
How can language models dynamically 
allocate resources for parallel thinking?
Wufei Ma and Jalil Rezek

Nov 11, 2025



2

Inference-Time Computation

Single model:

▪ Data: s1k-1.1 (math 
reasoning)

▪ Top: Gemini; bottom: 
deepseek.

▪ Orange: attempt; blue: 
thinking trajectory; green: 
human baseline.

[1] Muennighoff et al. s1: Simple test-time scaling.



3

Inference-Time Computation

▪ Tool use (math reasoning & proof)

Python REPL CAS (Mathematica)



4

Inference-Time Computation

▪ Tool use (multi-modal)



5

Inference-Time Computation

▪ Multi-agent debate



6

Inference-Time Computation

▪ Guidance from judger



7

Inference-Time Computation

▪ Divergent thinking



8

Challenge

▪ Very long reasoning at test-time.

oSelf-reflection, tool-use, multi-agent, etc.

▪ One solution: parallelism



9

Parallelism

▪ Saves memory

▪ Running larger models

▪ Bigger batch size

▪ Improving latency or 
throughput

Data Parallelism

Model (Tensor) Parallelism

Pipeline Parallelism

Sequence Parallelism

MoE Parallelism

Task (Thinking) Parallelism



10

Challenge

Problem ▪ Sequential



11

Challenge

▪ Well-defined sub-tasks

oSynthetic datasets 
where each sample 
consists of 5 math 
questions

oReal-world problems 
where we consider 
different conditions?

▪ Nice parallelism

Problem



12

Challenge

▪ Multi-agent solving 
similar problems

oCommunication 
(dependency) between 
agents

oMulti-agent “debate”

▪ Not fully parallelizable

Problem



13

Challenge

▪ Multi-agent solving 
similar problems

oCommunication 
(dependency) between 
agents

oMulti-agent “debate”

▪ Not fully parallelizable

▪ Straggler effect

Problem



14

Hogwild! Inference: Parallel LLM Generation
via Concurrent Attention

Rodionov et al.



15

Challenge

▪ We don’t want threads 
waiting long for each 
other:

oBetter parallelism and 
efficiency

oEffective reasoning in 
one agent can quickly 
benefit other agents too

Problem



16

KV Cache Structure

▪ When is KV cache shared?

▪ When a worker generates “\n\n”, copy and share the KV 
cache, resume the decoding.



17

KV Cache Structure

Problem

… … …



18

Hogwild!: Shared KV Cache



19

Token Ordering

▪ Shuffle ordering of cache blocks from other agents

oWe want randomness in ensemble models.

▪ Assume base LLM uses RoPE.

▪ How to deal with new token positions?

▪ Naïve way: KV cache before RoPE; overhead scales 
cubically.



20

Token Ordering

▪ Assumption: a lot of “key” tokens from other (n-1) 
agents.

▪ Better way: rotate query to accommodate new positions.



21

Trick: Prompting

▪ System prompt: describe the rules of “shared cache”.

▪ Collaboration prompt: “Wait, am I doing redundant 
work? (yes/no):”.



22

Experiments: Baseline Methods

1. Sekeleton-of-thought (SoT)

o A planner LLM generates outline and sub-tasks

o Parallel threads solve sub-tasks

o Aggregate results for final prediction

2. Self-consistency:

o LLM instances solve problem independently

o View concatenated solutions before final prediction



23

Experiments: Results

Synthetic tasks with 
5 GSM8k questions

LIMO

SoT performs well when there are well-defined sub-tasks.



24

Experiments: Results

Synthetic tasks with 
5 GSM8k questions

LIMO

Hogwild! and self-consistency outperforms when planning ahead is hard.



25

How many workers?

▪ Diminishing returns



26

“Collaborativeness”

▪ LLM-as-a-judge: GPT-4o score collaboration

o1 as “no collaboration” and 6 as “optimal 
collaboration”



27

Efficiency

▪ Small latency overhead

▪ Near-linear scaling

▪ (However, a lot of duplicate 
reasoning & diminishing 
returns of performance.)



28

How Hogwild! improves performance?

▪ Model self-ensemble

▪ More timely interaction (compared to standard multi-
agent systems)

▪ Divergent thinking



29

How Hogwild! Inference works?

Example: divergent thinking



30

Takeaways

▪ Task (thinking) parallelism: some of the thinking process can 
happen in parallel.

o Consider the deep research mode of ChatGPT – we are exploring 
a lot of possible directions, each taking very long thinking.

▪ What kind of problems are suitable for parallel thinking?

o Well-defined sub-tasks

o If we want self-ensemble – multi-agent debate.

▪ When do threads “sync”?

o Waiting long – after finishing sub-tasks.

o More frequently – quick pruning and converging thoughts.

Hogwild!



31

Learning Adaptive Parallel Reasoning with 
Language Models

Pan, Lu, et al.



32

Motivation

▪ Serialized chain-of-thought methods

o Increased latency

o Strain context window limits

▪ Parallel methods

o Lack coordination between inference paths

o Redundant computation, limiting improvement and scalability 

▪ Structured inference-time search methods

o Hand-designed search structures (graphs, reasoning trees, etc)

o Limited flexibility and scalability



33

Adaptive Parallel Reasoning (APR)

▪ Models learn when and how to parallelize their inference operations.

o No need for fixed search structures

▪ Generalizes existing approaches

o Model learns to combine breadth (parallelism) with depth (of individual branches)



34

Key Innovation 1: Parent-Child Threading

▪ Parent-child threading

o Parent thread spawns child threads via spawn() to explore subproblems
o Each child runs independently in parallel and returns concise results via join()

▪ RL trains model to decide:
o When to branch or join

o Prompts to feed to children
o How many children to spawn

o How to integrate results

Subproblem 2

Parent

Child 1

Child 2

Subproblem 1

Parent



35

Advantage: Context Partitioning

▪ Each thread (parent, children) has its own copy of the context

▪ Each child thread's reasoning does not get appended 

to the parent's context stream.

▪ Children:

o Each can explore its subproblem using its 

entire context in parallel with others

▪ Parent:

o Gets concise summaries/results from children

Child 1

Child 1’s context

Parent 

Parent’s context

Child 2

Child 2’s context

Parent 

Parent’s context



36

Key Innovation 2: End-to-End Reinforcement 
Learning

▪ Traditional:

o Hand-designed reasoning tree

▪ APR: Use RL to teach the model…

o When to call spawn()

o How many children to spawn

o What sub-prompts to give them

o When/how to call join() and integrate results



37

Stream-of-Search (SoS/SoS+)

▪ Serialized CoT technique using either BFS or DFS to solve reasoning problems

▪ Authors use SoS+

o Hybridizes BFS and DFS

o Represents best serial CoT technique



38

SoS+ vs APR, General

Previous chain-of-thought methods serialize the reasoning tree even if they have parallelizable components.

APR trains the model to spawn child threads that work on sub-tasks in parallel. 

Once completed, they are joined into the main thread.



39

SoS+ vs APR, Countdown Task



40

Training Setup

▪ Step 1: SFT

o Teach models how to use spawn/join syntax

o Sample solution traces generated by symbolic solvers

▪ Step 2: Reinforcement Learning (GRPO)

o Reward = correctness of solution (Countdown task)

o Model learns how to allocate compute (child threads)



41

Experiments: Countdown Task

▪ Goal: Find arithmetic expression using given numbers to reach target

▪ Baselines:

o SoS+

• Serialized CoT hybridizing BFS and DFS

• Represents best serial CoT technique

o SoS + cons@n: 
• N parallel independent SoS runs

• Take majority vote

• Used to scale up SoS+ compute 

▪ Metrics: Accuracy, total token usage, latency

o Latency measured using both sequential tokens and wall-clock time



42

Experiments: Results

▪ Baseline: SoS with cons@n

▪ Total compute scaling:

o SoS: Increase N in Best-of-N sampling

o APR: Increase number of child threads

▪ “Parallelism overhead”: Worse in low-
compute regimes (<4k tokens)

▪ Superior scaling by enabling parallel 
execution of child threads



43

Experiments: Results

▪ Baseline: SoS+

▪ APR superior at exploiting context

▪ Parallel reasoning:

o More total tokens 

o Not packed into one context window



44

Experiments: APR Pre- vs Post- RL

Breadth (num threads) scaled up more than depth (tokens/seq)



45

Experiments: Efficiency

▪ APR achieves higher accuracy with fewer tokens and lower latency

▪ Superior efficiency



46

Ablation: RL in APR and SoS+

▪ RL improves 
performance and 
increases token 
usage

▪ APR saw a greater 
increase in token 
usage

o Parallelization 
allows scaling 
beyond context 
limitations

APR (# Child Cond.): Model always uses max 

number of child threads (10) 



47

Ablation: RL in APR and SoS+

▪ APR saw a greater 
increase in accuracy 
than SoS

▪ Far less when fix 
number of child 
threads at 10:

▪ RL teaches model to 
scale compute, 
rather than improving 
decision quality

APR (# Child Cond.): Model always uses max 

number of child threads (10) 



48

Results with Larger Models

▪ Previous results use a 293M-
parameter model following 
Llama2

▪ Findings scale to 600M-
parameter models

▪ APR scales better with model 
size than SoS+



49

Results with pretrained models

▪ Models used in main study were trained from scratch

▪ Goal: Verify findings scale to large pretrained models



50

Results on Larger Countdown Task

▪ Countdown with 4 
numbers previously; now 
5

o Search space 40x 
larger

▪ Context budget expanded 
to 8k tokens



51

Results Consistent Across Temperatures



52

Summary

▪ Motivation: Scaling LLM inference via intelligent parallelism

o Serial CoT: Context window limitations; latency

o Existing parallel methods: Poor coordination; redundancy

o Hand-designed reasoning trees: Lack flexibility

▪ Key contribution: Intelligent, model-powered parallelism

o Language models provided parent-child threading mechanism

o End-to-end training via Reinforcement Learning



53

Discussions

1. Can Hogwild! Inference enable more effective 
collaboration beyond “prompted” divergent thinking?
o Theoretically yes but unclear from current experiments.

2. Future of task (thinking) parallelism.
o Trade-off between performance gains and overhead from 

multi-agent debate.

o Nicely splitting big problems into sub-tasks is nice. What 
problems are suitable for sub-tasking and can LLMs achieve 
this with simple prompting?



54

Discussion Questions

▪ Do we expect this improvement to generalize to other tasks?

▪ What kinds of tasks benefit from parallelization?

▪ Brute force in disguise?

o Main benefits are from scaling threads for greater token usage



© The Johns Hopkins University 2023, All Rights Reserved.


	Slide 1: How can language models dynamically allocate resources for parallel thinking?
	Slide 2: Inference-Time Computation
	Slide 3: Inference-Time Computation
	Slide 4: Inference-Time Computation
	Slide 5: Inference-Time Computation
	Slide 6: Inference-Time Computation
	Slide 7: Inference-Time Computation
	Slide 8: Challenge
	Slide 9: Parallelism
	Slide 10: Challenge
	Slide 11: Challenge
	Slide 12: Challenge
	Slide 13: Challenge
	Slide 14
	Slide 15: Challenge
	Slide 16: KV Cache Structure
	Slide 17: KV Cache Structure
	Slide 18: Hogwild!: Shared KV Cache
	Slide 19: Token Ordering
	Slide 20: Token Ordering
	Slide 21: Trick: Prompting
	Slide 22: Experiments: Baseline Methods
	Slide 23: Experiments: Results
	Slide 24: Experiments: Results
	Slide 25: How many workers?
	Slide 26: “Collaborativeness”
	Slide 27: Efficiency
	Slide 28: How Hogwild! improves performance?
	Slide 29: How Hogwild! Inference works?
	Slide 30: Takeaways
	Slide 31
	Slide 32: Motivation
	Slide 33: Adaptive Parallel Reasoning (APR)
	Slide 34: Key Innovation 1: Parent-Child Threading
	Slide 35: Advantage: Context Partitioning
	Slide 36: Key Innovation 2: End-to-End Reinforcement Learning
	Slide 37: Stream-of-Search (SoS/SoS+)
	Slide 38: SoS+ vs APR, General
	Slide 39: SoS+ vs APR, Countdown Task
	Slide 40: Training Setup
	Slide 41: Experiments: Countdown Task
	Slide 42: Experiments: Results
	Slide 43: Experiments: Results
	Slide 44: Experiments: APR Pre- vs Post- RL
	Slide 45: Experiments: Efficiency
	Slide 46: Ablation: RL in APR and SoS+
	Slide 47: Ablation: RL in APR and SoS+
	Slide 48: Results with Larger Models
	Slide 49: Results with pretrained models
	Slide 50: Results on Larger Countdown Task
	Slide 51: Results Consistent Across Temperatures
	Slide 52: Summary
	Slide 53: Discussions
	Slide 54: Discussion Questions
	Slide 55

