
LM Efficiency 

CSCI 601-771 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/fa2025/
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Our models are getting larger!

▪ TBD

Figure Credit: Song Han (MIT)
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And consumes a lot of data!
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Reasoning models solving long tasks
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Compute cost of 
Transformers
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Diversion: Floating-point Ops: FLOPS

▪ Floating point operations per second (FLOPS, flops or flop/s) 

▪ Each FLOP can represent an addition, subtraction, multiplication, or division of 
floating-point numbers, 

▪ The total FLOP of a model (e.g., Transformer) provides a basic approximation of 
computational costs associated with that model.
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FLOPS of Matrix Multiplication

▪ Matrix-vector multiplication are common in Self-Attention (e.g., QKV projection) 

o Requires 2𝑚𝑛 (2 x matrix size) operations for multiplying 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑛

o (2 because 1 for multiplication, 1 for addition)



8

Quiz: thinking about computations 

▪ Consider the following matrix multiplication: 
𝐴 𝐵, where 𝐴 ∈ ℝ𝑛×𝑚, 𝐵 ∈ ℝ𝑚×𝑘

▪ Question 1: Computing 𝐴𝐵 involves how many arithmetic operations?

o (also referred to as floating-point operations or FLOPs)

▪ Answer: It’s O(𝑛 × 𝑚 × 𝑘). 

o (to be a bit more precise, it’s ≈ 2𝑛 ×𝑚 × 𝑘 since each element in 𝐴 𝐵
requires almost equal num of multiplications and summations.) 

▪ Question 2: Computing 𝐴𝐵 involves how many memory/IO access? 

▪ Answer: It’s 𝑛 × 𝑚 (reading A) +𝑚 × 𝑘 (reading B)+ 𝑛 × 𝑘 (writing AB). 
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Computations in Self-Attention Block

▪ We are going to count computations and IO access in Transformer computations.

▪ Note we assume that the full input sequence is given at once (e.g., training time). 

▪ Here is the first step. Given: 𝐱 ∈ ℝ𝑏×𝑛×𝑑,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑

𝑚

▪ Let’s think about the following computation: 𝐱𝐖𝑖
𝑞

▪ Q1: What is the number of arithmetic operations? 𝑂(𝑏 × 𝑛 × 𝑑 ×
𝑑

𝑚
) for each head 

▪ Q2: What about the number of IO? 𝑂(𝑏 × 𝑛 × 𝑑 + 𝑑 ×
𝑑

𝑚
+ 𝑏 × 𝑛 ×

𝑑

𝑚
) for each head 

▪ Q3: What are these quantities for all heads? 

o Number of arithmetic ops: 𝑂 𝑏𝑛𝑑2

o Number of IO ops: 𝑂(2𝑏𝑛𝑑 + 𝑑2)
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Computations in Self-Attention Block

Dimensions Operation Computations IO

𝐱 ∈ ℝ𝑏×𝑛×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚 𝐱𝐖𝑖

𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑛𝑑2) 𝑂(𝑑2 + 2𝑏𝑛𝑑)

𝑸𝒊, 𝑲𝒊 ∈ ℝ𝑏×𝑛×
𝑑
𝑚 𝑃𝑖 ← softmax

𝑸𝒊𝑲𝒊
T

𝑑/𝑚
for 𝑚 heads 𝑂(𝑏𝑛2𝑑) 𝑂(2𝑏𝑛𝑑 + 𝑏𝑚𝑛2)

𝑽𝑖 ∈ ℝ
𝑏×𝑛×

𝑑

𝑚, 𝑃𝑖 ∈ ℝ
𝑏×𝑛×𝑛 head𝑖 ← 𝑃𝑖𝑽𝑖 for 𝑚 heads 𝑂(𝑏𝑛2𝑑) 𝑂(2𝑏𝑛𝑑 + 𝑏𝑚𝑛2)

𝑾𝑂 ∈ ℝ𝑑×𝑑 , head𝑖 ∈ ℝ
𝑏×𝑛×

𝑑
𝑚 𝑌 = Concat head1, … , head𝑚 𝑾𝑂 𝑂(𝑏𝑛𝑑2) 𝑂(2𝑏𝑛𝑑 + 𝑑2)

𝑌 ∈ ℝ𝑏×𝑛×𝑑 ,𝑾1 ∈ ℝ
𝑑×𝑑ff ,

𝑾2 ∈ ℝ
𝑑ff×𝑑

𝑌 = ReLU 𝑌𝑾1 𝑾2 𝑂(16𝑏𝑛𝑑2) 𝑂(2𝑏𝑛𝑑 + 8𝑑2)

--- Total 𝑂(𝑏𝑛𝑑2 + 𝑏𝑛2𝑑) 𝑂(𝑏𝑛𝑑 + 𝑏𝑚𝑛2 + 𝑑2)

𝑏: batch size,

𝑛: sequence length,
𝑚: number of heads
𝑑: feature dimension in output of SA

𝑑/𝑚: feature dimension inside each SA head
𝑑ff = 4𝑑: feature dimension inside FFN

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
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The bottlenecks

▪ So, in total, we have → 

▪ The quadratic terms are based on 𝑛 and 𝑑

▪ 𝑑 is fixed (part of architecture) but 𝑛 changes with input. 

▪ Bottlenecks #1: If 𝑛 (sequence length) ≫ 𝑑 (feature dimension), the time and 
space complexity would be dominated by 𝑂 𝑛2 .

▪ However, these despite this quadratic dependence these are parallelizable 
operations which can be computed efficiently in GPUs. 

o In comparison, RNNs perform 
less arithmetic ops but they’re 
not all parallelizable.  

▪ Bottlenecks #2: Another potential 
bottleneck is how fast we can run IO. 
(more on this later) 

Computations IO

𝑂(𝑏𝑛𝑑2 + 𝑏𝑛2𝑑) 𝑂(𝑏𝑛𝑑 + 𝑏𝑚𝑛2 + 𝑑2)

[Vaswani et al. 2017]

𝑏: batch size,

𝑛: sequence length,
𝑑: feature dimension in output of SA

https://arxiv.org/abs/1706.03762
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Recap

▪ Transformers computation of a full sequence is bounded by 𝑂(𝑏𝑛𝑑2 + 𝑏𝑛2𝑑). 

o Generally, the quadratic term that depends on seq len 𝑛 is more concerning.

▪ IO may also impose other limits on this (coming up). 

▪ Also, the above calculations is for a given sentences (e.g. training time). 

o How bad is the computational complexity during the decoding time where we 
want to generate text one token at a time? 
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During decoding time, how slow 
is attention computation? 
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Q: Pulse Check: What is a KV-Cache? 

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉



15

Self-Attention During Inference 

K
V

q

x

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Self-Attention During Inference 

K

q

x

q: the next token

previous context

V

[Slide credit: Arman Cohan]

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉
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Self-Attention During Inference 

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

[Slide credit: Arman Cohan]

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉
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Self-Attention During Inference 

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

[Slide credit: Arman Cohan]

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉



19

Self-Attention During Inference 

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

[Slide credit: Arman Cohan]

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉
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Self-Attention During Inference 

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

[Slide credit: Arman Cohan]

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉
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Self-Attention During Inference 

▪ We are computing the Keys and Values many times! 

o Let’s reduce redundancy! 

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

[Slide credit: Arman Cohan]

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉



22

KV-Cache for reducing inference redundancy 

▪ We are computing the Keys and Values many times! 

o Let’s reduce redundancy! 

K Cached

q

q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

The cat sat on the

vnew = Wvx[: , : −1]

[Slide credit: Arman Cohan]

𝑄 = 𝐱𝐖𝑞

𝐾 = 𝐱𝐖𝑘

𝑉 = 𝐱𝐖𝑣

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉
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▪ How much memory does this KV-cache require? Let’s assume, 

o batch size 𝑏,

o embedding dimension is 𝑑, 

o the length of the sequence seen so far is 𝑛,

o your model has 𝐿 layers,

o Each param is stored 𝑘 bytes (e.g., FP16 takes 2 bytes)

1. 2𝑏𝑛𝐿𝑘

2. 2𝑏𝑑𝐿𝑘

3. 𝑏𝑛𝑑𝐿𝑘

4. 2𝑏𝑛𝑑𝐿𝑘

Quiz: KV-Cache 
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KV-Cache size 

▪ For GPT2, this comes out to a modest size of 
~36 MB assuming we use the max sequence 
length of 1024 tokens and a batch size of 1. 

▪ For larger models, however, the KV Cache 
can take up GBs of memory.

o Try this calculator

https://tinkerd.net/blog/machine-learning/multi-query-attention/
https://tinkerd.net/blog/machine-learning/multi-query-attention/
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Q: Where do we store the KV Cache? 

▪ Depends. 

▪ If you’re doing single-GPU inference, it sits on the GPU that computes attention. 

▪ KV cache can be offloaded to CPU (RAM) (if GPU is running out of space) but adds latency. 

▪ Later we will revisit this discussion after seeing distributed training/inference. 
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Who has played w/ KV-Cache in practice? 
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KV-Cache in practice 
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KV-Cache in practice 

Note, here we don’t need to re-feed the prefix 

tokens (prefix_ids) to the model. Why? 
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KV-Cache in practice 
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KV-cache for knowledge intensive tasks 

• Creative use of KV-cache can help 
you speed up tasks that requires 
repeated use of knowledge that is 
fixed ahead of time and may be 
repeated across different inputs. 

• For example: the task of answering 
questions based on retrieved 
documents. 

Visualization from: https://lmcache.ai/
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Recap

▪ To avoid redundant computations during decoding time, KV-cache is used to keep 
track of previous calculations of keys and values.

▪ But how exactly how costly are these computations? 
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Decoding Computations

Dimensions Operation Computations IO

𝐱 ∈ ℝ𝑏×1×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚 𝐱𝐖𝑖

𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑑2) 𝑂(𝑑2 + 2𝑏𝑑)

𝑸𝒊, 𝑲𝒊 ∈ ℝ𝑏×1×
𝑑

𝑚 + KV-cache 𝑃𝑖 ← softmax
𝑸𝒊𝑲𝒊

T

𝑑/𝑚
for 𝑚 heads 𝑂(𝑏𝑛𝑑) 𝑂(𝑏𝑛𝑚 + 𝑏𝑛𝑑 + 𝑏𝑑)

𝑽𝑖 ∈ ℝ
𝑏×1×

𝑑

𝑚, 𝑃𝑖 ∈ ℝ
𝑏×𝑛×1 head𝑖 ← 𝑃𝑖𝑽𝑖 for 𝑚 heads 𝑂(𝑏𝑛𝑑) 𝑂(𝑏𝑛𝑚 + 𝑏𝑛𝑑 + 𝑏𝑑)

𝑾𝑂 ∈ ℝ𝑑×𝑑 , head𝑖 ∈ ℝ
𝑏×1×

𝑑
𝑚 𝑌 = Concat head1, … , head𝑚 𝑾𝑂 𝑂(𝑏𝑑2) 𝑂(2𝑏𝑑 + 𝑑2)

𝑌 ∈ ℝ𝑏×1×𝑑 ,𝑾1 ∈ ℝ
𝑑×𝑑ff ,

𝑾2 ∈ ℝ
𝑑ff×𝑑

𝑌 = ReLU 𝑌𝑾1 𝑾2 𝑂(16𝑏𝑑2) 𝑂(2𝑏𝑑 + 8𝑑2)

--- Total 𝑂(𝑏𝑑2 + 𝑏𝑛𝑑) 𝑂(𝑏𝑚𝑛 + 𝑏𝑛𝑑 + 𝑑2)

𝑏: batch size,

𝑛: sequence length thus far,
𝑚: number of heads
𝑑: feature dimension in output of SA

𝑑ff = 4𝑑: feature dimension inside FFN

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

Notice we’re doing this 
computations for one token

Query/key computations get 
combined with KV-cache

Compared to the previous table (SA for a seq of length 𝑛), all the 
cells have one less dependence on 𝑛 (e.g., 𝑛2 → 𝑛 or 𝑛 → 1). 

Now the computations (of next token) 
has linear dependence on seq length. 

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
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Summary: Computational Complexity of 
Transformers 

▪ Process a sequence at once: Computation is bounded by 𝑂(𝑛2). 

▪ Processing one token at a time during inference: 

o KV-Cache: To avoid redundant computations during decoding time, KV-cache is 
used to keep track of previous calculations of keys and values.

o The computation is bounded by 𝑂(𝑛). 

▪ Though in all cases, the computations are parallelizable (modulo Transformer layers). 
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Thinking about compute vs IO tension
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Diversion: Arithmetic Intensity  

▪ Arithmetic Intensity of a program execution: 

(# of floating-point operations) / (# of data bytes transferred to memory)  

▪ It helps determine whether a program is compute-bound or memory-bound:
o If AI is high, performance is limited by how fast the GPU can compute. 

o If AI is low, performance is constrained by how fast data can be transferred between global 
memory and GPU cores.

▪ A good rule of thumb: 

o Memory-bound:  AI < 10 FLOPs/byte

o Balanced:  10 ≤ AI ≤ 100 FLOPs/byte

o Compute-bound:  AI > 100 FLOPs/byte



37

Quiz 

▪ If a model has high arithmetic intensity, which of the following is true?

o A) Performance is mostly limited by memory bandwidth

o B) Performance is mostly limited by compute throughput

o C) Memory accesses dominate execution time

o D) The workload is not well-suited for GPUs

▪ Answer: High AI means the GPU spends more time computing per byte of memory 
fetched, making it compute-bound rather than memory-bound. Hence, B. 
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Arithmetic Intensity: An example

▪ We are going to compute AI for the first operation in Self-Attention.

▪ Note we assume that the full input sequence is given at once (e.g., training time). 

▪ Given: 𝐱 ∈ ℝ𝑏×𝑛×𝑑,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑

𝑚 we want to compute: 𝐱𝐖𝑖
𝑞

. From last week: 

AI = 𝑂
𝑏𝑛𝑑2

𝑑2 + 2𝑏𝑛𝑑
= 𝑂

𝑑2 + 2𝑏𝑛𝑑

𝑏𝑛𝑑2

−1

= 𝑂
1

𝑏𝑛
+
2

𝑑

−1

Dimensions Operation Computations IO

𝐱 ∈ ℝ𝑏×𝑛×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚 𝐱𝐖𝑖

𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑛𝑑2) 𝑂(𝑑2 + 2𝑏𝑛𝑑)
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Quiz 

▪ Given: 𝐱 ∈ ℝ𝑏×𝑛×𝑑,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑

𝑚 we know that the AI for computing 𝐱𝐖𝑖
𝑞

is: 

AI = 𝑂
1

𝑏𝑛
+
1

𝑑

−1

▪ This process is_____? 

o Memory-bound 

o Balanced

o Compute-bound 

▪ Answer: Our AI is large-ish. Depending on hyperparams, this is either balanced or 
compute-bound.  

o If 𝑛 = 10 (sent len), 𝑏 = 10 (batch size), 𝑑 = 512 (hidden dim). Then AI = 71.  

o If 𝑛 = 30 (sent len), 𝑏 = 20 (batch size), 𝑑 = 512 (hidden dim). Then AI = 179.  
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Arithmetic Intensity of Training 
Self-Attention

Operation Computations IO Arithmetic Intensity

𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑛𝑑2) 𝑂(𝑑2 + 2𝑏𝑛𝑑) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

𝑃𝑖 ← softmax
𝑸𝒊𝑲𝒊

T

𝑑/𝑚
for 𝑚 heads 𝑂(𝑏𝑛2𝑑) 𝑂(2𝑏𝑛𝑑 + 𝑏𝑚𝑛2) 𝑂 ൗ𝑚 𝑑 +

ൗ1 𝑛
−1

head𝑖 ← 𝑃𝑖𝑽𝑖 for 𝑚 heads 𝑂(𝑏𝑛2𝑑) 𝑂(2𝑏𝑛𝑑 + 𝑏𝑚𝑛2) 𝑂 ൗ𝑚 𝑑 +
ൗ1 𝑛

−1

𝑌 = Concat head1, … , head𝑚 𝑾𝑂 𝑂(𝑏𝑛𝑑2) 𝑂(2𝑏𝑛𝑑 + 𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

𝑌 = ReLU 𝑌𝑾1 𝑾2 𝑂(16𝑏𝑛𝑑2) 𝑂(2𝑏𝑛𝑑 + 8𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

All these AI values are large! 

We can continue running our 
GPUs during training! 

𝑏: batch size,

𝑛: sequence length,
𝑚: number of heads
𝑑: feature dimension in output of SA

𝑑/𝑚: feature dimension inside each SA head
𝑑ff = 4𝑑: feature dimension inside FFN

Bonus

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
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Self-Attention Cost of Computation During 
Incremental (Autoregressive) Generation

▪ Note that these numbers involve KV-caching. 

Operation Computations IO Arithmetic Intensity

𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑑2) 𝑂(𝑑2 + 2𝑏𝑑) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1

𝑃𝑖 ← softmax
𝑸𝒊𝑲𝒊

T

𝑑/𝑚
for 𝑚 heads 𝑂(𝑏𝑛𝑑) 𝑂(𝑏𝑛𝑚 + 𝑏𝑛𝑑 + 𝑏𝑑) 𝑂 1 + ൗ𝑚 𝑑 +

ൗ1 𝑛
−1

head𝑖 ← 𝑃𝑖𝑽𝑖 for 𝑚 heads 𝑂(𝑏𝑛𝑑) 𝑂(𝑏𝑛𝑚 + 𝑏𝑛𝑑 + 𝑏𝑑) 𝑂 1 + ൗ𝑚 𝑑 +
ൗ1 𝑛

−1

𝑌 = Concat head1, … , head𝑚 𝑾𝑂 𝑂(𝑏𝑑2) 𝑂(2𝑏𝑑 + 𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1

𝑌 = ReLU 𝑌𝑾1 𝑾2 𝑂(16𝑏𝑑2) 𝑂(2𝑏𝑑 + 8𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1
𝑏: batch size,

𝑛: sequence length thus far,
𝑚: number of heads
𝑑: feature dimension in output of SA

𝑑ff = 4𝑑: feature dimension inside FFN

These two rows have low AI. For example, if 𝑛 = 20 (sent len), 

ℎ = 12 (num heads), 𝑑 = 512 (hidden dim), then AI = 0.93. 
Hence, our program is memory bound during inference! 

Note this is partly due to the memory-bandwidth cost of 

repeatedly loading the large "keys" and "values" tensors.

Bonus
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KV-Cache drag  

▪ Slowdown of autoregressive decoding.
o As the sequence length grows, KV cache size increases, making cache lookup slower.

o As we generate more output tokens (i.e. chatbot responding to user), throughput will 
slow down. 

▪ Simple idea: Retain only the last 𝐿 tokens of the  KV-cache and compute attention using 
these recent tokens:

o Inference cost will be constant 𝑂(𝐿) per token. 
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Sparse / sliding window attention

▪ Left: Just use the main part of the strided pattern – let depth extend effective context (Mistral)

▪ Right: Build sparse / structured attention that trades off expressiveness vs runtime.

[Generating Long Sequences with Sparse Transformers, 2019]

Notable models: 
GPT3 and Mistral

https://arxiv.org/abs/1904.10509
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Quiz 

▪ What are the drawbacks of sliding window? 

1. If the model was not trained for sliding window, generation will be out-
of-distribution and unstable.

2. If uses few layers, it’ll retains local/recent information and cannot see 
global context.

3. After a while, it will forget the input text (e.g. the original instruction 
provided by the user).

4. All of the above.

[Slide credit: Samet Oymak] 
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Terminology: “Eviction” 

▪ Removing old K/V pairs
from the cache. 

▪ Here is a minimal example: 
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Terminology: “Eviction” 
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Examples of Last-only window 

▪ Prompt: The kid is wearing a red shirt,

▪ Input length: 24, Output length: 49

▪ KV Cache: unlimited -> Generated: The kid is wearing a red shirt, a blue hat, and green pants. 
The kid's shirt's color is red, the hat's color is blue, and the pants' color is green.

▪ KV Cache: last_50 ->  Generated: The kid is wearing a red shirt, a blue hat, and green pants. 
The kid's shirt's color is red. This is a picture of a kid in a red shirt, a blue hat, and green pants.

▪ KV Cache: last_20 -> Generated: The kid is wearing a red shirt, a blue hat, and green pants. 
The kid's shirt's color is a red shirt's'!!!!!!!!!!!!!!!!;!! 

▪ KV Cache: last_10 -> Generated: The kid is wearing a red shirt, a blue hat, and green pants. 
The kid's shirt's color is is is is is's's's's's's's's'ss's }s's c, and  and  and

[Example credit: Sungwon Kim] 
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Sliding Window Attention with “Sinks”

▪ Observations: There are few tokens (“sinks”) that the model heavily relies on.

▪ These sink tokens (e.g., BOS) consistently receive high attention. 

▪ Removing them leads to unstable generation. 

▪ Figure: In most layers, SA heavily attends to the initial 
token across all heads.
(the bottom two layers don’t always show this). 

▪ Why? Complicated. One explanation is, when no meaningful 
tokens attract attention, the model must still distribute 
probability mass somewhere (e.g.,  uninformative tokens. 
(note SA has to be a proper probability) 

[Efficient Streaming Language Models with Attention Sinks, 2023]

https://arxiv.org/abs/2309.17453
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Sliding Window Attention with “Sinks”

▪ If you use sliding window, without retraining, your attention values will be distorted. 

▪ StreamingLLM always maintains 
few initial positions (sinks). 

[Efficient Streaming Language Models with Attention Sinks, 2023]

https://arxiv.org/abs/2309.17453
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Examples of Caching the ”sinks” (last+first)

▪ Prompt: The kid is wearing a red shirt,

▪ Input length: 24, Output length: 49

▪ KV Cache: unlimited -> Generated: The kid is wearing a red shirt, a blue hat, and green 
pants. The kid's shirt's color is red, and the kid's hat's color is blue. The kid's pants' color is 
green. The kid is wearing

▪ KV Cache: first3+last_20 ->  Generated: The kid is wearing a red shirt, a blue hat, and 
green pants. The kid's shirt's color is red. The kid's color is red. The kid's color. The kid's 
red. Kid's red is. is

▪ KV Cache: first3+last_10 -> Generated: The kid is wearing a red shirt, a blue hat, and 
green pants. The kid's shirt's color is a white shirt with a black and red and white and 
orange collar and blue and green with a black on each side of the

▪ KV Cache: first3+last_5 -> Generated: The kid is wearing a red shirt, a blue hat, and green 
pants. The kid's shirt's color is the most important part of the company is the home, so as 
to be sure that you are on the home and you are

[Example credit: Sungwon Kim] 
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Prefix Caching 
(or, prompt caching)
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Prefix Caching

▪ Many prompts (e.g., from different users) share the same prefix. 

<System> You are a helpful assistant … <System>
<User> I want to know how can I use the coffee machine <User>

<System> You are a helpful assistant … <System>
<User> Write the code for training my language model. <User>

<System> You are a helpful assistant … <System>
<User> Help me revise my email ... <User>
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Prefix Caching

Prefix caching means reusing the KV cache from a shared prefix 
of tokens across multiple inference runs or generations, instead of 
recomputing it.

Most libraries (e.g., vLLM)
have this feature implemented: 

enable_prefix_caching=True

<System> You are a helpful 
assistant … <System>

Prefix Cache

CPU or GPU

But, can we slice the activations to fit them in different GPUs? 
- Yes, by Tensor Parallelism
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Prefix Caching

• Can accelerate one user using 
multiple language models. 

• Different users using one language 
models. 

Visualization from: https://lmcache.ai/
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Architecture change 
to reduce IO
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Multi-Query Attention (MQA)

▪ The idea is to reduce the memory-bandwidth cost of repeatedly loading the large 
"keys" and "values" tensors.

▪ Key idea – have multiple queries, but just one dimension for keys and values.

Small PPL w/ MQA [Shazeer 2019]

https://arxiv.org/pdf/1911.02150
https://arxiv.org/pdf/1911.02150
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MQA in practice 
Bonus

Script

https://gist.github.com/danyaljj/27beda96053623a7499070fa4019c2a4
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Grouped Query-Attention (GQA)

▪ An interpolation between “multi-head” attention and “multi-query” attention. 

▪ Simple knob to control expressiveness (key-query ratio) and inference efficiency

Notable models: 
Llama 2, Mistral, Qwen2

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023
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Grouped Query-Attention (GQA)

▪ Does it actually work? Depends. 

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023

Inference speed as a function of GQA group size — 8 
heads gives you inference speed as good as 1 head! 

Output quality of various models; all these 
SA variants are on-par on quality.
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Recap 

▪ SA’s AI during inference is not good. 

o We’re doing a lot of IO relative to computations (KV drag). 

▪ Sliding window attention: sparsifying attention pattern by looking at nearby things. 

▪ MQA and GQA: sharing attention keys and values. 



63

Do you the dimensions of my 
latent embeddings? 
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Low-Rank Key-Value Joint Compression

▪ Joint compress (project) keys and values to reduce KV cache: 

DeepSeek-V2: A Strong, Economical, and Efficient 

Mixture-of-Experts Language Mode, 2024
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Low-Rank Key-Value Joint Compression

▪ Joint compress (project) keys and values to reduce KV cache: 

DeepSeek-V2: A Strong, Economical, and Efficient 

Mixture-of-Experts Language Mode, 2024
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MLA: KV-Cache size comparison 

▪ MLA’s KV cache size is equal to GQA with only 2.25 groups. 
How about its performance? (vs. MHA and GQA) 

DeepSeek-V2: A Strong, Economical, and Efficient 

Mixture-of-Experts Language Mode, 2024
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MLA: KV-Cache size comparison 

▪ MLA (DeepSeek-V2) shows better performance than MHA, but requires a significantly 
smaller amount of KV cache.

DeepSeek-V2: A Strong, Economical, and Efficient 

Mixture-of-Experts Language Mode, 2024
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Quantization 
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Quantization: Mapping from high to low precision

▪ In deep learning, this process lets models run faster with less memory by storing 
weights/activations in lower precision (e.g., FP16 or INT8).



71

Numeric Data Types: FP32

▪ 32-bit floating point number or FP32 (IEEE 754)

Range Precision
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Numeric Data Types: FP32 (example)

▪ This bit string corresponds to what number? 11000000110110000000000000000000

▪ Split first: 

o Sign = 1    

o Exponent = 10000001 2 = 129 10

o 1+ Fraction: 1.10110000000000000000000 2 = 1.1011 2 = 1+ 0.5 + 0.125 = 0.0625 = 1.6875

▪ So, in total: −1 1 × 1.6875 × 2(129−127) = −0.6.75



73

Floating Point Numbers: Range vs Precision

▪ Floating-point design is always a trade-off between range and precision

o and this trade-off is central to quantization and mixed-precision computing.
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Floating Point Numbers

More range, less precision

Different floating-point formats used in machine learning, showing how they trade range and 

precision based on how many bits are allocated to the exponent and fraction (mantissa).
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Range vs Precision

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
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During training LLMs, 
what numeric type is used where?

Component
Typical 
Precision

Purpose / Reason Notes

Model Parameters BF16 / FP16
Reduce memory use and training bandwidth 
while maintaining adequate range

BF16 preferred (same exponent range as FP32, 
avoids loss scaling)

Activations BF16 / FP16
Efficient representation of large tensors 
during forward/backward passes

Some ops (e.g., softmax, attention) temporarily 
use FP32 for stability

Gradients FP32
Prevent precision loss when summing many 
small updates

Down-cast to BF16/FP16 when applying updates

Optimizer States 
(e.g., Adam m/v)

FP32
Maintain stable parameter updates across 
steps

Typically 2–3× the memory of model weights

Checkpoint 
Storage

BF16 / FP32 Preserve accuracy and reproducibility
Mixed-precision checkpoints often store FP32 
master weights
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Example: LLama3 paper 

The Llama 3 Herd of Models

https://arxiv.org/pdf/2407.21783


80

Example: LLama3 paper 

Qwen tech report, 2023

https://arxiv.org/pdf/2309.16609
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Terminology: “Full Precision"

▪ “Floating point” refers to how numbers are stored 

▪ “Full precision” usually means 32-bit floating point (FP32) — the traditional 
standard for numerical accuracy in deep learning and scientific computing.

Term Meaning Example

Floating 

point

Numeric format that represents real 

numbers using sign, exponent, mantissa
FP32, FP16, BF16

Full precision
Highest-precision floating-point format 

commonly used in training
FP32
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Linear Quantization

▪ Linear quantization maps continuous floating-point values to discrete integer 
levels using a uniform step size.

32 FP

2-bit signed integer (int2)
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Linear Quantization

How to find these numbers?

▪ Linear quantization maps continuous floating-point values to discrete integer 
levels using a uniform step size.

▪ The uniform step size is defined by a scale and zero-point.
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Linear Quantization
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Linear Quantization: Scale

▪ The top line (r) represents the original floating-point range. 

▪ The bottom line (q) represents the quantized integer rang

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
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Linear Quantization: Zero Point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

“Round” because 
Z must be an integer

▪ The top line (r) represents the original floating-point range. 

▪ The bottom line (q) represents the quantized integer rang

https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
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Linear Quantization: Zero Point

▪ In practice, weights are usually centered around zero. 

▪ Hence, we can set Z=0. 

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
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Linear Quantization: Zero Point

▪ In practice, weights are usually centered around zero. 

▪ Hence, we can set Z=0. 

▪ This means that our formula for scale will be much simpler: 

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

Called absmax or absolute 

maximum quantization

https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
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Quantization of LLMs 

▪ What is an LLM? 

o Weights

o Input 

o Their confluence result in activations, and ultimately outputs. 

▪ Weights are static and known in-advance. 

▪ Activations change based on input. 
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Quantization of LLMs: Weight vs Activations 

Aspect Weights Activations

Nature Static, known before inference Dynamic, varies with input and layer outputs

Timing Quantized offline (PTQ or QAT) Quantized on-the-fly during inference

Distribution Stable, near-zero symmetric Variable, often skewed with large outliers

Precision Lower (4–8 bit) Higher (8–16 bit) to preserve range

Zero Point Often symmetric (Z = 0) Often asymmetric (non-zero mean)

Common Methods GPTQ, AWQ SmoothQuant, ZeroQuant
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Quantization of LLM Activations: Outliers

• The plot shows activation ranges (i.e., min–max spread) for each output 

channel (dimension) in the first layer of MobileNetV2.
• There exists many outliers in activations! 

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

https://arxiv.org/abs/1906.04721
https://arxiv.org/abs/1906.04721
https://arxiv.org/abs/1906.04721
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Quantization of LLM Activations : Outliers

• The plot shows activation ranges (i.e., min–max spread) for each output 

channel (dimension) in the first layer of MobileNetV2.
• There exists many outliers in activations! 

• It’s not just about having large range: these large numbers are rare but important.
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Quantization of LLM Activations: 
Ignoring Outliers? 

Ignoring the outliers (skipping them in quantization) significantly harms 
performance after quantization in LMs.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
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Quantization of LLM Activations: LLM.int8()

▪ Keep outlier channels in 16-bit, quantize the remaining channels. 

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
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▪ Under the hood, this calls bitsandbytes’ implementation of LLM.int8() which
automatically detects and handles outlier channels,

Quantization of LLM Activations: LLM.int8()
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Quantization of LLMs: Recap 

▪ Quantization maps high-precision numbers (FP32, FP16, BF16) to lower-precision 
formats (FP8, INT8) to save memory and speed up computation.

▪ Used in both training and inference to reduce memory footprint and bandwidth.

▪ Main challenge: handling outliers in activations that can distort the quantization 
range.

▪ Modern methods (e.g., SmoothQuant, LLM.int8()) mitigate outlier effects to 
maintain accuracy.
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Distributed 
Training & Inference 
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Motivation

Model Size

(Llama 3 architecture)

Inference Memory

(~2x model size)

Training Memory

(~7x model size)

8B 16GB 60GB

70B 140GB 500GB

405B 810GB 3.25TB

Source: https://huggingface.co/blog/llama31#inference-memory-requirements

How much GPU memory (at least) do we need to perform inference/training? 

(batch size=1, ignoring the KV cache and optimizer states)
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Where did all the memory go?

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Longer sequences require much more memory in training!

Training Sequence Length (Number of Tokens)
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Distributed Training and Inference 

1. Naïve Data Parallelism

2. Sharding Optimizer States (ZeRO, FSDP)

3. Model Parallelism (Tensor Parallelism, Pipeline Parallelism)

GPU 0
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy
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Brief on GPU Operations for 
Communicating Tensors 
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NCCL: NVIDIA Collective Communication Library 

▪ Pronounced "Nickel”!! 

▪ NCCL provides routines to send and receive information within NVIDIA GPUs. 

▪ NCCL provides the following collective communication primitives :

o AllReduce

o Broadcast

o Reduce

o AllGather

Documentation: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html#

Github: https://github.com/NVIDIA/nccl

o ReduceScatter

o AlltoAll

o Gather

o Scatter

搞懂AI大模型集合通信(Collective Communication)之三——集合通信库通信模型算法-知乎

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://github.com/NVIDIA/nccl
https://www.google.com/url?sa=i&url=https%3A%2F%2Fzhuanlan.zhihu.com%2Fp%2F789546130&psig=AOvVaw2jAjGYrPaNcs3sNCc_zSx5&ust=1761150625450000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCJCa6LzbtZADFQAAAAAdAAAAABAE
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NCCL: NVIDIA Collective Communication Library 
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NCCL Operations: Reduce

▪ Nvidia Collective Communications Library (NCCL) - A library developed to provide 
inter-GPU communications primitives (operations)

▪ Reduce: *Sums* over all *tensors* and stores it in a root GPU

NCCL (NVIDIA Collective Communication Library): NVIDIA’s high-performance library for multi-GPU and multi-node 

communication: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
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NCCL Operations: Broadcast

▪ Broadcast: Duplicates one tensor to all GPUs
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Broadcast vs Scatter
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Gather vs Reduce
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Back to distributed training! 
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Naïve Data Parallelism

GPU 0
Model 
Copy

GPU 1
Model 
Copy

GPU 2
Model 
Copy

Dataset

First, we want to shard the dataset and feed them into different GPUs
How do we update the parameters?
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

Each GPU compute gradient with a single shard of data
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1

Gradient 2

Gradient 3 One GPU accumulates the gradients
(reduce in torch.distributed)

https://docs.pytorch.org/docs/stable/distributed.html

https://docs.pytorch.org/docs/stable/distributed.html
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1

Gradient 2

Gradient 3

And send the accumulated gradient to all other 
GPUs (broadcast in torch.distributed)

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3
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What is wrong with Naïve DP

- In naïve DP, each GPU holds a full copy of everything 
related to training — not just the model parameters.

GPU 1
Model 
Copy

Component Precision
Bytes per 

param
Purpose

Model 

parameters
FP16/BF16 2

The half-precision weights used in 

forward/backward passes

Gradients FP16/BF16 2
The half-precision gradients 

computed during backprop

Master 

weights
FP32 4

Full-precision version used for stable 

updates in mixed-precision training

Adam first 

moment (m)
FP32 4 Tracks running average of gradients

Adam 

second 
moment (v)

FP32 4
Tracks running average of squared 

gradients

For each parameter, you 

actually need five versions, 
which together take 16 bytes 
per parameter! 

That’s why naïve DP quickly 

runs out of memory as model 
size grows

Memory/GPU for a 7.5B model:
7.5B * 16 bytes = 120 GB!
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Naïve DP: Summary

• Each GPU holds a full copy of the model. The training data is split into 
batches distributed across GPUs; each computes gradients locally, then 
gradients are averaged (e.g., via all-reduce) before updating model 
parameters.

• Pros: Simple, widely supported.

• Cons: Model parameters and optimizer states are fully replicated → high 
memory cost, limiting scalability.

Stage What’s Sharded Approx bytes / param Memory / GPU (7.5 B params)

Naïve DP None 16 B 120 GB
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Naïve DP – Requires too much memory!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054
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• ZeRO (Zero Redundancy Optimizer) reduces memory use in distributed 
training by sharding model states across GPUs instead of replicating them.
• Stage 1: shard optimizer states

• Stage 2: + shard gradients

• Stage 3: + shard model parameters

• Result: Dramatically reduced memory use. Integrated to DeepSpeed and PyTorch FSDP.

ZeRO: Sharding Optimizer States

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Stage What’s Sharded Approx bytes / param Memory / GPU (7.5 B params)

Naïve DP None 16 B 120 GB

ZeRO-1 Optimizer states ≈ 6–7 B 50 GB

ZeRO-2 + Gradients ≈ 5 B 40 GB

ZeRO-3 + Parameters ≈ 2 B 15 GB

Note: “Stage x” means a variant, not a step!

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: Sharding Optimizer States

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

• Only optimizer states are partitioned (sharded) among GPUs:

• Each GPU keeps just 1/N of the optimizer states, where N is the 
number of GPUs.

• Model parameters and gradients are not sharded (as in naïve DP).

• When it’s time to update parameters, GPUs communicate to access the 
parts of the optimizer state they need, apply updates, and synchronize the 
results.

https://arxiv.org/abs/1910.02054


136

ZeRO Stage 1: Sharding Optimizer States

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

Gradient computation

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Each GPU compute gradient with a single shard of data. 
They’re later communicated to other GPUs to accumulate. 

(The same as naïve DP)

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A B C

Upon one round of update, we’ll have optimizer states. 
Assuming that 
• GPU1 stores optimizer states for parameters A, 
• GPU2 stores optimizer states for params B, 
• GPU3 stores optimizer states for params C 

Optimizer States 1 Optimizer States 2 Optimizer States 3

https://arxiv.org/abs/1910.02054


139

ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A B C

Split / shard the optimizer states into 3 parts!

Optimizer States 1 Optimizer States 2 Optimizer States 3

A B C A B C A B C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A

B C

B C

A B C

A

Each GPU accumulates gradients of the params whose optimizer 
states the GPU is storing (reduce_scatter in torch.distributed)

A B C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

GPU1 : update params A; 
GPU2: Updates Params B; 
GPU3: updates params C. 

A B C

Updated A

Updated B

Updated C

GPU1 can only update 
params A since it only stores 

optimizer states of params A.

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

Each GPU sends updated params to every other GPU. 
Finishing optimizer.step(). (all_gather in torch.distributed)

After all_gather, every GPU has an updated copy of the model

https://arxiv.org/abs/1910.02054
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Summary: ZeRO 1

▪ It shards only the optimizer states (e.g., Adam’s m, v) across GPUs. 

▪ While model parameters and gradients remain fully replicated.

▪ Each GPU individually perform gradient updates

▪ This removes redundant copies of the heaviest memory component, giving roughly a 
1 / N reduction in optimizer-state memory (for N GPUs) with minimal-ish
communication overhead.

▪ Basically free! (Compared to Naïve Data Parallelism)
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ZeRO Stage 2: Sharding Gradients

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Forward activationsForward activations Forward activations

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

• Model params are replicated. But we’re going to shard gradients + optimizer states. 

• Forward pass:  Each GPU holds a full copy of the model parameters (as in Stage 1). No extra 
communication happens here.

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient of layer XGradient of layer X Gradient of layer X

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

BB B CC CAA A

Backward pass: 
• Each GPU computes gradients for its local batch.
• Instead of storing all gradients, each GPU keeps only its shard of the gradient.
• As soon as the gradients of layer X are computed during backprop, shard them across GPUs.
• This uses reduce-scatter operation. 

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Backward pass: 
• Each GPU computes gradients for its local batch.
• Instead of storing all gradients, each GPU keeps only its shard of the gradient.
• As soon as the gradients of layer X are computed during backprop, shard them across GPUs.
• This uses reduce-scatter operation incrementally during backpropagation, layer by 

layer, rather than all at once.

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

AA A BB B CC C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Optimizer step:

• It updates only its own parameter using its shard of grads + optimizer states.

AA A BB B CC C

Params A

Params B

Params C

Params A

Params B

Params C

Params A

Params B

Params C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Optimizer step:

• It updates only its own parameter using its shard of grads + optimizer states.

AA A BB B CC C

Params A

Params B

Params C

Params A

Params B

Params C

Params A

Params B

Params C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Optimizer step:

• It updates only its own parameter using its shard of grads + optimizer states.
• Parameters are still replicated, so updates must be broadcast after each step to keep all 

GPUs in sync. (done with all-gather)

AA A BB B CC C

Params A

Params B

Params C

Params A

Params B

Params C

Params A

Params B

Params C

https://arxiv.org/abs/1910.02054
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Summary: ZeRO Stage 2

▪ Builds on Stage 1 by sharding gradients in addition to optimizer states. 

▪ Memory savings: no duplicate gradients or optimizer states. 

▪ Trade-off: slightly higher communication overhead each step.

o Communication is not bad since it’s amortized!! 

Stage What’s Sharded Approx bytes / param Memory / GPU (7.5 B params)

Naïve DP None 16 B 120 GB

ZeRO-1 Optimizer states ≈ 6–7 B 50 GB

ZeRO-2 + Gradients ≈ 5 B 40 GB
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ZeRO-3 (aka FSDP): Shard Everything!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054


157

ZeRO Stage 3

• Shards everything — parameters, gradients, and optimizer states — across GPUs.

• Provides maximum memory savings (~1/N per GPU), enabling extremely large 
models.
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ZeRO Stage 3: How it works (simplified)
When a layer is needed for computation, its parameters are All-Gathered from all GPUs just in time.
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ZeRO Stage 3: How it works (simplified)

After computing gradients, those gradients are Reduce-Scattered back to distribute and free memory.
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ZeRO Stage 3

• Shards everything — parameters, gradients, and optimizer states — across GPUs.

• Provides maximum memory savings (~1/N per GPU), enabling extremely large 
models.

• Comes with higher communication cost, since parameters must be gathered 
repeatedly during training.
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Communication Costs

- Naïve Data Parallel: 2x parameter (all_reduce)

- ZeRO-1: ~1x parameter (reduce_scatter + all_gather) - this is free! Might as well 
always use it.

- ZeRO-2: 2x parameter (reduce_scatter + all_gather + overhead) - this is (almost) 
free! (the communication is amortized) 

- ZeRO-3: ~3x parameter – which can be quite slow.
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• You can use PyTorch profiler helps visualize GPU memory usage across a training.

Memory consumption is not static

Source: https://nanotron-ultrascale-playbook.static.hf.space/index.html

(1) During the 
forward step, 
the activations
occupy most of 
the memory

(3) We perform optimization, during which we need 

all the gradients, and then update the optimizer 
states before we start the next forward pass.

(2) As the backward pass propagates, the stored 
activations used to compute the gradients are 
progressively cleared. But gradients gets more memory. 
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• You can use PyTorch profiler helps visualize GPU memory usage across a training.

Memory consumption is not static

Source: https://nanotron-ultrascale-playbook.static.hf.space/index.html

Because of the build-up of the optimizer states, the peak memory for step 2 onwards is higher! 

This also explains why 
your training in step 1 
may success and get 

OOM only in later steps!!
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• You can use PyTorch profiler helps visualize GPU memory usage across a training.

Memory consumption is not static

Source: https://nanotron-ultrascale-playbook.static.hf.space/index.html

the first step looks different: the 

activations increase quickly and then 
plateau for a while. Why?

This also explains why 
your training in step 1 
may success and get 

OOM only in later steps!!

In this first step, the PyTorch caching allocator does a lot of prep 

work, preparing memory allocations so that the subsequent steps 
don’t have to search for free memory blocks, which speeds them up. 
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Where did all the memory go?

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

So far, we dealt with the optimizer states

but what about the activations?

Training Sequence Length (Number of Tokens)
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Tensor Parallelism

  

  

  

  

    

    

    

     

      

      

 

 

 

 

      

      

      

We can either cut 
the weights W into 
two columns 
(Column Parallelism) 

or into two rows 
(Row Parallelism)
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Column-wise Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Cuts the weight 
matrix W into 2
columns
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Row-wise Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Cuts the weight 
matrix W into 2
rows
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Tensor Parallelism

X
W1 W2

Y

Computing matrix 
multiplications without 
storing internal activations 
(e.g. xW1)

In Feed-Forward Networks,
The dimension of 
W1 is usually 4x the hidden 
dimension.
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Tensor Parallelism: Llama Feed-Forward

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

activations are element-wise operations, can be parallelized
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Tensor Parallelism: Llama Attention

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

Column Parallel for Query, Key and Vector and Row Parallel for attention output
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Summary so far

- Data Parallelism 

- Naïve Data Parallelism

- NCCL Operations 

(reduce, all_reduce, reduce_scatter, broadcast, all_gather)

- ZeRO-1, ZeRO-2, ZeRO-3

- Tensor Parallelism

- Row-wise Tensor Parallelism 

- Column-wise Tensor Parallelism
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Tensor Parallelism

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py
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Throughput Scaling of Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

A large drop in throughput when scaling beyond 8 GPUs (one node)
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Throughput Scaling of Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Throughput drops significantly once we go beyond one node!
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Pipeline Parallelism: The idea 

• Splitting the model’s layers across multiple GPUs. 

• Then pipelining the forward and backward passes so all GPUs stay busy.

• For example: 

• [GPU0] layers 1–6  

• [GPU1] layers 7–12  

• [GPU2] layers 13–18  

• [GPU3] layers 19–24

• Execution flow: outputs from one device’s chunk 
are passed sequentially.

• Benefit: reduces per-device memory load by distributing model weights.
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Pipeline Parallelism

▪ GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

Each GPU is only working for 1/PP = ¼ of the time!
Idle/Work ratio = pp – 1 = 3

• Limitation: sequential dependency causes idle periods 
(“pipeline bubbles”) where some devices wait for others’ results.

https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
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Pipeline Parallelism: Improvement

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

• Solution: Microbatching splits the global batch into smaller sub-batches 

processed in a staggered manner.

• Gradients from all microbatches are accumulated afterward.

• Result: better GPU utilization (smaller bubbles), though not fully eliminated.

Idle / Work Ratio = PP-1 / M= 3 / 4

https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
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Pipeline Parallelism

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

A cleverer version of AFAB: 1 Forward 1 Backward (1F1B)
Idea: Do backward as early as possible, releasing activations on the fly

Roughly the same Idle/Work Ratio but less memory
(as you only need to store p=4 activations rather than m=8)

https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
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Pipeline Parallelism Throughput

A small drop in throughput when scaling beyond 8 GPUs (one node)
but a large drop as we increase the microbatch number
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Interleaving Pipeline Parallelism (LLama3)
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Interleaved Pipeline Parallelism (DeepSeek)

backprop for weights (blue) can be computed at any time!
We fill in the bubble with weight back propagation.
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Pipeline Parallelism, in practice 

• In torch, you can define your model as a sequence of layers and wrap with 

torch.distributed.pipeline.sync.Pipe

https://docs.pytorch.org/docs/stable/distributed.pipelining.html

https://docs.pytorch.org/docs/stable/distributed.pipelining.html
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Summary 

Aspect
Naive Data 

Parallel (DP)
ZeRO-1 ZeRO-2 ZeRO-3

Tensor Parallel 

(TP)

Pipeline Parallel 

(PP)

Core 

idea

Replicate full 

model; split 
data.

Shard 

optimizer 
states.

Shard optimizer 

states + 
gradients.

Shard optimizer 

states + gradients 
+ parameters.

Split tensors 

within layers
across GPUs.

Split layers of 

the model* 
across GPUs 

sequentially.

Memory 

footprint
Very high

Lower (no 

optimizer 
redundancy)

Lower (no 

optimizer/grad 
redundancy)

Minimal/no 

redundancy

Low–

moderate
Moderate

Ease of 

use
Very easy Easy Moderate More complex

Complex 

(custom 
kernels)

Moderate 

(microbatch
tuning)

Used for Training only Training only Training only Training only Training + inf Training + inf

Typical 

combo

Often + 

ZeRO

Paired with 

DP

Often w/ TP or 

PP

Combined with TP 

+ PP (3D)
Paired with PP

Paired with TP 

+ ZeRO
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Distilling the knowledge of 
larger models 
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Distillation

Knowledge 
and/or 
capabilities of 
a larger model

small model
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Revisit: Standard Training (NLLloss)

prefix: The strange case ___
groundtruth: of

Loss = -log p(of)
= Cross Entropy(y_pred, 
groundtruth)
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Revisit: Standard Training (NLLloss)

prefix: The strange case ___
groundtruth: of

loss = -log p(of)
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Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(groundtruth, y_pred)

y_predGroundtruth
(one-hot)
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Knowledge Distillation 

KD loss = Cross Entropy(y_large, y_pred)

small model next token probs
(y_pred)

Large model next token 
probs (y_large)
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Knowledge Distillation

Step 1: Initialize teacher 
model with a large and 
capable model

Step 2: Feed input data to 
both student and teacher 
(freezed)

Step 3: Use teacher 
outputs to train student 
(Cross Entropy)
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What if the teacher is Proprietary (GPT)?

Step 1: Initialize teacher 
model with a large and 
capable model

Step 2: Feed input data to 
both student and teacher 
(freezed)

Step 3: Use teacher 
generations (instead of 
outputs) to train student!
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Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(sampled text, y_pred)

y_predSampled output
(one-hot)
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What works better (a study in 2016)

Sequence-Level Knowledge Distillation (Kim & Rush, EMNLP 2016)

Use teacher generations 

Use teacher log-probs

https://aclanthology.org/D16-1139/
https://aclanthology.org/D16-1139/
https://aclanthology.org/D16-1139/
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Knowledge Distillation

- Train student (usually smaller model) on the output of a teacher (usually 
a larger model)

- The output can be log-probabilities or sampled outputs

- Effective in "distilling" the knowledge of large models to smaller ones.
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Model 
Serving 



213

In-flight batching 

• LLMs handle diverse workloads (chat, summarization, code generation, 
etc.) with highly variable output lengths, making batching difficult.

• Traditional batching struggles because some requests finish much earlier, 
leaving GPU resources idle.

• In-flight (continuous) batching addresses this by dynamically managing 
active requests.

• During generation, completed sequences are immediately evicted from the 
batch.

• New requests are inserted into available slots without waiting for others to 
finish.

• This allows continuous execution across iterations of model inference.
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Speculative Inference 

Blockwise Parallel Decoding for Deep Autoregressive Models, 2018

• Speculative inference (aka speculative sampling, assisted generation, or 
blockwise parallel decoding) accelerates LLM generation by partially 
parallelizing token prediction.

• Standard autoregressive decoding is sequential—each token depends on all 
prior ones.

• Core idea: use a smaller, faster “draft” model to predict several future 
tokens ahead of time.

https://arxiv.org/abs/1811.03115
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Speculative Inference 

Blockwise Parallel Decoding for Deep Autoregressive Models, 2018

• The larger “verification” model then checks these draft tokens in parallel.

• If the verifier’s outputs match the draft’s predictions, those tokens are 
accepted immediately.

• If a mismatch occurs, tokens after the first disagreement are discarded, 
and a new draft is generated.

• This process reduces 
the number of 
sequential verification steps.

https://arxiv.org/abs/1811.03115
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https://www.tensoreconomics.com/p/llm-inference-economics-from-
first?utm_source=substack&utm_medium=email

https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
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VERY GOOD: Incorporate

https://arxiv.org/pdf/2502.17129

Here are some topics: 

– KV cache optimization 

- memory management 

-

https://arxiv.org/pdf/2502.17129
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