g Let’s
consider writing out the first few terms to see if there’s a pattern.

Task 9

> Bob: Quick check: am I doing redundant work? (yes/no): yes, 1 was considering similar things to
Alice. Let me switch to a different angle. Let’s consider the distances between the frogs.

Task 40

> Bob: Quick check: am I doing redundant work? (yes/no): Yes, Alice is computing ag, so I'll do
something else. Let me try to find a pattern or transformation that could simplify the recurrence.

Task 466

> Bob: Quick check: am I doing redundant work? (yes/no): Yes, Alice is already calculating the
x-coordinate of A. I’'ll do something else. Let me find the coordinates of L instead.

29



Takeaways

= Task (thinking) parallelism: some of the thinking process can
happen in parallel.

o Consider the deep research mode of ChatGPT — we are exploring
a lot of possible directions, each taking very long thinking.

= What kind of problems are suitable for parallel thinking?
o Well-defined sub-tasks

o If we want self-ensemble — multi-agent debate. Hogwild!
= When do threads “sync”?
o Waiting long — after finishing sub-tasks.
o More frequently — quick pruning and converging thoughts.

30



Learning Adaptive Parallel Reasoning with
Language Models




Motivation

= Serialized chain-of-thought methods
o Increased latency
o Strain context window limits

= Parallel methods
o Lack coordination between inference paths
o Redundant computation, limiting improvement and scalability

= Structured inference-time search methods
o Hand-designed search structures (graphs, reasoning trees, etc)
o Limited flexibility and scalability

ey
b !

32



Adaptive Parallel Reasoning (APR)

= Models learn when and how to parallelize their inference operations.
o No need for fixed search structures

= Generalizes existing approaches
o Model learns to combine breadth (parallelism) with depth (of individual branches)

o«

33



Key Innovation 1: Parent-Child Threading

= Parent-child threading
o Parent thread spawns child threads via spawn() to explore subproblems
o Each child runs independently in parallel and returns concise results via join()

= RL trains model to decide: N Subproblem 1
N %,

o When to branch or join P %

o Prompts to feed to children G:> Child 1 Z
o How many children to spawn ] |
o How to integrate results

Parent | meesssssssssssssssssssss——) | Parent

%g:} Child 2 JQ

. ),
o a 4 Subproblem 2




Advantage: Context Partitioning

Each thread (parent, children) has its own copy of the context Parent

Each child thread's reasoning does not get appended
Parent’s context

to the parent's context stream. \ o@i& %3%
Children: )
o Each can explore its subproblem using its Child 1 Child 2

entire context in parallel with others
Child 1’s context
Parent:

Child 2’s Contextl

o Gets concise summaries/results from children

\y
£

z

RS
5, o)\ Parent /@@{bé&
OéQQ/ » &

9.0

K4

Parent’s context

«§

S
o«

35



Key Innovation 2: End-to-End Reinforcement
Learning

= Traditional:
o Hand-designed reasoning tree

= APR: Use RL to teach the model...
o When to call spawn()
o How many children to spawn
o What sub-prompts to give them
o When/how to call join() and integrate results

o 1. Rollout: LM performs reasoning (with spawn/join events)
o 2. Evaluate final answer — compute reward (e.g., 1 if correct, 0 otherwise)

o 3. Update LM parameters with policy gradient (GRPO algorithm)

R - 36



Stream-of-Search (SoS/SoS+)

= Serialized CoT technique using either BFS or DFS to solve reasoning problems

= Authors use SoS+
o Hybridizes BFS and DFS
o Represents best serial CoT technique

Method Temp=0.0 Temp=01 Temp=05 Temp=1.0

SoS 49.5% 49.6% 47 1% 37.9%
SoS+ 57.3% 57.1% 52.0% 48.1%




SoS+ vs APR, General

Previous chain-of-thought methods serialize the reasoning tree even if they have parallelizable components.

APR trains the model to spawn child threads that work on sub-tasks in parallel.
Once completed, they are joined into the main thread.

@_Iu:-mw]hr:-m.\a

38



SoS+ vs APR, Countdown Task

53 - 31
¢ ) SoS+ Result:
+ x-26 No solution found
193] 26/ x 3= 2% +x
[=]
W
x (53-22) | 37 [x/31 1 [26*x 26 5 | 31+x| 36 26 2 [x-20 0 [ 26-x |2
inputs | 22, 26,31, 53 26, 31 7| 26 31 " 22,26 26
Parent thread Child #1 x-26
31-x
spawn (target=27,
inputs={26, 31}, jc.z'
x = 31) --',-"P 31 [x/31) 1 |26*x 5 | 31+x| 36 26 D(”w
S 26, 31 | 26 31 - <
o e
ol
m Child #2 found solution!
B * » x —53-31
. > y_53-
ts
< inputs | 22, 26, 31, 53 26+ (53-31) / 22) =27
Tety “
0.: (5:?‘
spawn (target=27 ."ff" q:!-\\
inputs=(22, 26}, P 22 o ! APR Result:
= 22) 22,26 N
* L0 26 +((53-31) / 22)
Child #2

39



Training Setup

= Step 1: SFT
o Teach models how to use spawn/join syntax
o Sample solution traces generated by symbolic solvers

= Step 2: Reinforcement Learning (GRPO)
o Reward = correctness of solution (Countdown task)
o Model learns how to allocate compute (child threads)

S
o«

40



Experiments: Countdown Task

= Goal: Find arithmetic expression using given numbers to reach target

= Baselines:
o S0S+
 Serialized CoT hybridizing BFS and DFS
» Represents best serial CoT technique

o S0S + cons@n:
» N parallel independent SoS runs

« Take majority vote
« Used to scale up SoS+ compute

= Metrics: Accuracy, total token usage, latency
o Latency measured using both sequential tokens and wall-clock time

e
o«

41



Experiments: Results

Baseline: SoS with cons@n

Total compute scaling:
o S0S: Increase N in Best-of-N sampling
o APR: Increase number of child threads

= “Parallelism overhead”: Worse in low-
compute regimes (<4k tokens)

= Superior scaling by enabling parallel
execution of child threads

=
L

Accuracy (%)

801

~1
w

~1
o

[=)]
w

(=)}
o

551

APR
SoS+ pass@n

0
=——gr— S0S+ cons@n +12%

-57.4% compute

4k 8k 12k 16k 20k
Avg Total Compute (Tokens)

(a) Performance vs. Total Compute

42



Experiments: Results

= Baseline: SoS+

= APR superior at exploiting context

= Parallel reasoning:

Cum. Acc. (%)
iy
o

30
o More total tokens 20 APR (Child Thread Cond=10)
. . =@ APR (Child Thread Cond=6)
o Not packed into one context window o ~- APR (Child Thread Condm3)
—#&— So0S+ (Context Cond=4096)
0 == So0S+ (Context Cond=1024)

1024 1536 2048 2560 3072 3584 4096
Context Window Size

(b) Performance vs. Context Window Size

R/ JOHNS HOPKINS 43



Experiments: APR Pre- vs Post- RL

Accuracy (%) Total Tokens Avg Token Per Seq Num Child Threads
90 25000 2000 12
1796
85 83.4 1750 10
20000 1471
80 16720 1500 8.2
75.5 8
70 1000 6 :
65 10000 750
4
60 500
5000 9
55 250
50 0 0 0
Sup. Only Sup. + RL Sup. Only Sup. + RL Sup. Only Sup. + RL Sup. Only Sup. + RL

Breadth (num threads) scaled up more than depth (tokens/seq)

@ _Il.*.aH:w}.-im-mm 44



Experiments: Efficiency

Accuracy (%)
o (=)} =)} ~J ~J co
wl o w [en] @] [en]

w
o

APR
== SoS+

~ 0o
52 I e

~J
o

Accuracy (%)
(=)
o

————— ®
56,7569 57.3

4]
=N
[an]
w
o

&
v

2048 3072 4096

Avg Sequential Tokens

=3}
w

9]
9]

APR
- = SoS+
_____ .o .
/7 56.7 56.957.3
(‘
_~*51.0
-
”,
®451

2000 3000 4000 5000 6000
Latency (ms)

= APR achieves higher accuracy with fewer tokens and lower latency

e
o«

= Superior efficiency

45



Ablation: RL in APR and SoS+

I
= RL improves Total Tokens
performance and 25000 = Sup. Only 22265
increases token 20000 | ™= Sup. + RL
usage
= APR saw a greater 15000
increase in token 10000
usage
o Parallelization 5000 | 5501 2660
allows scaling 0
beyond context SoS+ APR APR (#Child Cond.)

limitations /

APR (# Child Cond.): Model always uses max

@_h HMNS HOPKINS number Of Ch'ld thl’eadS (1 0) 46



Ablation: RL in APR and SoS+

Accuracy (%)

. 100
APR Saw d greater W= Sup. Only 83.4 83.2 83.3
increase in accuracy g0 | ™= sup. +RL 75.5
than SoS
= Far less when fix 60
number of child 40
threads at 10:
= RL teaches model to 20
scale compute, 0|
rather than improving SoS+ APR APR (#Child Cond.)

decision quality

/

APR (# Child Cond.): Model always uses max
@_h NS HOPEINS number Of Ch'ld threadS (10)

47



Results with Larger Models

o«

Previous results use a 293M-
parameter model following
Llama2

Findings scale to 600M-
parameter models

APR scales better with model
size than SoS+

Accuracy (%)
e)} (=)} ~J ~J oo
() w o o o

[9]]
w

APR (200M)
—@— APR (600M)

SoS+ (200M) pass@n
== S05+ (600M) pass@n

e s = e m

4k

8k 12k 16k
Avg Total Compute (Tokens)

20k

48



Results with pretrained models

= Models used in main study were trained from scratch
= Goal: Verify findings scale to large pretrained models

Llama2 200M Qwen2.5 1.5B (pretrained)

SoS+ 57.4 % 57.5 %
APR 83.2 % 80.2 %

49



Results on Larger Countdown Task

= Countdown with 4

numbers previously; now %0
5
o Search space 40x
larger = 30
= Context budget expanded o
to 8k tokens <50l
£
=
Q
SoS+ (Context Cond=3072)
101 —h— S0S+ (Context Cond=8192)
APR (Child Thread Cond=3)
=@ APR (Child Thread Cond=6)
0- —@= APR (Child Thread Cond=10)

1024 2048 3072 4096 5120 6144 7168 8192
Context Window Size

o«

50



85

80

75

70

65

60

55

Results Consistent Across Temperatures

Temperature = 0.1

Temperature = 0.5

Temperature = 1.0

—8— APR . —o— APR § —8— APR

=== 505+ pass@n o === S0S+ pass@n === 505+ pass@n 80.

—d— S0S+ cons@n oy —d— S0S+ cons@n —d— S0S+ cons@n

64.7 1.6 4~ 66.5 66.4
i 632 636 64,0 64,1
0 4k 8k 12k 16k 20k 0 4k 8k 12k 16k 20k 4k 8k 12k 16k 20k
Avg Total Compute (Tokens) Avg Total Compute (Tokens) Avg Total Compute (Tokens)

| o |

Com |

b

7

51



Summary

= Motivation: Scaling LLM inference via intelligent parallelism
o Serial CoT: Context window limitations; latency
o Existing parallel methods: Poor coordination; redundancy
o Hand-designed reasoning trees: Lack flexibility

= Key contribution: Intelligent, model-powered parallelism
o Language models provided parent-child threading mechanism
o End-to-end training via Reinforcement Learning

ey
b !

52



Discussions

1. Can Hogwild! Inference enable more effective

collaboration beyond “prompted” divergent thinking?
o Theoretically yes but unclear from current experiments.

2. Future of task (thinking) parallelism.

o Trade-off between performance gains and overhead from
multi-agent debate.

o Nicely splitting big problems into sub-tasks is nice. What

problems are suitable for sub-tasking and can LLMs achieve
this with simple prompting?

You are negative side. You disagree with

the affirmative side’s points. Provide
your reasons and answer.

53



Discussion Questions

o«

Do we expect this improvement to generalize to other tasks?

What kinds of tasks benefit from parallelization?

Brute force in disquise?
o Main benefits are from scaling threads for greater token usage

54



=
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

© The Johns Hopkins University 2023, All Rights Reserved.



	Slide 1: How can language models dynamically allocate resources for parallel thinking?
	Slide 2: Inference-Time Computation
	Slide 3: Inference-Time Computation
	Slide 4: Inference-Time Computation
	Slide 5: Inference-Time Computation
	Slide 6: Inference-Time Computation
	Slide 7: Inference-Time Computation
	Slide 8: Challenge
	Slide 9: Parallelism
	Slide 10: Challenge
	Slide 11: Challenge
	Slide 12: Challenge
	Slide 13: Challenge
	Slide 14
	Slide 15: Challenge
	Slide 16: KV Cache Structure
	Slide 17: KV Cache Structure
	Slide 18: Hogwild!: Shared KV Cache
	Slide 19: Token Ordering
	Slide 20: Token Ordering
	Slide 21: Trick: Prompting
	Slide 22: Experiments: Baseline Methods
	Slide 23: Experiments: Results
	Slide 24: Experiments: Results
	Slide 25: How many workers?
	Slide 26: “Collaborativeness”
	Slide 27: Efficiency
	Slide 28: How Hogwild! improves performance?
	Slide 29: How Hogwild! Inference works?
	Slide 30: Takeaways
	Slide 31
	Slide 32: Motivation
	Slide 33: Adaptive Parallel Reasoning (APR)
	Slide 34: Key Innovation 1: Parent-Child Threading
	Slide 35: Advantage: Context Partitioning
	Slide 36: Key Innovation 2: End-to-End Reinforcement Learning
	Slide 37: Stream-of-Search (SoS/SoS+)
	Slide 38: SoS+ vs APR, General
	Slide 39: SoS+ vs APR, Countdown Task
	Slide 40: Training Setup
	Slide 41: Experiments: Countdown Task
	Slide 42: Experiments: Results
	Slide 43: Experiments: Results
	Slide 44: Experiments: APR Pre- vs Post- RL
	Slide 45: Experiments: Efficiency
	Slide 46: Ablation: RL in APR and SoS+
	Slide 47: Ablation: RL in APR and SoS+
	Slide 48: Results with Larger Models
	Slide 49: Results with pretrained models
	Slide 50: Results on Larger Countdown Task
	Slide 51: Results Consistent Across Temperatures
	Slide 52: Summary
	Slide 53: Discussions
	Slide 54: Discussion Questions
	Slide 55

