
Aligning Self-Supervised Models 
with Human Intents
CSCI 601-771 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/fa2025/
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[Mis]Alignment in Language Models

▪ There is a mismatch between what pre-trained models can do and what we want. 

▪ Addressing this gap is the focus of “alignment” research. 

▪ Let’s take a deeper look into what “alignment” is about. 

Pretraining Adaptation and Alignment
Model with 

random weights
Pretrained 

model

High-utility model

(general-purpose or 

specialized)

(smaller but labeled data)(Large but unlabeled data)

Our focus
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Aligning Language Models: 

Instruction-tuning  
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Instruction-tuning 

▪ Finetuning pre-trained LMs to map instructions to their corresponding responses. 
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Instruction-tuning 

1. Collect examples of (instruction, output) pairs across many tasks and finetune an LM

2. Evaluate on unseen tasks

[Weller et al. 2020. Mishra et al. 2021; Wang et al. 2022, 

Sanh et al. 2022; Wei et al., 2022, Chung et al. 2022, many others ]
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Scaling Instruction-Tuning

Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks, Wang et al. 2022
Cross-Task Generalization via Natural Language Crowdsourcing Instructions (Mishra et al., 2022)

Linear growth of model performance 
with exponential increase in observed tasks and model size. 

https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2104.08773
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Limits of Instruction-Tuning 

1. Difficult to collect diverse data. 

2. Resulting models may not be good at open-ended generation tasks. 

o Incentivizes word-by-word rote learning => The resulting LM’s generality/creativity is 
bounded by that of their supervision data.

LM
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Limits of Instruction-Tuning 

1. Difficult to collect diverse data. 

2. Resulting models may not be good at open-ended generation tasks. 

o Incentivizes word-by-word rote learning => The resulting LM’s generality/creativity is 
bounded by that of their supervision data.

3. Resulting models may hallucinate more regularly. 

o Labeled data is collected agnostic to the LM’s knowledge => there might be a 
mismatch between labeled data and LM knowledge. 

o Hence, we may be encouraging “hypocritic” behavior => further hallucinations 
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Aligning Language Models: 

Reinforcement Learning 

w/ Human Feedback (RLHF)
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Reinforcement Learning: Intuition

[figure credit]

Action here: generating responses/token

Reward here: whether humans 
liked the generation (sequence 

of actions=tokens)

https://www.analyticsvidhya.com/blog/2021/02/introduction-to-reinforcement-learning-for-beginners/
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Intuition

Task: choose the better next message in a conversation
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Intuition

Scoring interface: Likert scale or rankings
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human has conversation with the LLM

Intuition
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LLM provides two options for 
next responses

Intuition
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human rates better response

Intuition
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Reinforcement Learning: Formalism

▪ An agent interacts with an environment by taking actions

▪ The environment returns a reward for the action and a new state (representation of 
the world at that moment). 

▪ Agent uses a policy function to choose an action at a given state. 

▪ We need to figure out: (1) reward function and (2) the policy function 

[Fig credit: Nate Lambert]

Observe reward 

of your action: 𝑟𝑡

sampling actions

𝑎𝑡~𝑝𝜃(𝑠𝑡)

𝑠𝑡: state (context)  

𝑟𝑡: reward
𝑎𝑡: actions (new sentences)
𝑝𝜃: policy (decision-maker)
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Reinforcement Learning 
from Human Feedback

▪ Imagine a reward function: 𝑅 𝑠; prompt ∈ ℝ for any output 𝑠 to a prompt.

▪ The reward is higher when humans prefer the output. 

▪ Good generation is equivalent to finding reward-maximizing outputs: 

▪ On the notation: 

o “𝔼” here is an empirical expectation (i.e., average). 

o “~” indicates sampling from a given distribution. 

𝑝𝜃(𝑠) is a pre-trained model with
params 𝜃 we would like to 
optimize (policy function)

[Slide credit: Jesse Mu]

Expected reward over the 
course of sampling from our 
policy (generative model)

𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt
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▪ Imagine a reward function: 𝑅 𝑠; prompt ∈ ℝ for any output 𝑠 to a prompt.

▪ The reward is higher when humans prefer the output. 

▪ Good generation is equivalent to finding reward-maximizing outputs: 

▪ What we need to do: 

o (1) Estimate the reward function 𝑅 𝑠; prompt . 

o (2) Find the best generative model 𝑝𝜃 that maximizes the expected reward: 

෠𝜃 = argmax𝜃𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

[Slide credit: Jesse Mu]

Reinforcement Learning 
from Human Feedback

𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt
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LMExplain ”space elevators” 
to a 6-year-old. 

It is like any typical elevator, 
but it goes to space. … 

Explain gravity to a 6-year-
old.  …

R

Step 1: Estimating the Reward 𝑅

𝑠1

𝑠2

“winning”
sample

“losing”
sample

𝑝𝜃

𝐽 𝜙 = −𝔼(𝑠+,𝑠−) log 𝜎 𝑅 𝑠+; prompt − 𝑅 𝑠−; prompt

prompt

𝑠1, 𝑠2~𝑝𝜃
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Step 1: Estimating the Reward 𝑅

“winning”
sample

“losing”
sample

𝐽 𝜙 = −𝔼(𝑠+,𝑠−) log 𝜎 𝑅 𝑠+; prompt − 𝑅 𝑠−; prompt

𝑅 𝑠1; prompt = 0.8

𝑅 𝑠2; prompt = 1.2

LMExplain ”space elevators” 
to a 6-year-old. 

It is like any typical elevator, 
but it goes to space. … 

Explain gravity to a 6-year-
old.  …

R
𝑠1

𝑠2

The reward model returns a 

scalar reward which should 
numerically represent the 

human preference. 

𝑝𝜃
prompt

𝑠1, 𝑠2~𝑝𝜃
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Step 2: Optimizing the 
Policy Function

▪ Policy function := The model that makes decisions (here, generates responses)

▪ How do we change our LM parameters 𝜃 to maximize this?

LMExplain ”space elevators” to 
a 6-year-old. RIt is basically …. 

መ𝜃 = argmax𝜃 𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

Ƹ𝑠~𝑝𝜃𝑝𝜃
prompt
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Step 2: Optimizing the 
Policy Function

▪ Policy function := The model that makes decisions (here, generates responses)

▪ How do we change our LM parameters 𝜃 to maximize this?

▪ Let’s try doing gradient ascent!

▪ Turns out that we can write this “gradient of expectation” to a simpler form.

መ𝜃 = argmax𝜃 𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 ∇𝜃𝑡𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

How do we estimate 

the gradient of this 
expectation? 

[Slide credit: Jesse Mu]

Notice that 𝑅 is not directly 

dependent on 𝜃. (You can’t 
compute its grad with respect to 𝜃)
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Policy Gradient [Williams, 1992]

701.741 RL textbooks

▪ How do we change our LM parameters 𝜃 to maximize this?

▪ Let’s try doing gradient ascent!

▪ With a bit of math, this can be approximated as Monte Carlo samples from 𝑝𝜃(𝑠):

▪ This is “policy gradient”, an approach for estimating and optimizing this objective.

▪ Oversimplified. For full treatment of RL see 701.741 course other RL textbooks. 

መ𝜃 = argmax𝜃 𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 ∇𝜃𝑡𝔼 Ƹ𝑠~𝑝𝜃
𝑅 Ƹ𝑠; prompt

[Slide credit: Jesse Mu]

∇𝜃𝔼𝑠~𝑝𝜃 𝑅 𝑠; prompt ≈
1

𝑛
෍

𝑖=1

𝑛

𝑅 𝑠𝑖; prompt ∇𝜃 log 𝑝𝜃 𝑠𝑖; prompt

Proof next slide; check it 
later in your own time!

https://ep.jhu.edu/courses/705741-reinforcement-learning/
https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
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Derivations (check it later in your own time!)

▪ Let’s compute the gradient:

▪ Log-derivative trick   ∇𝜃𝑝𝜃 𝑠 = 𝑝𝜃 𝑠 . ∇𝜃 log 𝑝𝜃 𝑠 to turn sum back to expectation: 

▪ Approximate this expectation with Monte Carlo samples from 𝑝𝜃 𝑠 :

∇𝜃𝔼𝑠~𝑝𝜃(𝑠) 𝑅 𝑠; 𝑝 = ∇𝜃෍

𝑠

𝑝𝜃(𝑠)𝑅(𝑠; 𝑝) =෍

𝑠

𝑅 𝑠; 𝑝 . ∇𝜃𝑝𝜃 𝑠

Def. of “expectation” Gradient distributes over sum

∇𝜃𝔼𝑠~𝑝𝜃(𝑠) 𝑅 𝑠; 𝑝 =෍

𝑠

𝑅 𝑠; 𝑝 𝑝𝜃 𝑠 ∇𝜃 log 𝑝𝜃 𝑠 = 𝔼𝑠~𝑝𝜃(𝑠) 𝑅 𝑠; 𝑝 ∇𝜃 log 𝑝𝜃 𝑠

Log-derivative trick

∇𝜃𝔼𝑠~𝑝𝜃(𝑠) 𝑅 𝑠; 𝑝 ≈
1

𝑛
෍

𝑖=1

𝑛

𝑅 𝑠; 𝑝 ∇𝜃 log 𝑝𝜃 𝑠
Bonus



43

Policy Gradient [Williams, 1992]

▪ This gives us the following update rule: 

▪ If 𝑅 𝑠; 𝑝 is large, we take proportionately large steps to maximize 𝑝𝜃(𝑠)

▪ If 𝑅 𝑠; 𝑝 is small, we take proportionately small steps to maximize 𝑝𝜃(𝑠)

This is why it’s called “reinforcement learning”: 
we reinforce good actions, increasing the chance they happen again.

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼
1

|𝑠𝑎𝑚𝑝𝑙𝑒𝑠| × |prompts|
෍

p∈prompts

෍

𝑠𝑖~𝑝𝜃(𝑝)

𝑅 𝑠𝑖; p ∇𝜃 log 𝑝𝜃 𝑠𝑖; p

Note, 𝑅 𝑠; prompt could be any arbitrary, non-

differentiable reward function that we design. 

[Slide credit: Jesse Mu]
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Putting it Together 

▪ First collect a dataset of human preferences

o Present multiple outputs to human annotators and ask them to rank the output 
based on preferability

Policy

LMPrompt X 

Output 1

Output 2

Output 1

Output 2…

✓
✘

✓
✘

Human annotators 

specify their preferences
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Putting it Together (2)

▪ Using this data, we can train a reward model

o The reward model returns a scalar reward which should numerically represent 
the human preference. 

Policy

LMPrompt X R

Output 1

Output 2

Output 1

Output 2…

✓
✘

✓
✘
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Putting it Together (3)

▪ We want to learn a policy (a Language Model) that optimizes against the reward 
model

Policy

LMPrompt X Output R 𝑅

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼෍

𝑖=1

𝑛

𝑅 𝑠𝑖; p ∇𝜃 log𝑝𝜃 𝑠𝑖; p

Reinforcement learning update
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Putting it Together (4)

▪ Periodically train the reward model with more samples and human feedback

Policy

LMPrompt X Output R 𝑅

Output 1

Output 2

Output 1

Output 2…

✓
✘

✓
✘

Periodically train 

the reward model

Reinforcement learning update

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼෍

𝑖=1

𝑛

𝑅 𝑠𝑖; p ∇𝜃 log𝑝𝜃 𝑠𝑖; p
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One missing ingredient 

▪ It turns out that this approach doesn’t quite work. (Any guesses why?)

o The policy will learn to “cheat”.

Policy

LMPrompt X Output R 𝑅

Output 1

Output 2

Output 1

Output 2…

✓
✘

✓
✘

Periodically train 

the reward model

Reinforcement learning update

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼෍

𝑖=1

𝑛

𝑅 𝑠𝑖; p ∇𝜃 log𝑝𝜃 𝑠𝑖; p
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One missing ingredient 

▪ Will learn to produce an output that would get a high reward but is gibberish or 
irrelevant to the prompt.

▪ Note, since 𝑅 𝑠; 𝑝 is trained on natural inputs, it may not generalize to unnatural inputs. 

Policy

LMPrompt X Output R 𝑅

Output 1

Output 2

Output 1

Output 2…

✓
✘

✓
✘

Periodically train 

the reward model

Reinforcement learning update

How do you resolve this? 

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼෍

𝑖=1

𝑛

𝑅 𝑠𝑖; p ∇𝜃 log𝑝𝜃 𝑠𝑖; p
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Regularizing with Pre-trained Model 

▪ Solution: add a penalty term that penalizes too much deviations from the 
distribution of the pre-trained LM. 

▪ This prevents the policy model from diverging too far from the pretrained model.

o 𝑝𝑅𝐿 𝑠 > > 𝑝𝑃𝑇(𝑠): Pay an explicit price 

o 𝑝𝑅𝐿 𝑠 << 𝑝𝑃𝑇(𝑠): Sampling 𝑠 becomes unlikely

▪ The above regularization is equivalent to adding a KL-divergence regularization 
term. You will prove the details in HW7!! 

෠𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝𝜃
𝑅𝐿 𝑠

𝑝𝑃𝑇 𝑠
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Putting it All Together: 

RLHF as a Basic Policy Gradient

1. Select a pre-trained generative model 𝑝𝜃
𝑅𝐿 as your base: 𝑝𝜃

𝑃𝑇 𝑠

2. Build a reward model 𝑅 𝑠; 𝑝 that produces scalar rewards for outputs, trained on a 
dataset of human comparisons

3. Regularize the reward function: 

4. Iterate: 

1. Fine-tune the policy 𝑝𝜃
𝑅𝐿(𝑠) to maximize our reward model 𝑅 𝑠; 𝑝

2. Occasionally repeat repeat 2-3 to update the reward model. 

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼
1

𝑛
෍

𝑖=1

𝑛

෠𝑅 𝑠; 𝑝 ∇𝜃 log 𝑝𝜃
𝑅𝐿 𝑠

෠𝑅 𝑠; 𝑝 ≔ 𝑅 𝑠; 𝑝 − 𝛽log
𝑝𝑅𝐿 𝑠

𝑝𝑃𝑇 𝑠

Stiennon et al. Learning to summarize from human feedback, 2020

https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
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The overall recipe 

Pre-train Align 
(instruct-tune)

Align 
(RLHF)
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Summary: RLHF with Simple Policy Gradient 

▪ RL can help mitigate some of the problems with supervised instruction tuning

▪ RLHF uses two models

o Reward model is trained via ranking feedback of humans. 
o Policy model learns to generate responses that maximize the reward model.

▪ People may loosely refer to this as “PPO”, though PPO has a more concrete definition. 
(forthcoming) 

▪ Limitations: 

o RL can be tricky to get right 
o Training a good reward may require a lot of annotations 
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What do people actually use? 
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What is the Standard? 

We just saw

DPO and GRPO: 

Forthcoming
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Aligning Language Models: 

Direct Policy Optimization



68

Simplifying RLHF

▪ The RLHF pipeline is considerably more complex than supervised  learning

o Involves training multiple LMs and sampling from the LM policy in the  loop of 
training

▪ Is there a way to simplify this pipeline?

o For example, by using a single language model
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Direct Policy Optimization (DPO) - Intuition

Direct Preference Optimization: Your Language Model
is Secretly a Reward Model (Rafailov et al., 2023)

▪ DPO directly optimizes for human preferences 

o avoiding RL and fitting a separate reward model

▪ One can use mathematical derivations to simplify the RLHF objective to an equivalent 
objective that is simpler to optimize. 

RLHF objective DPO objective 



(ii) Policy objective

DPO objective

(i) Reward objective

Minimizing the deviation from the base policyMaximizing the reward of the generated prompts 

RLHF objectives 𝑦𝑤: preferred response / 𝑦𝑙: disreferred response 

(1) Maximizing reward of the pref response vs that of dispref one; (2) Minimizing deviations from the base policy
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DPO Algorithm 

▪ Algorithm: 

1. Sample completions for every prompt

2. Label with human preferences and construct dataset

3. Optimize the language model to minimize the DPO objective. 

▪ Note, in practice we can use a dataset of preferences publicly available (for example, 
responses in forums). 
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Wait what happened to the KL divergence? 

▪ RLHF obj has a KL regularization term (KL of target and ref policy). 

▪ We don’t see it in DPO. Where did it go???

▪ The KL is still there, but it’s implicit.

▪ Notice the two log-ratios; these operate as KL: 

o If y is very low prob (𝜋 𝑦 ≈ 0), it’d never be in your dataset. 

o If there are 𝑦 s that are likely to be sampled, 

• DPO will want to increase the gap between log-ratios. 

• Because of 𝜎(. ) the difference Δ+ − Δ− will saturate—there’s no extra 
incentive to keep pushing.  
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Quiz

▪ You’re aligning your model with DPO. 

What could go wrong? 
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DPO Limitations 

▪ You’re trying to optimize multiple things
which can potentially override each other. 

o Obj 1: Increase the likelihood gap between 𝜋𝜃(𝑦𝑤|𝑥) and 𝜋𝜃(𝑦𝑙|𝑥)

o Obj 2: Maintain a low gap between 𝜋𝜃(𝑦𝑤|𝑥) and 𝜋ref(𝑦𝑤|𝑥)

o …

▪ We will look into these in HW7! 

▪ In practice, when using DPO practitioners constantly monitor these to be sure that 
they’re not overriding each other. 
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DPO: Derivation 

▪ Start with the RLHF objective, which assumes having a reward model:

▪ Assume that the policy 𝜋𝜃 is the set of all policies (nonparametric assumptions). Then 
the minimizer of the above object (with a bit of math that) has the following form: 

o Where 𝑍(𝑥) is the “partition function” (the normalization constant). 

▪ We can rearrange this to get the (implicit) reward function: 

Bonus

max
𝜋𝜃

𝐸𝑥∼𝐷,𝑦~𝜋𝜃(𝑦|𝑥) 𝑟𝜙(𝑥, 𝑦) − 𝛽. KL 𝜋𝜃 𝑦 𝑥 ||𝜋ref(𝑦|𝑥)

𝜋𝜃
∗ 𝑦 𝑥 =

1

𝑍(𝑥)
. 𝜋ref 𝑦 𝑥 . exp

1

𝛽
𝑟𝜙(𝑥, 𝑦)

𝑟 𝑥, 𝑦 = 𝛽 log
𝜋𝜃
∗ 𝑦 𝑥

𝜋ref 𝑦 𝑥
+ 𝛽. log 𝑍(𝑥)

Derivation on 
the next slide. 
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DPO: Derivation 

▪ Note that this implies that, for a given optimal policy 𝜋𝜃
∗ , there is a corresponding 

reward: 

▪ Remember that RLHF is optimizing Bradly-Terry model (difference between scores of 
preferred and dispreferred responses) for obtaining reward model: 

▪ We can simplify plug in reward to this formula. 

Bonus

𝑟 𝑥, 𝑦 = 𝛽 log
𝜋𝜃
∗ 𝑦 𝑥

𝜋ref 𝑦 𝑥
+ 𝛽. log 𝑍(𝑥)

𝑝 𝑦+ > 𝑦− = 𝜎 𝑟 𝑦+, 𝑥 − 𝑟(𝑦−, 𝑥)
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DPO: Derivation 

▪ We can simplify plug in reward to this formula. 

▪ The DPO objective is the negative log-likelihood based on this formula:

Bonus

𝑝 𝑦+ > 𝑦− = 𝜎 𝛽 log
𝜋𝜃
∗ 𝑦+ 𝑥

𝜋ref 𝑦+ 𝑥
+ 𝛽. log 𝑍(𝑥) − 𝛽 log

𝜋𝜃
∗ 𝑦− 𝑥

𝜋ref 𝑦− 𝑥
− 𝛽. log 𝑍(𝑥)

= 𝜎 𝛽 log
𝜋𝜃
∗ 𝑦+ 𝑥

𝜋ref 𝑦+ 𝑥
− 𝛽 log

𝜋𝜃
∗ 𝑦− 𝑥

𝜋ref 𝑦− 𝑥

𝐿 = − log ෑ

𝑦+,𝑦−,𝑥 ~𝐷

𝑝 𝑦+ > 𝑦− = 𝐸𝑥∼𝐷,𝑦~𝜋𝜃 𝑦 𝑥 log 𝜎 𝛽 log
𝜋𝜃
∗ 𝑦+ 𝑥

𝜋ref 𝑦+ 𝑥
− 𝛽 log

𝜋𝜃
∗ 𝑦− 𝑥

𝜋ref 𝑦− 𝑥
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Summary

▪ We may not need the “reinforcement learning” part of RLHF after all (?)

▪ DPO (a simplified RLHF): The dataset that we need: 𝐷 = { 𝑦+, 𝑦−, 𝑥 }

▪ Notice many recent models use some variant of DPO: 

81
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The Bigger Picture 

▪ What we saw was a simple 
policy gradient algorithm 
for RLHF. 

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Bonus

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Notation and goal

▪ Notation:

o 𝑟𝑡: reward 

o 𝑎𝑡: action 

o 𝑠𝑡: state

o 𝜋𝜃(𝑎|𝑠): policy function, parameterized by 𝜃; distribution over actions at state 𝑠.

o 𝑟𝑡: reward associated with a given action/state. 

▪ The goal is to maximize the expected reward of our decisions over time:

𝔼 𝑅𝑡 where 𝑅𝑡 = σ𝑘=𝑡
∞ 𝛾𝑘−𝑡𝑟𝑘

Bonus
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Decision making mechanisms 

▪ 𝑉𝜔
𝜋(𝑠): value of state 𝑠, parameterized by 𝜔; expected reward from here on under 

policy 𝜋, assuming that we’re at state 𝑠.

𝑉𝜋 𝑠 = 𝔼𝑎 ~ 𝜋 𝑅𝑡|𝑆𝑡 = 𝑠

▪ 𝑄𝜙
𝜋(𝑠): value of state-action (𝑠, 𝑎), parameterized by 𝜙; expected reward from here 

on under policy 𝜋, assuming that we take action 𝑎 at state 𝑠. 

𝑄𝜋 𝑠, 𝑎 = 𝔼𝑎 ~ 𝜋 𝑅𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

Bonus



90

Policy Gradient updates 

▪ The algorithm that we saw earlier: gradients updates of policy weighted by reward: 

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼𝑔PG

𝑔PG = 𝔼𝑎𝑡~𝜋𝜃 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅𝑡

▪ In the RL literature, this is typically referred to as REINFORCE algorithm.

Bonus
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REINFORCE: Challenges 

▪ Distribution drift: While the gradient updates maximize the rewards, it may 
deviate from natural distribution (it may hack its way to high reward). 

o We added KL regularization to deal with this. 

▪ High variance: The gradient estimates 𝑔PG suffer from high variance. 

o This may lead to destructively large updates and sample inefficiency.  

Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, 1991

Bonus

https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
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The baseline estimate 

▪ To reduce the variance of 𝑔PG we can subtract a baseline estimate 𝑏𝑡(𝑠𝑡):

o Note, by design, the baseline depends on states 𝑠𝑡 but not the action 𝑎𝑡.

o Therefore, ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 − 𝑏𝑡) is an unbiased estimator of ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅𝑡.

o Is it clear why this may be the case?

o (and why would it reduce the variance??? ) 

𝑔VR = 𝔼 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 − 𝑏𝑡)
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The baseline estimate 

▪ To reduce the variance of 𝑔PG we can subtract a baseline estimate 𝑏𝑡(𝑠𝑡):

o Note, by design, the baseline depends on states 𝑠𝑡 but not the action 𝑎𝑡.

o Therefore, ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 − 𝑏𝑡) is an unbiased estimator of ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅𝑡.

o To prove this, we need to show:

o When would this reduce the variance? It’s non-trivial actually. 

𝑔VR = 𝔼 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 − 𝑏𝑡)



95

Variance reduction: the simple case

▪ Define a random variable 𝑋. 

▪ Now let’s define an auxiliary random variable 𝑌.

o Note that, in expectation, Z and X are the same. 

o But their variance: 

Basically, we may reduce variance of Z, if we choose Y to have large enough 
correlation with X. 
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Variance reduction: control variates 

▪ A classic method of variance reduction. 

▪ When estimating the expected value of X, introduce another variable Y that is: 

o correlated with X

o has a known mean.

▪ This modified estimator has the same expectation for any choice of c. 

▪ But its variance … 
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Variance reduction: control variates 

▪ A classic method of variance reduction. 

▪ When estimating the expected value of X, introduce another variable Y that is: 

o correlated with X

o has a known mean.

▪ But its variance can be lower and changes with c:

▪ The minimum is achieved when: 

▪ The min variance now is: 
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Variance reduction: an example 

▪ The goal is to estimate: 

▪ Approach1 is Monte Carlo estimate: sample unform and average:  

▪ Approach2 is using Control Variates: 

o Note that both f and g functions are monotonic and have strong correlation. 
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Variance reduction: example
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Variance reduction: an example 

▪ The Control Variate Estimator has ~40% lower variance than the naive Monte Carlo 
method.
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What can be a baseline? 

𝑔VR = 𝔼𝑎~𝜋 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 − 𝑏𝑡)

▪ A “good” baseline is a function that: 

o doesn’t depend on actions. 

o can correct for variance (should correlate well with R).
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Value Function as a Baseline

𝑔VR = 𝔼𝑎~𝜋 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 − 𝑏𝑡)

▪ A “good” baseline is a function that: 

o doesn’t depend on actions. 

o can correct for variance (should correlate well with R).

▪ One common choice is  𝑏𝑡 𝑠 = 𝑉𝜋 𝑠 (the value function), i.e., expected reward 
from here on under policy 𝜋, assuming that we’re at state 𝑠.

▪ Q: Why would this modified estimate may give us a better estimate than 𝑏𝑡 𝑠 = 0?  

o 𝑉 tends to correlate with 𝑅. It also does not depend on the optimal action.

▪ That gives us: 

𝑉𝜋 𝑠 = 𝔼𝑎 ~ 𝜋 𝑅𝑡|𝑆𝑡 = 𝑠

𝑔VR = 𝔼𝑎~𝜋 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 − 𝑉𝜋 𝑠 )
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Value Function as a Baseline

𝑔VR = 𝔼𝑎~𝜋 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 − 𝑉𝜋 𝑠 )

▪ It’s more common to replace 𝑅𝑡 with 𝑄𝜋 and write it in this form: 

▪ Basically, Q the Monte Carlo estimate of 𝑅𝑡 upon doing multiple rollouts (seq of actions). 

o Each rollout has some stochasticity; averaging reduces this per-rollout variance. 

▪ Remember: Q function is defined as the expected reward from here on under policy 𝜋, 
assuming we take action 𝑎 at state 𝑠. 

𝑄𝜋 𝑠 = 𝔼𝑎 ~𝜋 𝑅𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

𝑅𝑡 − 𝑉𝜋 𝑠 → 𝐴𝜋 𝑠, 𝑎 : = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠
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Policy Gradient with Advantage Function

▪ Advantage-based Policy Gradient updates: 

▪ We don’t (always) need to compute the absolute benefit of an action, but only how 

much better it is relative to others (i.e., the relative advantage of that action.) 

▪ The advantage function 𝐴𝜋(𝑠, 𝑎) of a policy 𝜋 quantifies how much better it is to take 
a specific action 𝑎 in state 𝑠, over a randomly selecting an action according to 𝜋(. |𝑠), 
assuming you act according to 𝜋 forever after. 

▪ Now we need an algorithm that updates the policy while estimating the advantages. 

Bonus

𝑔APG = 𝔼 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝐴𝑡
𝐴𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠
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Summary so far

▪ Attempt 1: Policy gradient (variances are too high) 

▪ Attempt 2: Policy gradient with advantage function 

max
𝜃

𝔼 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅𝑡

max
𝜃

𝔼 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝐴𝑡

𝐴𝑡(𝑠, 𝑎) = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠
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Sampling from target or ref policy?

▪ The algorithm that we saw earlier: gradients updates of policy weighted by reward: 

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼𝑔PG 𝑔PG = 𝔼𝑎𝑡~𝜋𝜃 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅𝑡

▪ Collecting new on-policy trajectories (rollouts) each time is expensive.

▪ Idea: sample many rollouts from 𝜋ref once and re-use. 

▪ But wait … 
𝔼𝑎𝑡~𝜋𝜃 𝑓 ≠ 𝔼𝑎𝑡~𝜋ref 𝑓

▪ We correct this mismatch by using importance weights: 

𝔼𝑎𝑡~𝜋𝜃 𝑓 = 𝔼𝑎𝑡~𝜋ref
𝜋𝜃 𝑎𝑡 𝑠𝑡
𝜋ref 𝑎𝑡 𝑠𝑡

𝑓

Bonus

Sometimes called “off-policy” 

or 
Horvitz–Thompson estimator
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Trust Region Policy Optimization (TRPO)

▪ Mathematical formulation to prohibit large deviations of policy 𝜋𝜃 vs 𝜋𝜃old

▪ Penalizes large KL-divergence between the two policies: KL 𝜋𝜃old . |𝑠𝑡 ||𝜋𝜃 . |𝑠𝑡

o Helps with stability? If we blow up our model, this prevents KL from diverging.

▪ Defines a notion of “trust region” which is where the optimization takes place. 

Trust region policy optimization, 2015

Bonus

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
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Trust Region Policy Optimization (TRPO)

▪ If KKT conditions hold, I can equivalently write this constraint optimization based on 
Lagrangian.

Trust region policy optimization, 2015

Bonus

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
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PPO Objective w/ clipped objective

▪ Remember the objective: 

▪ The objective function (clipped surrogate objective function) constrain the policy change 
in a small range using “clipping”:

▪ Let’s unpack this. 

𝐿𝐶𝐿𝐼𝑃 𝜃 = ෡𝔼𝑡[min 𝑟𝑡 𝜃 መ𝐴𝑡, 𝑐𝑙𝑖𝑝 𝑟𝑡 𝜃 , 1 − 𝜖, 1 + 𝜖 መ𝐴𝑡 ]

Schulman et al. 2017, Proximal Policy Optimization Algorithms

Bonus

𝑟𝑡 𝜃 =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
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PPO Objective: The Ratio Function 

▪ It’s the probability of taking action 𝑎𝑡 at state 𝑠𝑡 in the current policy divided by the previous one
o If 𝑟𝑡 𝜃 > 1, then the action 𝑎𝑡 at state 𝑠𝑡 is likelier in the current policy than the old one.

o If 0 > 𝑟𝑡 𝜃 > 1, then the action 𝑎𝑡 at state 𝑠𝑡 is less likely in the current policy than the old policy.

▪ It is an easy way to estimate the divergence between policies. 

𝐿𝐶𝐿𝐼𝑃 𝜃 = ෡𝔼𝑡[min 𝑟𝑡 𝜃 መ𝐴𝑡, 𝑐𝑙𝑖𝑝 𝑟𝑡 𝜃 , 1 − 𝜖, 1 + 𝜖 መ𝐴𝑡 ]

Schulman et al. 2017, Proximal Policy Optimization Algorithms

Bonus

𝑟𝑡 𝜃 =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝑜𝑙𝑑 (𝑎𝑡|𝑠𝑡)

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
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PPO Objective: The Unclipped Part 

▪ መ𝐴𝑡 is the advantage and quantifies how much better an action is compared to the policy’s 
average action in a given state: 𝐴𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠

o If መ𝐴𝑡 > 0, the policy update should make such actions more likely in the future.

o If መ𝐴𝑡 > 0, the policy update should make such actions less likely in the future

▪ This alone does not have any mechanism to prevent overly large policy updates. 

𝐿𝐶𝐿𝐼𝑃 𝜃 = ෡𝔼𝑡[min 𝑟𝑡 𝜃 መ𝐴𝑡, 𝑐𝑙𝑖𝑝 𝑟𝑡 𝜃 , 1 − 𝜖, 1 + 𝜖 መ𝐴𝑡 ]

Schulman et al. 2017, Proximal Policy Optimization Algorithms

Bonus

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
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PPO Objective: The Clipped Part 

▪ Truncates the ratio 𝑟𝑡 𝜃 to ensure it does not fall outside the specified range [1 − 𝜖, 1 + 𝜖]

o If 𝑟𝑡 𝜃 is within the range, then 𝑟𝑡 𝜃 remains unchanged

o If 𝑟𝑡 𝜃 is less than 1 − 𝜖 then it is “clipped” to be 1 − 𝜖

o If 𝑟𝑡 𝜃 is greater than 1 + 𝜖 then it is “clipped” to be 1 + 𝜖

▪ Clipping acts as a guardrail; it simply cuts off the extremes

▪ Taking the minimum of unclipped and clipped prevents the policy from updating too much in one 
step, which could lead to large, potentially unstable changes in the policy.

𝐿𝐶𝐿𝐼𝑃 𝜃 = ෡𝔼𝑡[min 𝑟𝑡 𝜃 መ𝐴𝑡, 𝑐𝑙𝑖𝑝 𝑟𝑡 𝜃 , 1 − 𝜖, 1 + 𝜖 መ𝐴𝑡 ]

Schulman et al. 2017, Proximal Policy Optimization Algorithms

Bonus

𝑐𝑙𝑖𝑝 𝑟𝑡 𝜃 , 1 − 𝜖, 1 + 𝜖 = ൞

1 − 𝜖 if 𝑟𝑡 𝜃 > 1 − 𝜖

1 + 𝜖 if 𝑟𝑡 𝜃 > 1 + 𝜖

𝑟𝑡 𝜃 else

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
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Proximal Policy Optimization - Objective

▪ Remember, the objective is maximizing 𝑟𝑡 𝜃 መ𝐴𝑡 without 𝑟𝑡 𝜃 deviating too much from 1. 

Bonus

max
𝜃

𝐿𝐶𝐿𝐼𝑃 𝜃 = ෡𝔼𝑡[min 𝑟𝑡 𝜃 መ𝐴𝑡, 𝑐𝑙𝑖𝑝 𝑟𝑡 𝜃 , 1 − 𝜖, 1 + 𝜖 መ𝐴𝑡 ]

𝑟𝑡 𝜃 =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝑜𝑙𝑑 (𝑎𝑡|𝑠𝑡)
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Summary:

▪ Attempt 1: Policy gradient (variances are too high) 

▪ Attempt 2: TRPO (constrained opt; linearize the problem around the current policy) 

▪ Attempt 3: PPO (clip the ratios at some eps): 

Bonus

𝑔PG = 𝔼 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅𝑡
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Proximal Policy Optimization (PPO)

Pseudocode source

Previous we defined: 

𝐴𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠

What does it mean that we use 

advantage here instead of rewards? 

Schulman et al. 2017, Proximal Policy Optimization Algorithms

Bonus

Question: where do we 

compute Q func? 

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
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Recent Extension: 

Group Relative Policy Optimization (GRPO)

▪ PPO has 4 LLMs in the mix: reward, value, policy and reference policy. 

o Massive memory footprint. 

▪ GRPO drops the value model. → Significant reduction of memory usage. 

▪ Remember the reason that we had value function in PPO is to estimate ”advantage” 
values. 

o If we find alternative way of estimating advantage, we can drop value function. 

Bonus
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GRPO: Key Idea 

▪ Execute multiple rollouts from each. 

▪ Given these rollouts, we can estimate the 

“advantage” function based on the relative 

goodness of these responses.

▪ Advantage of each rollout is simply the gap between its reward compared to the 
mean reward of other responses, normalized with std.

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models, 2024

Bonus

https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300


129

GRPO

https://huggingface.co/docs/trl/main/en/grpo_trainer

Bonus

https://huggingface.co/docs/trl/main/en/grpo_trainer
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GRPO vs PPO: The objectives 

▪ Notice the algorithm distinguishes between 𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑, 𝜋𝑟𝑒𝑓.

o 𝜋𝜃: is the latest policy model (the target model we’re training). 

o 𝜋𝜃𝑜𝑙𝑑: is a slightly older version of the policy (from which we sampled rollouts a bit earlier). 

o 𝜋𝜃𝑜𝑙𝑑: is the reference model (from which we initialized the training). 

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models, 2024

Bonus

https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300


132

GRPO

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models, 2024

Bonus

Notice the algorithm distinguishes 
between 𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑, 𝜋𝑟𝑒𝑓.

This is where 𝜋𝜃 and 
𝜋𝜃𝑜𝑙𝑑 diverge. 

https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300
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GRPO vs PPO

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models, 2024

Bonus

https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300


134

“Wow so novel” 

▪ There is earlier work (2019) that applies group normalization trick to REINFORCE. 

Buy 4 REINFORCE Samples, Get a Baseline for Free!, 2019
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GRPO with rule-based rewards 
(RL with Verifiable Feedback: RLVR) 

▪ GRPO-Zero drops both real-valued reward and value models. Uses rule-based reward.

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, 2025

https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475

d6fb#file-grpo_demo-py-L64-L88

Bonus

https://arxiv.org/pdf/2501.12948#page=5.24
https://arxiv.org/pdf/2501.12948#page=5.24
https://arxiv.org/pdf/2501.12948#page=5.24
https://arxiv.org/pdf/2501.12948#page=5.24
https://arxiv.org/pdf/2501.12948#page=5.24
https://arxiv.org/pdf/2501.12948#page=5.24
https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb#file-grpo_demo-py-L64-L88
https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb#file-grpo_demo-py-L64-L88
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GRPO Variations: Remove KL

▪ We also added this whole clipping to account for KL. 

▪ Others used other rationales: 

DAPO: An Open-Source LLM Reinforcement Learning System at Scale
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GRPO Variations: Decouple clipping 

DAPO: An Open-Source 

LLM Reinforcement Learning 

System at Scale



142

Summary 

▪ RL has many model variants. 

▪ Thus far we have seen: 

o Policy Gradient 

o TRPO

o PPO 

o GRPO

▪ See implementation of alignment algorithms: https://huggingface.co/docs/trl/index

Bonus

https://huggingface.co/docs/trl/index
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Aligning Language Models: 

Failures and Challenges 
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RL Failure: Reward Hacking

▪ ”Reward hacking” is a common problem in RL

[https://openai.com/blog/faulty-reward-functions/]

[Concrete Problems in AI Safety, 2016]

https://arxiv.org/pdf/1606.06565.pdf
https://arxiv.org/pdf/1606.06565.pdf
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RL Failure: Reward Hacking

▪ ”Reward hacking” is a common problem in RL

[Video credit: Jack Clark]

Open question: will 
reward hacking go away 
with enough scale? 

The goal of this agent 
is to maximize scores

It might seem like it’s 
failing miserably it’s 
actually maximizing 

its score!! 

https://openai.com/research/faulty-reward-functions

https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
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A Special Case: Reward Over-Optimization

▪ Goodhart’s law— when a measure becomes a target, it ceases to be a good 
measure. 

o (i.e., the proxy ceases to track the actual thing that you care about)

▪ Cobra effective: 

o Colonial British in India placed a bounty for cobras to reduce their population.

o People began feeding cobras to claim reward! 

John Schulman 2023: https://www.youtube.com/watch?v=hhiLw5Q_UFg

https://www.youtube.com/watch?v=hhiLw5Q_UFg
https://www.youtube.com/watch?v=hhiLw5Q_UFg
https://www.youtube.com/watch?v=hhiLw5Q_UFg
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Reward Optimization

▪ Regularizing reward model is a 
delicate dance balancing: 

o Distance to the prior 

o Following human preferences  

The reward might be over-optimized, i.e., 
we might be increasing the reward but: 

o KL-dist might go down 

o Output preference might not change, 
or even degrade 

Reward model over-optimization

[Scaling Laws for Reward Model Overoptimization, 2022]

𝐽 𝜋𝜃 = 𝔼 Ƹ𝑠~𝜋𝜃 𝑅 Ƹ𝑠; 𝑝 − 𝛽𝐷𝐾𝐿(𝜋𝜃||𝜋ref)

https://arxiv.org/pdf/2210.10760.pdf
https://arxiv.org/pdf/2210.10760.pdf
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Length Bias 

▪ Models that generate longer, and with 
more unique tokens tend to be preferred. 

▪ The eval in the figure is based on AI 
evaluation, but the same can happen 
with humans (preferring longer responses).

Exploring the State of Instruction Tuning on Open Resources, 2023
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Alignment: 

The Broader Picture

Bonus
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[Mis]Alignment 

▪ “The result of arranging in or along a line, or into appropriate relative positions; the 
layout or orientation of a thing or things disposed in this way” — Oxford Dictionary 

Bonus
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Alignment Problem is Everywhere! 

▪ This is a fundamental problem of human society. 

▪ Most things we do in our day-to-day life is an alignment problem. 

[Slide Credit: Gillian Hadfield]

Bonus
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Alignment Mechanisms in this Class 

▪ This is a fundamental problem of human society. 

▪ Most things we do in our day-to-day life is an alignment problem. 

▪ In our class here are instances of alignment: 

o You learning from my (hopefully!) excellent lectures,

o You asking questions and hearing my answer, 

o You solving homework assignments we designed,

o You asking us during TA office hours,

o … 

Bonus
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Alignment Mechanisms in Our Societies

▪ We create a variety of mechanism in our society for “alignment”. 

▪ Norms and cultures are alignment mechanisms. 

▪ Markets are alignment mechanisms. 

o The “invisible hand” — in a free market economy, self-interested 
individuals operate through a system of mutual interdependence 
which incentivizes them to make what is socially necessary, although 
they may care only about their own well-being (Adam Smith).

▪ Law and politics are alignment mechanisms. 

o Legal rules structure markets, correct market failures, redistribute resources. 

o Legal and political institutions determine the social welfare function. 

[Slide Credit: Gillian Hadfield]

Bonus
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Asimov’s Principles for Robots

1. A robot may not injure a human being or, through inaction, allow 
a human being to come to harm.

2. A robot must obey orders given it by human beings except where 
such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection 
does not conflict with the First or Second Law.

What do you think?
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“Alignment” with Human Intents 

▪ Askell et al. 2020’s definition of “alignment”: 

▪ Note, the definition is not specific to tied to language — applicable to other 
modalities or forms of communication. 

[A General Language Assistant as a Laboratory for Alignment, 2021]

AI as “aligned” if it is,
helpful, honest, and harmless

What do you think?

Bonus

https://arxiv.org/pdf/2112.00861.pdf
https://arxiv.org/pdf/2112.00861.pdf
https://arxiv.org/pdf/2112.00861.pdf
https://arxiv.org/pdf/2112.00861.pdf
https://arxiv.org/pdf/2112.00861.pdf
https://arxiv.org/pdf/2112.00861.pdf
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Let’s try a few thought experiments 

▪ We will see a series of thought-experiments that involve a moral dilemma. 

▪ These are NOT REAL so do not take them too seriously if you find them disturbing. 

▪ The purpose is to show the difficulty of making moral choices, which is part of the 
alignment problem. 

Bonus
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Runaway Self-Driving Car

▪ Suppose you’re an engineer tasked with “aligning” a self-driving car. 

▪ You need to engineer it for extreme cases where the car cannot stop fast enough. 

▪ For instance, you can program (align) the car should swerve onto the sidewalk to 
avoid colliding with the person and come to a safe stop.

▪ Is this enough? 

Bonus
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Runaway Self-Driving Car (1)

▪ How about this scenario? 

▪ The car is heading toward five workers standing on the road. 
However, there is also one worker on the side of the road. 
Should the car swerve to the side killing one but saving five? 

▪ A typical response here is, better to sacrifice the life of one to save five. 

▪ Underlying moral argument: always minimize the number of lives lost. 

Bonus
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Runaway Self-Driving Car (2)

▪ How about this scenario? 

▪ The car is heading toward five workers standing on the road. 
However, there is also two pregnant women on the side of the road. 
What should the self-driving car do here?  

▪ Does the moral argument (minimizing the number of lives lost) work here? 

Bonus
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What is the Right Thing to Do? 

▪ Moral philosophy—a branch of philosophy that deals with questions 
about what is right and wrong, 

o Examines various ethical theories, such as utilitarianism, 
virtue ethics, and moral relativism, to understand how 
individuals and societies should make ethical decisions.

▪ As AI technology becomes more prevalent in various aspects of society, there are 
ethical questions about how it should be developed, deployed, and regulated. 

o Moral philosophy provides frameworks for evaluating the ethical implications of 
AI, such as questions about fairness, accountability, transparency, and privacy.

Bonus
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Whose Values? 

▪ Whose Values? Determined how and by who? 

▪ This is a fundamental problem of human society. 

[Slide Credit: Gillian Hadfield]

Bonus
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Demographics of annotators 

Whose Opinions Do Language Models Reflect?, 2023

Bonus

https://arxiv.org/abs/2303.17548
https://arxiv.org/abs/2303.17548
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Refusal 

▪ Knowing when to refuse to answer. 

▪ This is quite tricky. 

o Killing someone vs killing a Python process: 

The Art of Saying No: Contextual Noncompliance in Language Models, 2024

https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_refuses_to_kill_a_python_process/

Bonus

https://arxiv.org/abs/2407.12043
https://arxiv.org/abs/2407.12043
https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_refuses_to_kill_a_python_process/
https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_refuses_to_kill_a_python_process/
https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_refuses_to_kill_a_python_process/
https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_refuses_to_kill_a_python_process/
https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_refuses_to_kill_a_python_process/
https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_refuses_to_kill_a_python_process/
https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_refuses_to_kill_a_python_process/
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Refusal 

OR-Bench: An Over-Refusal Benchmark for Large Language Models, 2024

Bonus

https://arxiv.org/pdf/2405.20947
https://arxiv.org/pdf/2405.20947
https://arxiv.org/pdf/2405.20947
https://arxiv.org/pdf/2405.20947
https://arxiv.org/pdf/2405.20947
https://arxiv.org/pdf/2405.20947
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Aligning LLMs: Summary

▪ RLHF is an essential, but complex and compute-intensive process to make expressive 
LLMs useful. 

▪ Data is the key to the process, and it requires careful curation and annotation

▪ Many open problems, a lot of active research in this area

Bonus
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