JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

LM Efficiency

CSCI 601-771 (NLP: Self-Supervised Models)

https://self-supervised.cs. jhu.edu/fa2025/

Our models are getting larger!

180 &

. NLP model size is increasing exponentially OpenAl
S 144 GPT-3
= 1708
i= 175 Billion model parameters
£ 108 8 Million web pages
g 3 Million GPU hours*
o
£ 72
(O]
N 2
(7)) [:
T a5 . &) Coosle OpﬁAI NWABIA Microsoft
-8 Go Qﬁ@ OpenAl BERT MBg'éthﬂLM T-NLG
= Transformer GPT 4ap GPT-2..- 17B

0 0 QSB O1,JB il 458

2017 2018 2020 2021
R JOHNS HOPKINS Figure Credit: Song Han (MIT) 2

And consumes a lot of data!

Model Size in Tokens
PaLM

GPT3 Anthropic GOOQ|€ 0 DeepMind

Assistant R
780 B 1.5 1
©openAr ANTHROP\C o

XLNet JUU Db 400 B
<SAANVIDIA.
3.3B

A

BERT GPT2

Megatron BLOOM BlenderBot3
Google @& 0penAl

<SANVIDIA BigScience facebook

Reasoning models solving long tasks

The length of tasks Al can do is doubling every 7 months <> METR

Task length (at 50% success rate)

4 hrs 1 Train adversarially robust image model

Thr

Train classifier
Sonnet 3.7
ol
15 min 4
Find fact on web L
GPT 40
4 min 1 CPL4

Count words in passage

Tmin
fh'F‘T 3.5
15 sec + Answer question
f’\]lﬁ" 3
4 sec
1sec A
2020 2022 2024 2026
e B Model release date

Compute cost of
Transformers

Diversion: Floating-point Ops: FLOPS

Floating point operations per second (FLOPS, flops or flop/s)

Each FLOP can represent an addition, subtraction, multiplication, or division of
floating-point numbers,

The total FLOP of a model (e.g., Transformer) provides a basic approximation of
computational costs associated with that model.

E-N i
e JOH NS

L

FLOPS of Matrix Multiplication

= Matrix-vector multiplication are common in Self-Attention (e.g., QKV projection)
o Requires 2mn (2 x matrix size) operations for multiplying A € R™*" and b € R"
o (2 because 1 for multiplication, 1 for addition)

-All
A21

oy
ol

A1z
A22

Aln
A2n

A1y + A2 + - - -
A1 + Agoxo + - -

Ap1%1 + Apa®s + -~

T Alnmn
T Aann

+ Amnmn_

Quiz: thinking about computations

= Consider the following matrix multiplication:
AB, where A € R™™, B € R™*k

= Question 1: Computing AB involves how many arithmetic operations?
o (also referred to as floating-point operations or FLOPs)

= Answer: It's O(n x m X k).

o (to be a bit more precise, it's ~ 2n x m X k since each element in A B
requires almost equal num of multiplications and summations.)

= Question 2: Computing AB involves how many memory/I0 access?
= Answer: It's n x m (reading A) + m X k (reading B) + n x k (writing AB).

Computations in Self-Attention Block

= We are going to count computations and 10 access in Transformer computations.

= Note we assume that the full input sequence is given at once (e.g., training time).

d
= Here is the first step. Given: x € RP>™*4, w! ¢ R"m

= Let’s think about the following computation: xW/’

= Q1: What is the number of arithmetic operations? 0(b x n X d X %) for each head

= Q2: What about the number of IO? O(b xn x d + d X % + b Xn X %) for each head

= Q3: What are these quantities for all heads?
o Number of arithmetic ops: 0(bnd?)
o Number of I0 ops: 0(2bnd + d?)

b: batch size,
n: sequence length,
m m m: number of heads
Com pUtatIOI‘lS l I1 SEIf'Att d: feature dimension in output of SA
d/m: feature dimension inside each SA head
d¢e = 4d: feature dimension inside FFN

x € RvXnxd Wi e R¥m xW/, xWf, xW/” for m heads 0(bnd?) 0(d? + 2bnd)
bxnxZ QK[) ¢ head 2 2

Q. K; € R”™m P; « softmax e or m heads 0(bn“d) 0(2bnd + bmn~)

Vv, € benx , P, € RbX™xn head; « P;V; for m heads 0(bn?d) 0(2bnd + bmn?)
WO € R head, € RP™m ¥ = Concat(head,, ..., head,,) W° 0(bnd?) 0(2bnd + d?)

Y € benxd} W, € Rddef’
W, e Rdlffxd Y = ReLU(YW,)W, 0(16bnd?) 0(2bnd + 8d?)
== Total 0(bnd? + bn?d) 0(bnd + bmn? + d?)
B3 1o H https://le.qun.ch/en/blog/2023/05/1 3/transformer-batching/

Q7 O HOPRINS 10

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

b: batch size,
n: sequence length,

The bOttlEhECkS d: feature dimension in output of SA

E-N
=y

L

So, in total, we have —

. 2 2 2 2
The quadratic terms are based on n and d 0(bnd* + bn"d) 0(bnd + bmn” + d%)

d is fixed (part of architecture) but n changes with input.

Bottlenecks #1: If n (sequence length) > d (feature dimension), the time and
space complexity would be dominated by 0(n?).

However, these despite this quadratic dependence these are parallelizable
operations which can be computed efficiently in GPUs.

o In comparison, RNNs perform

. . , Layer Type Complexity per Layer Sequential
less arithmetic ops but they’re Operations
not all parallelizable. Self-Attention O(n? - d) 0(1)

Recurrent O(n-d?) O(n)

Bottlenecks #2: Another potential :
bottleneck is how fast we can run IO. [Vaswani et al. 2017]
(more on this later)

11

https://arxiv.org/abs/1706.03762

Recap

= Transformers computation of a full sequence is bounded by 0(bnd? + bn?d).
o Generally, the quadratic term that depends on seq len n is more concerning.

= IO may also impose other limits on this (coming up).

= Also, the above calculations is for a given sentences (e.g. training time).

o How bad is the computational complexity during the decoding time where we
want to generate text one token at a time?

12

I_Dur_ing decoding time, how slow
IS attention computation? N

Q: Pulse Check: What is a KV-Cache?

Q =qu
K = xW¥
IV =xWV

Attention(x) ft (QKT> v
ention(x) = sorkmax{ ——
Vd

14

Self-Attention During Inference

Q :XWCI
K = xW¥k
V =xWV

Attention () ft (QKT> v
ention(x) = sorkmaxy ——
Vd

4L i»

) i

Vv

[Slide credit: Arman Cohan]

&2 10HNS HOPKINS
W7 mrwoswon 15

Self-Attention During Inference

Q :XWCI
K = xW¥k
V =xWV

Attention () ft (QKT> v
ention(x) = sorkmaxy ——
Vd

| 4L i»

g: the next token K l V

previous context

[Slide credit: Arman Cohan]

&2 10HNS HOPKINS
W7 mrwoswon 16

Self-Attention During Inference

Q = qu
K = xWkK
IV =xWV?
Attention(Xx) ft (QKT> V
ention(x) = softmax| ——
Vd
g |
q: the next token Ki= W.x V=W
A - k P v
/”/ -
/ previous context
iThé Cat Sat on the [Slide credit: Arman Cohan]

&2 10HNS HOPKINS
g JOHNS HOPK 17

Self-Attention During Inference

Q = xW4
K = xW¥
V =xW"
Attention (X) ft (QKT> V
ention(x) = softmax| ——
Vd
q i |
q: the next token K = ka I————%:—W%C——
& /V
/ previous context
Sat on the [Slide credit: Arman Cohan]

&2 101 HOPKING =

Self-Attention During Inference

q |

g: the next token

e

on the

previous context

=4

Q :XWq
K = xW¥k
V =xWV

Attention () ft (QKT> 14
ention(x) = sorkmaxy ——
Vd

V= W

[Slide credit: Arman Cohan]

19

Self-Attention During Inference

Q = xW1
K = xWkK
IV =xWV?
Attention(x) = soft (—QKT> v
ention(x) = softmax
Vd
g |
q: the next token K = ka -V‘ V= W‘,x

previous context

The cat 5 |

=R 20

[Slide credit: Arman Cohan]

Self-Attention During Inference

= xW1

K = xWk

]] V =xWV?

= We are computing the Keys and Values many times! OKT
o Let’s reduce redundancy! Attention(x) = softmax (Td > 4
g |
q: the next token V = va
W\

The Cat [Slide credit: Arman Cohan]

E-N
=0T

@ OIS FIOPKINS 21

KV-Cache for reducing inference redundancy

Q = qu
K = xWk
= We are computing the Keys and Values many times! V=xw" .
o Let’s reduce redundancy! Attention(X) = softmax <%> 1%
Vd
kpew = Wix[:, : —1]
q | |
: k
g: the next to ;1’ K Cached V Cached
AN P
\\ /M View = WX[:, 1 —1]
The Cat Sat on |the [Slide credit: Arman Cohan]

2] HMNS HOPEINS 22

Quiz: KV-Cache

= How much memory does this KV-cache require? Let's assume,
o batch size b,
o embedding dimension is d,
o the length of the sequence seen so far is n,
o your model has L layers,
o Each param is stored k bytes (e.g., FP16 takes 2 bytes)

1. 2bnLk o N
2. 2bdLk q: the next tOKin I K Cachad V Cached
3. bndLk \ !
4. 2bndLk N S i T
The cat sat on|the

WO 23

KV-Cache size

= For GPT2, this comes out to a modest size of
~36 MB assuming we use the max sequence
length of 1024 tokens and a batch size of 1.

= For larger models, however, the KV Cache
can take up GBs of memory.

o Try this calculator

L

Batch Size:

1

Model

GPT-3 Small

GPT-3 Medium

GPT-3 Large

GPT-3 XL

GPT-32.7B

GPT-36.7B

GPT-313B

GPT-3

Sequence Length:

Parameter Count

125M

350M

760M

1.3B

2.7B

6.7B

13B

175B

KV Cache Size

36.000 MB

96.000 MB

144.000 MB

288.000 MB

320.000 MB

512.000 MB

800.000 MB

4.500 GB

https://tinkerd.net/blog/machine-learning/multi-query-attention/
https://tinkerd.net/blog/machine-learning/multi-query-attention/

Q: Where do we store the KV Cache?

oy
. |

Depends.

If you're doing single-GPU inference, it sits on the GPU that computes attention.

KV cache can be offloaded to CPU (RAM) (if GPU is running out of space) but adds latency.

Later we will revisit this discussion after seeing distributed training/inference.

25

Who has played w/ KV-Cache in practice?

26

KV-Cache in practice

model_name = "gpt2" # swap for your decoder-only model (Llama, Mistral, etc.)
tok = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausallLM.from_pretrained(model_name).to(device).eval()

———— 1) Shared prefix (system prompt or template) ——-
prefix = "System: You are a concise assistant.\n"
prefix_ids = tok(prefix, return_tensors="pt").to(device)

with torch.no_grad():
Build the KV cache for the prefix ONCE
pref_out = model(xxprefix_ids, use_cache=True)
prefix_kv = pref_out.past_key_values # this is the cached prefix KV
(No generation here; we just cached the prefix.)

=

E:'t_f' JOHNS HOPKINS

27

KV-Cache in practice

— 2) Reuse the cached prefix for multiple gueries ———
queries = [

"User: Define gradient clipplng.\nAssistant:",

"User: Difference between Adam and SGD?\nAssistant:"“,

for q in queries:
g_ids = tok(q, return_tensors="pt").to(device)

with torch.no_grad(): (* Note, here we don't need to re-feed the prefix}

Reuse the prefix tokens (prefix_ids) to the model. Why? ids
out = model(*kq_ids, past_key_values=prefix_kv, use_cache=True)
Demo: take one token step (for clarity). In practice, use model.generat

next_token = out.logits[:, -1, :].argmax(dim=-1, keepdim=True)
print(tok.decode(next_token([@]))

o
=

IF,.._‘. JOHMNS HOPEINS
v

KV-Cache in practice

r
o
b

= 1

7

Assume you already built prefix_kv on GPU as above

———— 0Offload to CPU to save VRAM when not in use ———-
prefix_kv_cpu = tuple(
(k.cpu(), v.cpu()) for (k, v) in prefix_kv

Later, when you need to reuse it again:

prefix_kv_gpu = tuple(
(k.to(device, non_blocking=True), v.to(device, non_blocking=True))
for (k, v) in prefix_kv_cpu

JOHNS HOPEINS

29

KV-cache for knowledge intensive tasks

Creative use of KV-cache can help

you speed up tasks that requires

repeated use of knowledge that is o
fixed ahead of time and may be o
repeated across different inputs.

For example: the task of answering
questions based on retrieved
documents.

LT visualization from: https://Imcache.ai/

LLM engine

LLM engine

e
{

LMCache: \\'
Deliver KV caches
across LLMs

Iy [y [l

A
<

caches

[EAEALE

Recap

= To avoid redundant computations during decoding time, KV-cache is used to keep
track of previous calculations of keys and values.

= But how exactly how costly are these computations?

31

b: batch size,
n: sequence length thus far,
m: number of heads

DECOd i ng Com pUtatiOI‘lS d: feature dimension in output of SA

d¢ = 4d: feature dimension inside FFN

. : : ~[Compared to the previous table (SA for a seq of length n), all the’
Notice we're doing this | ce|is have one less dependence on n (e.g., n? - n or n - 1).

computations for one token
sions | Operation Computations “

Query/key computations get

x € RP*1xd Wi e Rm_ combined with KV-cache 0(bd?*) 0(d? + 2bd)
Q. K; € bep% + KV-caCH’;/ P; < softmax (%) for m heads 0(bnd) O(bnm + bnd + bd)
V. € RP Y p, e RpZnx1 head; « P,V; for m heads 0(bnd) O(bnm + bnd + bd)

WO € R%*4 head; € RbXD‘% Y = Concat(heady, ..., head,,) W? 0(bd?) 0(2bd + d?)

re Ri:,j: gjﬁdedXdﬁ' Y = ReLU(YW)W, 0(16bd?) 0(2bd + 8d?)
--- Total 0(bd? + bnd) O(bmn + bnd + d?)

Now the computations (of next token)
&7 Jorns H has linear dependence on seq length. 1 .iching, .

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

Summary: Computational Complexity of
Transformers

= Process a sequence at once: Computation is bounded by 0(n?).

= Processing one token at a time during inference:

o KV-Cache: To avoid redundant computations during decoding time, KV-cache is
used to keep track of previous calculations of keys and values.

o The computation is bounded by 0(n).

= Though in all cases, the computations are parallelizable (modulo Transformer layers).

oy
. |

34

=

Thinking about compute vs IO tension

|

35

Diversion: Arithmetic Intensity

= Arithmetic Intensity of a program execution:
(# of floating-point operations) / (# of data bytes transferred to memory)

= It helps determine whether a program is compute-bound or memory-bound:
o If Al is high, performance is limited by how fast the GPU can compute.

o If Al is low, performance is constrained by how fast data can be transferred between global
memory and GPU cores.

= A good rule of thumb:
o Memory-bound: AI < 10 FLOPs/byte
o Balanced: 10 < AI < 100 FLOPs/byte
o Compute-bound: AI > 100 FLOPs/byte

36

Quiz

= If a model has high arithmetic intensity, which of the following is true?
o A) Performance is mostly limited by memory bandwidth
o B) Performance is mostly limited by compute throughput
o C) Memory accesses dominate execution time
o D) The workload is not well-suited for GPUs

= Answer: High Al means the GPU spends more time computing per byte of memory
fetched, making it compute-bound rather than memory-bound. Hence, B.

37

Arithmetic Intensity: An example

= We are going to compute Al for the first operation in Self-Attention.
= Note we assume that the full input sequence is given at once (e.g., training time).

d
= Given: x € RP>™4, w’ e R™n we want to compute: xW,” . From last week:

x € RXmxd Wi e RPm XW/, XW[', xW/” for m heads 0(bnd?) 0(d? + 2bnd)

o b\ (@rzma\T) _ f1 2\
7 \d?+2bnd) bnd? B bn d

ti-l-| HRS HOWPE TS
% 38

Quiz
d
= Given: x € RP>*™4, w’ e R we know that the Al for computing xW/ is:

ST

= This processis___ ?
o Memory-bound
o Balanced
o Compute-bound

= Answer: Our Al is large-ish. Depending on hyperparams, this is either balanced or
compute-bound.

o If n =10 (sent len), b = 10 (batch size), d = 512 (hidden dim). Then Al = 71.
o If n =30 (sent len), b = 20 (batch size), d = 512 (hidden dim). Then Al = 179.

39

Arithmetic Intensity of Training
Self-Attention

xW, xW¥, xW? for m heads 0(bnd?) 0(d? + 2bnd) (b+ 1/bn)
P; « softmax(ﬂ) for m heads 0(bn%d 0(2bnd + bmn? 0 (m +1/) -
i fam (bn“d) (2bnd + bmn=) /d o
-1
head; < P,V; for m heads 0(bn2d) 0(2bnd + bmn?) 0 ((m +n))
-1
Y = Concat(head. head._ YWY ()(bndz) 0(2bnd + dZ) 0 ((1 1/bn))
b: batch size,
n: sequence length, -1
m: number of heads L@ All these AI values are large! 0 (1/d 1/bn)
d: feature dimension in output of SA We can continue running our

d/m: feature dimension inside each SA head . GPUs during training! 3
d¢ = 4d: feature dimension inside FFN 40

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

Self-Attention Cost of Computation During sons |
Incremental (Autoregressive) Generation

= Note that these numbers involve KV-caching.

xW?, xW¥, xW? for m heads 0(bd?) 0(d? + 2bd) 0 ((1/d 4 1/b)_1>
Kl'hese two rows have low AI. For example, if n = 20 (sent len), ((1 +M/)+ 1/n) 1)
h = 12 (num heads), d = 512 (hidden dim), then AI = 0.93.
Hence, our program is memory bound during inference! {+J <(1 YRR) 1)
Note this is partly due to the memory-bandwidth cost of a’ n
N repeatedly loading the large "keys" and "values" tensors. (1/ 1/)
COUTICOCCITCOYT,) vov) ITCOAT VY oo J AN L= AT By | d b
b: batch size,
s EEELEEE length thus far, 0(16bd?) 0(2bd + 8d?) (1/d 1/b)
m: number of heads

d: feature dimension in output of SA
d¢ = 4d: feature dimension inside FFN

KV-Cache drag

= Slowdown of autoregressive decoding.
o As the sequence length grows, KV cache size increases, making cache lookup slower.

o As we generate more output tokens (i.e. chatbot responding to user), throughput will
slow down.

= Simple idea: Retain only the last L tokens of the KV-cache and compute attention using
these recent tokens:

o Inference cost will be constant 0(L) per token.

43

Sparse / sliding window attention

= Left: Just use the main part of the strided pattern — let depth extend effective context (Mistral)
= Right: Build sparse / structured attention that trades off expressiveness vs runtime.

The cat sat on the The cat sat on the

The /-

cat

sat

on

the '

Vanilla Attention Sliding Window Attention

(a) Transformer (b) Sparse Transformer (strided) (¢) Sparse Transformer (fixed)

Notable models:
GPT3 and Mistral

T JoHNS HOPKINS [Generating Long Sequences with Sparse Transformers, 2019] 44

https://arxiv.org/abs/1904.10509

Quiz

= What are the drawbacks of sliding window?
1. If the model was not trained for sliding window, generation will be out-
of-distribution and unstable.
2.If uses few layers, it'll retains local/recent information and cannot see
global context.
3. After a while, it will forget the input text (e.g. the original instruction
provided by the user).

4. All of the above.

45

Terminology: “Eviction”

= Removing old K/V pairs

text = "The dog runs fast today"
from the cache. S NOLE0R LI a0 T

_ o inp = tok(text, return_tensors="pt").to(device)
= Here is a minimal example:

with torch.no_grad():
out = model(*xinp, use_cache=True)
kv = out.past_key_values

print("0Original KV length (layer 0):", kv([@][@].shape[2])

evicted = tuple(
(k[:, :, 1:, :].contiguous(), v([:, :, 1:, :].contiguous())
for (k, v) in kv

&7 JoHNS HOPKINS
v

Terminology: “Eviction”

——— Step 3: continue generatlion using the evicted cache ————
next_input = tok(" happily", return_tensors="pt").to(device)

with torch.no_grad():

out2 = model(xxknext_input, use_cache=True, past_key_values=evicted)

print("KV length after reuse:", out2.past_key_values[0] [@0].shape[2])

optional: decode a quick sample

gen = model.generate(xknext_input, past_key_values=evicted, max_new_tokens=5)

print(tok.decode(gen[@], skip_special_tokens=True))

r
o
b

i..‘f- JOHNS HOPKINS

47

Examples of Last-only window

Prompt: The kid is wearing a red shirt,
Input length: 24, Output length: 49

KV Cache: unlimited -> Generated: The kid is wearing a red shirt, a blue hat, and green pants.
The kid's shirt's color is red, the hat's color is blue, and the pants' color is green.

KV Cache: last_50 -> Generated: The kid is wearing a red shirt, a blue hat, and green pants.
The kid's shirt's color is red. This is a picture of a kid in a red shirt, a blue hat, and green pants.

KV Cache: last_20 -> Generated: The kid is wearing a red shirt, a blue hat, and green pants.
The kid's shirt's color is a red shirt's'HHHTHITTIT -1

KV Cache: last_10 -> Generated: The kid is wearing a red shirt, a blue hat, and green pants.

48

w [Example credit: Sungwon Kim]

Sliding Window Attention with “Sinks”

Observations: There are few tokens (“sinks”) that the model heavily relies on.
These sink tokens (e.g., BOS) consistently receive high attention.
Removing them leads to unstable generation. Layer 2 Head 0

0

2

Figure: In most layers, SA heavily attends to the initial
token across all heads.
(the bottom two layers don’t always show this). 6

4

8

Why? Complicated. One explanation is, when no meaningful
tokens attract attention, the model must still distribute

probability mass somewhere (e.g., uninformative tokens.
(note SA has to be a proper probability) 1

12

= T T, . .) . .
W JOENS IOPKIN [Efficient Streaming Language Models with Attention Sinks, 2023] 49

https://arxiv.org/abs/2309.17453

Sliding Window Attention with “Sinks”

= If you use sliding window, without retraining, your attention values will be distorted.
(b) Window Attention (d) StreamingL.LLM (ours)

= StreamingLLM always maintains
few initial positions (sinks).

‘/—"'_""'-

Attention Sink

SIS T TN

1-L evicted L cached evicted L cached

tokens tokens tokens tokens
O(TL) v PPL: 5158 O(TL)v PPL:540v
Breaks when initial Can perform efficient and stable
tokens are evicted. language modeling on long texts.

S50 [OHNS

50

https://arxiv.org/abs/2309.17453

Examples of Caching the "sinks” (last+first)

Prompt: The kid is wearing a red shirt,
Input length: 24, Output length: 49

KV Cache: unlimited -> Generated: The kid is wearing a red shirt, a blue hat, and green
pants. The kid's shirt's color is red, and the kid's hat's color is blue. The kid's pants' color is
green. The kid is wearing

KV Cache: first3+last_20 -> Generated: The kid is wearing a red shirt, a blue hat, and
green pants. The kid's shirt's color is red. The kid's color is red. The kid's color. The kid's
red. Kid's red is. is

KV Cache: first3+last_10 -> Generated: The kid is wearing a red shirt, a blue hat, and
green pants. The kid's shirt's color is a white shirt with a black and red and white and
orange collar and blue and green with a black on each side of the

KV Cache: first3+last_5 -> Generated: The kid is wearing a red shirt, a blue hat, and green
pants. The kid's shirt's color is the most important part of the company is the home, so as

to be sure that you are on the home and you are
= | . 51

w [Example credit: Sungwon Kim]

[Prefix Caching
(or, prompt caching) N

Prefix Caching

Many prompts (e.g., from different users) share the same prefix.

<System> You are a helpful assistant ... <System>
<User> | want to know how can | use the coffee machine <User>

<System> You are a helpful assistant ... <System>
<User> Write the code for training my language model. <User>

<System> You are a helpful assistant ... <System>
<User> Help me revise my email ... <User>

=aq {
= T

L

53

Prefix Caching

Prefix caching means reusing the KV cache from a shared prefix
of tokens across multiple inference runs or generations, instead of
recomputing it.

<System> You are a helpful
assistant ... <System>

Most libraries (e.g., vLLM)
have this feature implemented: ,

enable_prefix_caching=True PrefixyCache

CPU or GPU

But, can we slice the activations to fit them in different GPUs?
- Yes, by Tensor Parallelism

54

KV cache
(LLM-Learned knowledge)

Prefix Caching

LLM engine
 Can _accelerate one user using o Chat history or
mUItlpIe |anguage mOdeIS_ - L8 Sine personal document
- Different users using one language LLM engine
models.
I/--
LLM engine KV cache
LMCache: '
Deliver KV
. f caches across
- LLM engine LLMs
':..,.1.3 Hxs HOPE \ /

"Visualization from: https://Imcache.ai/ LLM engine

=

Architecture change
to reduce IO

|

Multi-Query Attention (MQA)

= The idea is to reduce the memory-bandwidth cost of repeatedly loading the large
"keys" and "values" tensors.

= Key idea — have multiple queries, but just one dimension for keys and values.

Values

Keys

Queries

L

=

}..

Multi-head

{

i

Multi-query

!

Jaononn

Small PPL w/ MQA [Shazeer 2019]

Attention h dy,d, dff dev-PPL
multi-head 8 128 8192 29.9
multi-query 8 128 9088 30.2
multi-head 1 128 9984 31.2
multi-head 2 64 9984 31.1
multi-head 4 32 9984 31.0
multi-head 8 16 9984 30.9

57

https://arxiv.org/pdf/1911.02150
https://arxiv.org/pdf/1911.02150

MQA In practice

Independent queries, but shared keys and values

14 self.W_g = nn.Linear(embed_dim, embed_dim, bias=False) # Queries

15 self.W_kv = nn.Linear(embed_dim, 2 x self.head_dim, bias=False) # Shared Key and Value
16

17 self.out_proj = nn.Linear(embed_dim, embed_dim)

def forward(self, x):
batch_size, seq_len, _ = x.shape

Compute Queries (B, L, D) - (B, L, H, D/H) - (B, H, L, D/H)
Q = self.W_g(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

Compute shared Keys and Values (B, L, D) - (B, L, 2 x (D/H)) - (B, 1, L, D/H)
KV = self.W_kv(x).view(batch_size, seq_len, 2, self.head_dim).permute(2, 0, 1, 3)
K, V = KV[@].unsqueeze(1), KV[1].unsqueeze(1l) # Shared across all heads

Scaled Dot-Product Attention

attn_weights = torch.einsum("bhqd, bkhd—>bhgk", Q, K) / (self.head_dim %% 0.5)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)

output = torch.einsum("bhgk, bkhd—>bhqd", attn_weights, V)

Merge heads and apply output projection Scnpt
output = output.transpose(1, 2).reshape(batch_size, seq_len, self.embed_dim)

L= R return self.out_proj(output) 58

https://gist.github.com/danyaljj/27beda96053623a7499070fa4019c2a4

Grouped Query-Attention (GQA) | uaes o)

= An interpolation between “"multi-head” attention and “multi-query” attention.

Multi-head Grouped-query Multi-query

Values

- JUODOOOD U U U i}

—
{

(0000000 00000000 0E0000ON

= Simple knob to control expressiveness (key-query ratio) and inference efficiency

}
}
}
}
}
}

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023 59

Grouped-query

Grouped Query-Attention (GQA) e

= Does it actually work? Depends. DDDUDDDD
Output quality of various models; all these Inference speed as a function of GQA group size — 8
SA variants are on-par on quality. heads gives you inference speed as good as 1 head!
Model | WMT 'I'riviaQA @ AR AR R R R RRRRRIRRRIRRRRIRRRRURRRRIRRRTRABN
[0}
| BLEU F1 g 2 | aes MHA
MHA-Large | 27.7 782 AN ﬁ%‘;
MHA-XXL 28.4 81.9 &
MQA-XXL 28.5 81.3 £
GQA_S_XXL 28'4 81-6 = ?c-:(ii-)j-:'-i-’rni-:ﬂl:m FfieeSAEEEEEEEEEEEN
1 4 8 16 32 64
GQA groups

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023 60

Recap

= SA’s Al during inference is not good.
o We're doing a lot of IO relative to computations (KV drag).

= Sliding window attention: sparsifying attention pattern by looking at nearby things.

= MQA and GQA: sharing attention keys and values.

62

b

0 you the dimensions of my

latent embeddings?

Values

}
}
}
J
}
}
}

|

63

Low-Rank Key-Value Joint Compression

= Joint compress (project) keys and values to reduce KV cache:

Y Cached During Inference
Multi-Head Attention (MHA) ! Grouped-Query Attention (GQA) | Multi-Query Attention (MQA) ! Multi-Head Latent Attention (MLA)
Muiti-Head A . Query A | u-Query A M L A

N R RS REAR % N N R N]
SNN NN NRNN N N N N N i
\ W i
NN N NN NRNND N N § N N

et et T e .
.............
..............
...........

—.
I:,.-""
—-
—

(0000000

TOHNS H : DeepSeek-V2: A Strong, Economical, and Efficient
w Mixture-of-Experts Language Mode, 2024

g iz
-

.......
st

Latent KV

64

Low-Rank Key-Value Joint Compression

= Joint compress (project) keys and values to reduce KV cache:

KV DKV
k¢ =wUkel,
1rC —_ MTUVnKV

where cXV € R% is the compressed latent vector for keys and values; d.(< dxnp) denotes the KV
compression dimension; WPXV € R%*? js the down-projection matrix; and WK, WUV e Réwnxde
are the up-projection matrices for keys and values, respectively. During inference, MLA only

needs to cache XV, so its KV cache has only d.l elements, where [denotes the number of layers.

In addition, during inference, since WYX can be absorbed into W<, and WYY can be absorbed
into W, we even do not need to compute keys and values out for attention. Figure 3 intuitively
illustrates how the KV joint compression in MLA reduces the KV cache.

=1 | DeepSeek-V2: A Strong, Economical, and Efficient

L

Mixture-of-Experts Language Mode, 2024

65

MLA: KV-Cache size comparison

= MLA's KV cache size is equal to GQA with only 2.25 groups.
How about its performance? (vs. MHA and GQA)

Attention Mechanism KV Cache per Token (# Element) Capability
Multi-Head Attention (MHA) 2npdpl Strong
Grouped-Query Attention (GQA) 2ngdyl Moderate
Multi-Query Attention (MQA) 2dyl Weak
MLA (Ours) (de +dR)l ~ 3dyl Stronger

Table 1 | Comparison of the KV cache per token among different attention mechanisms. ny
denotes the number of attention heads, d;, denotes the dimension per attention head, I denotes
the number of layers, ny denotes the number of groups in GQA, and d. and d denote the KV
compression dimension and the per-head dimension of the decoupled queries and key in MLA,
respectively. The amount of KV cache is measured by the number of elements, regardless of the
storage precision. For DeepSeek-V2, d. is set to 4d, and d,’f is set to % So, its KV cache is equal

2
to GQA with only 2.25 groups, but its performance is stronger than MHA.

E-N
=y

L

DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Mode, 2024 66

MLA: KV-Cache size comparison

= MLA (DeepSeek-V2) shows better performance than MHA, but requires a significantly

L

smaller amount of KV cache.

Small MoE Small MoE

Large MoE Large MoE

Benchmark (Metric) #Shots | """/MHA w/MLA | w/MHA w/MLA
Activated Params - 2.5B 24B 25.0B 21.5B
Total Params - 15.8B 15.7B 250.8B 247 4B
KV Cache per Token (# Element) - 110.6K 15.6K 860.2K 34.6K
BBH (EM) 3-shot 37.9 39.0 46.6 50.7
MMLU (Acc.) 5-shot 48.7 50.0 57.5 59.0
C-Eval (Acc.) 5-shot 51.6 50.9 57.9 59.2
CMMLU (Acc.) 5-shot 52.3 53.4 60.7 62.5

Table 9 | Comparison between MLA and MHA on hard benchmarks. DeepSeek-V2 shows better
performance than MHA, but requires a significantly smaller amount of KV cache.

=1 | DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Mode, 2024

67

Quantization

Quantization: Mapping from high to low precision

In deep learning, this process lets models run faster with less memory by storing
weights/activations in lower precision (e.g., FP16 or INT8).

— Continuous Signal Quantized Signal

Quantization Error

&2 joHns H

L

70

Numeric Data Types: FP32

= 32-bit floating point number or FP32 (IEEE 754)

|

Sign: 1 bit
Range

|
:

Exponent: 8 bits Fraction/Mantissa: 23 bits

Precision

Number = (_1)sign X (1 + Fraction) X 2Exponent—127

W

71

Numeric Data Types: FP32 (example)

= This bit string corresponds to what number? 11000000110110000000000000000000

= Split first:
o Sign=1
o Exponent = (10000001), = (129),,

o 1+ Fraction: (1.10110000000000000000000), = (1.1011), =1+ 0.5+ 0.125 = 0.0625 = 1.6875

= So, in total: (—1)! x 1.6875 x 2(129-127) = _(6,75

N\ |

Sign: 1 bit Exponent: 8 bits Fraction/Mantissa: 23 bits

Number = (_1)sign X (1 + Fraction) X 2E><ponent—127

E-N i
e JOHNS
-

72

Floating Point Numbers: Range vs Precision

= Floating-point design is always a trade-off between range and precision
o and this trade-off is central to quantization and mixed-precision computing.

SERNRERER
1 N l

Exponent: 8 bits Fraction/Mantissa: 23 bits
Sign: 1 bit Range Precision
FP4 (E2M1)
FP4 (E1M2) FP4 (E3Mo)

—0 000000 —0—
—eo00e0ee— > 0 1 2 3 4 6

0 1 2 335
. —en-o—o ? o o>
r;rr.-.l- 01 2 4

73

Floating Point Numbers

Different floating-point formats used in machine learning, showing how they trade range and
precision based on how many bits are allocated to the exponent and fraction (mantissa).

Exponent Fraction
|IEEE 754 Single Precision 32-bit Float (FP32) P

NEREEREEN : .
|IEEE 754 Half Precision 16-bit Float (FP16)

il ; o
Google Brain Float (BF 16)

_ More range, less precision 8 7

Nvidia FP8 (E4M3)

RERRR 4 3 a

Range vs Precision

precision
(dist bet
_3 4638 two Lseiagnhcbeo_riﬁgw\?jges) 3 4638

' i, O .
FP32 min I o-0—| max

2 1

same

low distance = high precision clynamgc range
BF16 min { | max

high distanc_:_g__:__l_t_)_v.v precision
FP16 min I) o—] |[max
.2 N

-65504 65504

INT8 min I max
-127 0 127

dynamic range

(interval of representable numbers)

E-N
=

s https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

75

During training LLMs,
what numeric type Is used where?

Typical

Model Parameters BF16 / FP16

Activations BF16 / FP16
Gradients FP32
Co, Adammpy) P2
gthoerg';%"i”t BF16 / FP32

&9 JouNs H
L

Reduce memory use and training bandwidth
while maintaining adequate range

Efficient representation of large tensors
during forward/backward passes

Prevent precision loss when summing many
small updates

Maintain stable parameter updates across
steps

Preserve accuracy and reproducibility

BF16 preferred (same exponent range as FP32,
avoids loss scaling)

Some ops (e.g., softmax, attention) temporarily
use FP32 for stability

Down-cast to BF16/FP16 when applying updates

Typically 2-3x the memory of model weights

Mixed-precision checkpoints often store FP32
master weights

78

Example: LLama3 paper

GPU utilization. | hrough careiul tunming ot the parallelism conhguration, hardware, and software, we achieve
an overall BF16/ Model FLOPs Utilization (MFU; Chowdhery et al. (2023)) of 38-43% for the configurations
shown in Table 4. The slight drop in MFU to 41% on 16K GPUs with DP=128 compared to 43% on 8K
GPUs with DP-—64 is due to the lower batch size per DP group needed to keep the global tokens per batch
constant during training.

Numerical stability. By comparing training loss between different parallelism setups, we fixed several numerical
issues that impact training stability. To ensure training convergence, we use E gradient accumulation
during backward computation over multiple micro-batches and also reduce-scatter gradients in FP32 across
data parallel workers in FSDP. For intermediate tensors, e.g., vision encoder outputs, that are used multiple
times in the forward computation, the backward gradients are also accumulated in FP32.

& JOHNS HOPKINS The Llama 3 Herd of Models

https://arxiv.org/pdf/2407.21783

Example: LLama3 paper

* Positional embedding. We have chosen RoPE (Rotary Positional Embedding) (Su et al.
2021) as our preferred option for incorporating positional information into our model. RoPk
has been widely adopted and has demonstrated success in contemporary large language
models, notably PalLM (Chowdhery et al,, 2022; Anil et al,, 2023) and LLaMA (Touvror

in order to prioritize model performance and achieve
higher accuracy. |

E:_il‘;”.‘ Je ,I.N‘Hl.wh:lm Qwen tech report, 2023

80

https://arxiv.org/pdf/2309.16609

Terminology: “Full Precision”

= “Floating point” refers to how numbers are stored

= “Full precision” usually means 32-bit floating point (FP32) — the traditional
standard for numerical accuracy in deep learning and scientific computing.

Tom weanng loamwe

FIo_atlng Numeric format t_hat represents real _ FP32, FP16, BF16
point numbers using sign, exponent, mantissa
Full precision Highest-precision floating-point format FP32

commonly used in training

81

Linear Quantization

= Linear quantization maps continuous floating-point values to discrete integer
levels using a uniform step size.

32 FP
min | | | max

. .

= . 2-bit signed integer (int2)
et 82

Linear Quantization

I
= Linear quantization maps continuous floating-point values to discrete integer
levels using a uniform step size.

= The uniform step size is defined by a scale and zero-point.

Original Quantized Reconstructed
32-bit float 2-bit signed int 32-bit float

Zero point Scale

- -1) X 1.07 =

@ Jorns Horking How to find these numbers?

83

Linear Quantization

[
Original Quantized Reconstructed
32-bit float 2-bit signed int 32-bit float

- Z)XS

floating-point integer integer floating-point

&
m n Zero point Scale
I ER A 1 E1 1
r = (q

=
2 1

¥

JoHNS HOPKINS

84

Linear Quantization: Scale

= The top line (r) represents the original floating-point range.
= The bottom line (q) represents the guantized integer rang

F min 0 rmux
Floating-point
r range >
S L Tmax — Tmin
) XS — — _
Floating-point qmaX len
p Scale
min Z Imax
Zero point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

B JOHNS HOPKINS 85

https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877

Linear Quantization: Zero Point

= The top line (r) represents the original floating-point range.
= The bottom line (q) represents the guantized integer rang

Al

I’m:I . - 0 Fmax Tmin — S(qmin — Z)
—rtoating-poin Tmi
r range I > Z = Qmin — ngn
Z = round (L in
. S XS dmin = 75
. Floating-point
’, Scale
L e— = == = > "Round” because
. 7 G Z must be an integer
Zero point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

86

)

https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877

Linear Quantization: Zero Point

= In practice, weights are usually centered around zero.

= Hence, we can set Z=0.
centered 0.0
.. T
0) -0.5 1
min I } Imax
" .
min| | | max Weight distribution of first conv
0
e o layer of ResNet-5o.

ER 100

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

87

https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877

Linear Quantization: Zero Point

= In practice, weights are usually centered around zero.
= Hence, we can set Z=0.

Called absmax or absolute
maximum quantization

= This means that our formula for scale will be much simpler:

centered g — Tmax — Tmin
(|) .. : Gmax — Gumin
min I } Imax
‘A A’ . —
) I i | S L Tmln o "r‘max
min | { | max = A = —
0 ; Gmin — Qmin
......................... I........................:
. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

@ JOHNS 88

https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877

Quantization of LLMs

= What is an LLM?
o Weights
o Input
o Their confluence result in activations, and ultimately outputs.

= Weights are static and known in-advance. Q O

= Activations change based on input. X
1

Quantization of LLMs: Weight vs Activations

e waghis catons

Nature Static, known before inference Dynamic, varies with input and layer outputs
Timing Quantized offline (PTQ or QAT) Quantized on-the-fly during inference
Distribution Stable, near-zero symmetric Variable, often skewed with large outliers
Precision Lower (4—8 bit) Higher (8—16 bit) to preserve range

Zero Point Often symmetric (Z = 0) Often asymmetric (non-zero mean)
Common Methods GPTQ, AWQ SmoothQuant, ZeroQuant

R JOHINS TIOPKINS 90

Quantization of LLM Activations: Outliers

« The plot shows activation ranges (i.e., min—max spread) for each output
channel (dimension) in the first layer of MobileNetV/2.
« There exists many outliers in activations!

100 A

75 1

50 - \
25 -
{@ll"

Range

= %’l F F — % % = u [¥

T T

1234567 8 91011121314151617181920212223242526272829303132
Output channel index

|_{}.|
H—
ff
HH
iH
]
|
[}
H
H
HH
{1

ot - ¥

[
L

[
H

_25 .

_50 -

o ! Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel etal., ICCV 2019) 91

https://arxiv.org/abs/1906.04721
https://arxiv.org/abs/1906.04721
https://arxiv.org/abs/1906.04721

Quantization of LLM Activations : Outliers

« The plot shows activation ranges (i.e., min—max spread) for each output
channel (dimension) in the first layer of MobileNetV/2.

« There exists many outliers in activations!

- It's not just about having large range: these large numbers are rare but important.

1.0 4 \

0.5 1

0.0

—0.5

-1.0 1

- ~

~
-1.51 g N

08 ~00 10 e 12

i

Weight distribution of first conv
W e layer of ResNet-5o. 92

Quantization of LLM Activations:
Ignoring Outliers?

Ignoring the outliers (skipping them in quantization) significantly harms
performance after quantization in LMs.

[

Method .
\ —
[

—— LLM.int8()
8-bit baseline

—— 16-bit baseline //"

e
~

Mean zeroshot accuracy
o o
(o)}

o
IS

emergence of ——»

outlier features

w
8
&

0.3

I s
R RN A

Parameters
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022)

>)
o &)
2 S Q

[q
] H S
ol

95

https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339

Quantization of LLM Activations: LLM.Iint8()

= Keep outlier channels in 16-bit, quantize the remaining channels.

8-bit Vector-wise Quantization

]
i (1) Find vector-wise constants: Cu & Cy (2) Quantize (4) Dequantize E
: X *(127/C,) = X i
: X L2 el 127/C) = Xg Outs (C®C,) _
] W — = :
fﬁ ' 2 -1]-1 -1{0 \%;(127/(:\,\;) =Wy, 127*%127 u F16 1
; 3lo]3]2 0|2 ;
i 1]-1]1fo0 Al |2 (3) Int8 Matmul :
2 [45]-1[17]1 =1|@ i T re w e X W = Qut E
x0123632 20W ! C T 132 ;
137|183 0 0|2 i X :
8 T I T e A
-1|2
Fr1e 16-bit Decomposition
i (1) Decompose outliers (2) FP16 Matmul E
i _ i
E 25[17 W ><F16 WFla_ OUtFus L Out
IV 2 H FP16
[] Regular values ' 3?':: 3]-2 i
[] outliers E F16 e E
o] LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022) 97

https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339

Quantization of LLM Activations: LLM.Iint8()

= Under the hood, this calls bitsandbytes’implementation of LLM.int8 () which
automatically detects and handles outlier channels,

from transformers import AutoModelForCausallLM

model = AutoModelForCausallM. from_pretrained(
"meta-1lama/Llama-2-13b-hf",
load_in_8bit=True,
device_map="auto"

R JOHINS TIOPKINS 99

Quantization of LLMs: Recap

= Quantization maps high-precision numbers (FP32, FP16, BF16) to lower-precision
formats (FP8, INT8) to save memory and speed up computation.

= Used in both training and inference to reduce memory footprint and bandwidth.

= Main challenge: handling outliers in activations that can distort the quantization
range.

= Modern methods (e.g.,, SmoothQuant, LLM.int8()) mitigate outlier effects to
maintain accuracy.

100

Distributed

Training & Inference

Motivation

How much GPU memory (at least) do we need to perform inference/training?
(batch size=1, ignoring the KV cache and optimizer states)

Model Size Inference Memory Training Memory
(Llama 3 architecture) (~2x model size) (~7x model size)
8B 16GB 60GB
70B 140GB 500GB
405B 810GB 3.25TB

Source: https://huggingface.co/blog/llama31#inference-memory-requirements 104

Where did all the memory go?

Longer sequences require much more memory in training!

Meta-Llama-3.1-8B Meta-Llama-3.1-70B Meta-Llama-3.1-405B
1500 B0O0OOD
parameters
25k
gradients
6000
20k optimizer states
15k activations
4000

10k
2000 — m
_— >k
-~ F F

_— = = - -

07024 2048 4096 8192 16384 0'l024 2048 4096 8192 16384 o 1024 1024 2048 4096 8192 16384
Training Sequence Length (Number of Tokens)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

[Jr 0
ﬂir' II\'xHUh‘\ 105

Distributed Training and Inference

1. Naive Data Parallelism
2. Sharding Optimizer States (ZeRO, FSDP)
3. Model Parallelism (Tensor Parallelism, Pipeline Parallelism)

E-N
]
ol

107

=

Brief on GPU Operations for
Communicating Tensors]

NCCL: NVIDIA Collective Communication Library

= Pronounced "Nickel”!!
= NCCL provides routines to send and receive information within NVIDIA GPUs.
= NCCL provides the following collective communication primitives :

NVLink
o AllReduce o ReduceScatter PCl
o Broadcast o AlltoAll Shared memory
o Reduce o Gather T
ockets
o AllGather o Scatter infiniBand
Other networks

Documentation: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html#
Github: https://github.com/NVIDIA/nccl

557 JOHNS HOPKINS
1ﬁ : 1 i

109

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://github.com/NVIDIA/nccl
https://www.google.com/url?sa=i&url=https%3A%2F%2Fzhuanlan.zhihu.com%2Fp%2F789546130&psig=AOvVaw2jAjGYrPaNcs3sNCc_zSx5&ust=1761150625450000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCJCa6LzbtZADFQAAAAAdAAAAABAE

NCCL: NVIDIA Collective Communication Library

Frameworks (Tensorflow/Horovod, PyTorch, MXNet, ...)

| !

CUDNN CUBLAS
CUDA
NVIDIA GPUs

= |
55. unx H[H.hl“ﬂ 110

NCCL Operations: Reduce

= Nvidia Collective Communications Library (NCCL) - A library developed to provide
inter-GPU communications primitives (operations)

= Reduce: *Sums* over all *tensors* and stores it in a root GPU

‘rank0 { rankl i rank2 | rank 3 | ‘rank0 i rank1l i rank2 i rank 3 |
a a i e e ; | - (root) | |

in3 - out

qutﬂ] = sﬁmﬂﬂx[i]]l

) NCCL (NVIDIA Collective Communication Library): NVIDIA’s high-performance library for multi-GPU and multi-node
) Jons Hogsmmunication: https://docs .nvidia.com/deeplearning/necl/user-guide/docs/usage/collectives.html 111

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

= Broadcast: Duplicates one tensor to all GPUs

oy
b |

NCCL Operations: Broadcast

‘rank0 i rank1l i rank 2 | rank 3 |
5 | | (root) | |

i rank O | rank 1 | rank 2 | rank 3 |

out

out

out

out

outfi] I: in[i]

112

Broadcast vs Scatter

0O00® @000

\\é// \\6//

broadcast scatter

Gather vs Reduce

=

Back to distributed training!

|

Naive Data Parallelism

Dataset

Model
Copy

First, we want to shard the dataset and feed them into different GPUs
How do we update the parameters?
125

Naive Data Parallelism

Each GPU compute gradient with a single shard of data

[Gradienta] [Gradient 2] [Gradient 3]

Model
Copy

126

Naive Data Parallelism

Vs

| Gradient3 One GPU accumulates the gradients
| Gmelents | (reduce in torch.distributed)
Gradient 1

Model
Copy

Model
Copy

https://docs.pytorch.org/docs/stable/distributed.html

127

https://docs.pytorch.org/docs/stable/distributed.html

Naive Data Parallelism

And send the accumulated gradient to all other
GPUs (broadcast in torch.distributed)

Gradient 3 [Gradient 3 Gradient 3
Gradient 2 A A { Gradient 2.l > Gradient 2
Gradient1 [Gradienta Gradient1

Model
Copy

SV I | 128

What is wrong with Naive DP }

- In naive DP, each GPU holds a full copy of everything Model
related to training — not just the model parameters. “opy
param
Model FP16/BF16 2 The half-precision weights used in For each parameter, you
parameters forward/backward passes actually need five versions,
: The half-precision gradients which together take 16 bytes
Master Full-precision version used for stable
weights o 4 updates in mixed-precision trainin
el P P g That's why naive DP quickly
AR L | ey 4 Tracks running average of gradients runs out of memory as model
moment (m) size grows
Adam Track : . q
second P32 4 racks running average of square Memory/GPU for a 7.cB model:

gradients

moment (v) 7.5B * 16 bytes = 120 GB!

Naive DP: Summary

« Each GPU holds a full copy of the model. The training data is split into
batches distributed across GPUs; each computes gradients locally, then
gradients are averaged (e.qg., via all-reduce) before updating model
parameters.

* Pros: Simple, widely supported.

« Cons: Model parameters and optimizer states are fully replicated — high
memory cost, limiting scalability.

m What's Sharded Approx bytes / param Memory / GPU (7.5 B params)

Naive DP None 16 B 120 GB

U JOHNS FIOPKINS 132

Naive DP — Requires too much memory!

T
. Parameters
Gradients

. Optimizer States

GPU1
] o)

ST, | . - - - - - -

51-;. UII\'\HLHh

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

133

https://arxiv.org/abs/1910.02054

ZeRO: Sharding Optimizer States

« ZeRO (Zero Redundancy Optimizer) reduces memory use in distributed
training by sharding model states across GPUs instead of replicating them.

- Stage 1: shard optimizer states

- Stage 2: + shard gradients

« Stage 3: + shard model parameters
« Result: Dramatically reduced memory use. Integrated to DeepSpeed and PyTorch FSDP.

m What's Sharded | Approx bytes / param Memory / GPU (7.5 B params)

Note: “Stage x” means a variant, not a step!

Naive DP None 16 B 120 GB
ZeRO-1 Optimizer states ~ 6-7B 50 GB
ZeRO-2 + Gradients ~5B 40 GB
ZeRO-3 + Parameters ~ 2B 15GB

¥/ jorns H ' ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 134

L

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: Sharding Optimizer States

« Only optimizer states are partitioned (sharded) among GPUs:

« Each GPU keeps just 1/N of the optimizer states, where Nis the
number of GPUs.

* Model parameters and gradients are not sharded (as in naive DP).

« When it's time to update parameters, GPUs communicate to access the
parts of the optimizer state they need, apply updates, and synchronize the
results.

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 135

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: Sharding Optimizer States

. Parameters
. Gradients

. Optimizer States

PU1 PU 2
e i
QF SR ” v ZeRO: Memory Optiins Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 136

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Gradient computation

Each GPU compute gradient with a single shard of data.
They're later communicated to other GPUs to accumulate.
(The same as naive DP)

[Gradient 1] [Gradient 2] [Gradient 3]

"w'i'-‘ ' : ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 137

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

oy
ol

Upon one round of update, we’ll have optimizer states.

Assuming that

* GPUa stores optimizer states for parameters A,
* GPU2 stores optimizer states for params B,

* GPU3 stores optimizer states for params C

[Optimizer States 1] [Optimizer States 2] [Optimizer States 3]

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

138

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Split / shard the optimizer states into 3 parts!

(] aoa o] e]

[Optimizer States 1] [Optimizer States 2] [Optimizer States 3]

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 139

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Each GPU accumulates gradients of the params whose optimizer
states the GPU is storing (reduce_scatter in torch.distributed)

A B C
— — —

A B C
N S —

A B C

s ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 140

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

GPUz : update params A; GPU1 can only update
GPU2: Updates Params B; params A since it only stores
GPU3: Updates params C. optimizer states of params A.

[Updated A]

[Updated B]

[Updated C]

s ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al.,, 2019) 141

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Each GPU sends updated params to every other GPU.
Finishing optimizer.step(). (all_gather in torch.distributed)
After all_gather, every GPU has an updated copy of the model

, Updated A | Updated A \ Updated A J
' Updated B | \ Updated B J | Updated B |
, Updated C | \ Updated C) \ Updated C J

':w'i'- - ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 142

https://arxiv.org/abs/1910.02054

Summary: ZeRO 1

It shards only the optimizer states (e.g., Adam’s m, v) across GPUs.

= While model parameters and gradients remain fully replicated.

= Each GPU individually perform gradient updates

= This removes redundant copies of the heaviest memory component, giving roughly a
1 / N reduction in optimizer-state memory (for N GPUs) with minimal-ish
communication overhead.

= Basically free! (Compared to Naive Data Parallelism)

145

ZeRO Stage 2: Sharding Gradients

. Gradients

. Optimizer States

PU 1 PU 2
) 2 1(3=

E‘;I? K R HomEe ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

147

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

* Model params are replicated. But we’re going to shard gradients + optimizer states.
+ Forward pass: Each GPU holds a full copy of the model parameters (as in Stage 1). No extra
communication happens here.

[Forward activations] [Forward activations] [Forward activations]

Model
Copy

e - ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 148

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Backward pass:

oy
ol

Each GPU computes gradients for its local batch.

Instead of storing a// gradients, each GPU keeps only its shard of the gradient.

As soon as the gradients of layer X are computed during backprop, shard them across GPUs.
This uses reduce-scatter operation.

gnia

[Gradient of layer X] [Gradientoflayerx]

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 149

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Backward pass:

oy
ol

Each GPU computes gradients for its local batch.
Instead of storing a// gradients, each GPU keeps only its shard of the gradient.

As soon as the gradients of layer X are computed during backprop, shard them across GPUs.
This uses reduce-scatter operation incrementally during backpropagation, layer by

layer, rather than all at once.

)] (It

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 150

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Optimizer step:
« It updates only its own parameter using its shard of grads + optimizer states.

([Params A | [ParamsA | [ParamsA
(ParamsB | (ParamsB | [ParamsB |
[ParamsC | (Params C | (ParamsC)

)] (It

Model
Copy

e - ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 151

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Optimizer step:
« It updates only its own parameter using its shard of grads + optimizer states.

([Params A | [ParamsA | [ParamsA
(ParamsB | (ParamsB | [ParamsB |
[ParamsC | (Params C | (ParamsC)

)] (It

Model
Copy

e - ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 152

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Optimizer step:

« It updates only its own parameter using its shard of grads + optimizer states.

« Parameters are still replicated, so updates must be broadcast after each step to keep all
GPUs in sync. (done with all-gather)

([Params A | [ParamsA | [ParamsA |
(ParamsB | (ParamsB | [ParamsB |
[ParamsC | (Params C | (ParamsC)

)] (It

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 153

https://arxiv.org/abs/1910.02054

Summary: ZeRO Stage 2

= Builds on Stage 1 by sharding gradients in addition to optimizer states.
= Memory savings: no duplicate gradients or optimizer states.

= Trade-off: slightly higher communication overhead each step.
o Communication is not bad since it's amortized!!

m What's Sharded Approx bytes / param Memory / GPU (7.5 B params)

Naive DP None 16 B 120 GB
ZeRO-1 Optimizer states = 6-/B 50 GB
ZeR0O-2 + Gradients ~ 5B 40 GB

50

= HMNS HIOPEING 154

ZeRO-3 (aka FSDP): Shard Everything!
H B

- Parameters
- Gradients

- Optimizer States

https://arxiv.org/abs/1910.02054

ZeRO Stage 3

« Shards everything — parameters, gradients, and optimizer states — across GPUs.

« Provides maximum memory savings (~1/N per GPU), enabling extremely large
models.

157

ZeRO Stage 3: How it works (simplified)

I
When a layer is needed for computation, its parameters are All-Gathered from all GPUs just in time.
Layer n-1 | |
|] - All-gather
Layer n O O &4 Forward pass
[|] [||] [|| Flush parameters
Layer n+1 | |

Parameters

53 lOHNS

=) [OH™S HOPEIMNS .

ZeRO Stage 3: How it works (simplified)

After computing gradients, those gradients are Reduce-Scattered back to distribute and free memory.

GPU,; e GPU,; E GPUy

Layer n-1 |
|] | |
Reduce-scatter
C (. 1 Cc O -
Layer n f f * Backward pass
O 0O 0O
All-gather
] |] |
Layer n+1 | |

Parameters

B2 IoHs Howk

5 JOHNS HOPKINS 159

ZeRO Stage 3

oy
ol

Shards everything — parameters, gradients, and optimizer states — across GPUs.

Provides maximum memory savings (~1/N per GPU), enabling extremely large
models.

Comes with higher communication cost, since parameters must be gathered
repeatedly during training.

160

Communication Costs

Naive Data Parallel: 2x parameter (all_reduce)

- ZeRO-1: ~1x parameter (reduce_scatter + all_gather) - this is free! Might as well
always use it.

- ZeRO-2: 2x parameter (reduce_scatter + all_gather + overhead) - this is (almost)
free! (the communication is amortized)

- ZeRO-3: ~3x parameter — which can be quite slow.

161

Memory consumption is not static

* You can use PyTorch profiler helps visualize GPU memory usage across a training.

Memory profile of the first 4 training steps of Llama 1B

70

Memory reserved (max)
— — Memory requested (max)

Bl— — — — = = & — — m - m s m s s s s s s s s s s e e nknown
Autograd detail
50 Gradient
Activation
Optimizer state
40 mmmm Parameter
. 5 30
(1) During the
forward step, 20 I i i i

the activations /

occupy most of

the memory
o 1 2 3 oD 4 5 6 7
(2) As the backward pass propagates, the stored (3) We perform optimization, during which we need
activations used to compute the gradients are all the gradients, and then update the optimizer
progressively cleared. But gets more memory. states before we start the next forward pass.

163

-

Source: https://nanotron-ultrascale-playbook.static.hf.space/index.htmi

Memory consumption is not static

* You can use PyTorch profiler helps visualize GPU memory usage across a training.
Memory profile of the first 4 training steps of Llama 1B

70

This also explains why
your training in step 1

Memory reserved (max)
— — Memory requested (max)

B e e P e Unknown
may SUCCGSS and get Autograd detail
. Gradient
OOM only in later steps!! | =° Activation
Optimizer state
40 s Parameter
5 30
20 l . l l
10
0
FWD BWD OPT
o 1 2 3 4 5 6 7

Seconds

Because of the build-up of the optimizer states, the peak memory for step 2 onwards is higher!

[e | i
L]

v Source: https://nanotron-ultrascale-playbook.static.hf.space/index.htmi 164

Memory consumption is not static

You can use PyTorch profiler helps visualize GPU memory usage across a training.

Memory profile of the first 4 training steps of Llama 1B
70

This also explains why
your training in step 1
may success and get
OOM only in later steps!!

Memory reserved (max)
— — Memory requested (max)

L i il e Unknown

Autograd detail

Gradient

Activation

Optimizer state
s Parameter

| | | |
FWD BWD OPT
1 2 3 4 5 6 7

Seconds

In this first step, the PyTorch caching allocator does a lot of prep

work, preparing memory allocations so that the subsequent steps
don’t have to search for free memory blocks, which speeds them up.

the first step looks different: the
activations increase quickly and then
plateau for a while. Why?

Source: https://nanotron-ultrascale-playbook.static.hf.space/index.htmi 165

Where did all the memory go?

So far, we dealt with the optimizer states
but what about the activations?

Meta-Llama-3.1-8B Meta-Llama-3.1-70B Meta-Llama-3.1-405B
15 B0O0O
B parameters
25k
W gradients
6000
£ 1000 20k optimizer states
o
E 4000 15k I activations
E
fia)
o 500 10k
2000 mm
— ok
e B 8§ B N
L& &8 8§ & [— —— — — ol Il BN N e
1024 2048 4096 B192 16384 1024 2048 4096 8192 16384 1024 2048 4096 8192 16384

Training Sequence Length (Number of Tokens)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

'qll." -.:II\'xHH BIMNS 166

Tensor Parallelism

We can either cut
the weights W into
two columns
(Column Parallelism)

or into two rows
(Row Parallelism)

(2,2)

(4, 2) (4, 2)

E,. OHNS I! WKINS 167

Column-wise Tensor Parallelism

X Y_0
0|1 w-o 20
10 80
@, /V[i 140 Y
Y i 20 | 40
(4,1) 80 | 180
Y1 140|320
W_1 40 200|460
Cuts the weight 30 180 (4,2)
matrix W into 2 ___@__> 40 320
columns
| 2.1) 460
(4.1)

Column linear

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html
168

g L |
-

L

Row-wise Tensor Parallelism

X_0

Y_0
0 0o]|o
W_0
20 | 60
10 | 30 y
40 120
(1,2)
60 |180 20 | 40
(4,2) 80 |180
-1 140|320
| 200 | 460
. w_1
Cuts the weight 60 |120 2)
matrix Winto 2 200 s
rows (1,2)
140|280
7
(4.2)
(4.1)
Row linear

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html

g L |
-

) JOHNS HOPKINS 169

Computing matrix

Tensor Parallelism multiplications without

— storing internal activations

(e.g. xW1)
W1
X w2 In Feed-Forward Networks,
EEEE Y
- . , B _ - The.dimension of |
%%H% W1 is usually 4x the hidden
dimension.

-~ EEEE-F - B
- Column-wise Row-wise * -

I'.Ill'l.1|I ey | WEING
1['." | ||.\ HOPKIM 170

Tensor Parallelism: Llama Feed-Forward

self.wl = ColumnParallelLinear(

dim, hidden_dim, bias=False, gather_output=False, init_method=1lambda x: x
)

self.w2 = RowParallelLinear(

hidden_dim, dim, bias=False, input_is_parallel=True, init_method=1lambda x: x

)

self.w3 = ColumnParallelLinear(

dim, hidden_dim, bias=False, gather_output=False, init_method=1lambda x: x

def forward(self, x):
return self.w2(F.silu(self.wl(x)) x self.w3(x))

activations are element-wise operations, can be parallelized

Source: https://github.com/meta-llama/llama/blob/main/llama/model. py

171

Tensor Parallelism: Llama Attention

Column Parallel for Query, Key and Vector and Row Parallel for attention output

self.wq = ColumnParallelLinear(

)

args.dim,

args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=1lambda x: x,

self.wk = ColumnParallelLinear(

)

args.dim,

self.n_kv_heads * self.head_dim,
bias=False,

gather_output=False,
init_method=1lambda x: x,

self.wv = ColumnParallellLinear(

args.dim,
self.n_kv_heads * self.head_dim,
bias=False,

gather_output=False,
init_method=1lambda x: x,

self.wo = RowParallelLinear(
args.n_heads x self.head_dim,
args.dim,
bias=False,

input_is_parallel=True,

init_method=1ambda x: X,

Source: https://github.com/meta-llama/llama/blob/main/llama/model. py

172

Summary so far

- Data Parallelism
- Naive Data Parallelism
- NCCL Operations
(reduce, all_reduce, reduce_scatter, broadcast, all_gather)
- ZeR0O-1, ZeRO-2, ZeRO-3
- Tensor Parallelism
- Row-wise Tensor Parallelism
- Column-wise Tensor Parallelism

173

Tensor Parallelism

Memory Usage for 70B Model

Mo Parallelism (TP-1) TP=8 TP=16

o N N

120

100 B Model Parameters

80 B Gradients

. T T T

60 Optimizer States

40 B Activations

Memory Usage (GB)

20

I S s
0 I N N
1024 4096 16384 1024 4096 16384 1024 4096 16384
Sequence Length Sequence Length Sequence Length

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

@ o Horins 174

Throughput Scaling of Tensor Parallelism

Throughput Scaling with TP (3B Model) Maximum Batch Size per TP Value
20 i
I 10.8% Max Batch Size 20
W Performance Drop
|-12.2% o
= = B Tokens/sec/GPU
& 10k v 15 16
O S
) 42.7% =
u m 12
W g 10
5 =1
k= 5k E B
}E 65.6% ::é 5
=
N ’
0] 0
2 4 8 16 32 2 4 8 16 32
Tensor Parallelism (TP) Tensor Parallelism (TP)

A large drop in throughput when scaling beyond 8 GPUs (one node)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
Ef] JOHNS HOPKINS 175

Throughput Scaling of Tensor Parallelism

Communication Bandwidth by Number of Nodes (size=256MB)

== AllReduce
400 436.0 AllGather

ReduceScatter
361.

300

200

Bandwidth (GB/s)

160.1
100
ac.g T
64,9 ,
0 329
1 2 4 8 16 32 64

Mumber of Nodes

Throughput drops significantly once we go beyond one node!

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html

E-N
oy
ol

176

Pipeline Parallelism: The idea

Splitting the model’s layers across multiple GPUs.

« Then pipelining the forward and backward passes so all GPUs stay busy.

* For example: Device 3
« [GPUO] layers 1-6
- [GPU1] layers 7-12 Device 2

« [GPU2] layers 13—-18
« [GPU3] layers 19-24

Device 1

Device 0

- Execution flow: outputs from one device's chunk
are passed sequentially.

. Benefit: reduces per-device memory load by distributing model weights.17

Loss
T~
F. - B
$ v
F: - B:

i '
F, B,
1 e
Fo ——— B.
Gradients

7

Pipeline Parallelism

« Limitation: sequential dependency causes idle periods
("pipeline bubbles™) where some devices wait for others’ results.

Fo B.

Fo

Fo

Fo

B.

B.

Update

Update

Update

B.

Update

Each GPU is only working for 1/PP =% of the time!

|dle/Work ratio=pp—-1=3

Device 3

; 201 Device 2

Device 1

Device 0

" T~
= - B
$ v
£ - B.
1 ¥
F. B,
o e
Fo ——— Bo

7

Gradients

178

https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965

Pipeline Parallelism: Improvement

Solution: Microbatching splits the global batch into smaller sub-batches
processed in a staggered manner.

Gradients from all microbatches are accumulated afterward.

Result: better GPU utilization (smaller bubbles), though not fully eliminated.

Fso | Fs1 | Faz | Fss| Bss | Bsz | Bss | Bso Updite

Fzo | Fa1 | Faz | Fas Bos | Bos | Bt | Buo Updite

Fio | Fus | Frz | Fus Bis | Biz | Bui | Buo Updiate
Foo | For | Foz | Fos [Bubble j Bos | Boz | Bos | Boo | Update

Idle / Work Ratio=PP-1/M=3/ 4

v | GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurlPS 2019) 180

https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965

Pipeline Parallelism

A cleverer version of AFAB: 1 Forward 1 Backward (1F1B)
|dea: Do backward as early as possible, releasing activations on the fly

GPU

1 5 2 6 3 7/4 8 5 I7I89101112-91310

—

12341.2.354657687. -91011129I10I1113

171 | 2/2 33 4 4 5 5 6 6 7|7 8 8 9 9 10 10 11| 11 12| 12

Backward pass Device idle

Roughly the same Idle/Work Ratio but less memory
(as you only need to store p=4 activations rather than m==8)
GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurlPS 2019)

55;.’-‘ L‘)II\'\HLHM‘\H 181

A W N

Time —»

https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965
https://arxiv.org/pdf/1811.06965

Pipeline Parallelism Throughput

[]
Throughput Scaling with Pipeline Parallelism (1F1B schedule)
Number of Microbatches = PP Size - 1 Number of Microbatches =32
16000 - B Tokens/sec/GPU 16000 1 W Tokens/s/GPU
14000 1 W Performance Drop 14000 - [Performance Drop
12000 -+ 12000 1
g 10000 - é 10000 -
2 8000 - Z 8000
L g
o o
P 6000 - = 6000 4
4000 A 4000 A
2000 - 2000 A
0 -

2 4 8 16 32 2

4 8 16 2
Pipeline Parallel Size

Pipeline Parallel Size

A small drop in throughput when scaling beyond 8 GPUs (one node)

s7omsions but alarge drop as we increase the microbatch number -

Interleaving Pipeline Parallelism (LLama3)

[]
GPU

1

2

3

, ’
Ba<':kward pass Device idle

(first layers)
‘;.’-! c~..|<|I\: |.!I:H KINS 183

Interleaved Pipeline Parallelism (DeepSeek)

Device 0|0

-

Device 1
Device 2
Device 3
Device 4
Device 5
Device 6

~
©

o= |n|w
[
IS
()}
o
o
~

2| 3] |a 5 || o]s

© [N ||~
©

© |© | v

1 2 3 4 0 [5 1 |6

7

8

9

0 1 2 0 |4 1156

ol [1] [2]ofos] 1] [4 2 |5

6

7

8

9

o| [1]o]o]2]1]1]3 2 | 4

3

5

6

Device 7 |

=l (=R =R {"]
o

ololof1]1]1]2]2]2]3] s 4

N

5

6

7

8

Time ~

D Forward :' Backward l:l Backward for input D Backward for weights I:I Overlapped forward & Backward

backprop for weights (blue) can be computed at any time!
We fill in the bubble with weight back propagation.

184

Pipeline Parallelism, in practice

I
« In torch, you can define your model as a sequence of layers and wrap with
torch.distributed.pipeline.sync.Pipe

from torch.distributed.pipeline.sync import Pipe

import torch.nn as nn

model = nn.Sequential(
nn.Linear(1024, 4096),
nn.RelLU(),
nn.Linear(4096, 1024)

model = Pipe(model, chunks=4, devices=['cuda:0', 'cuda:1'])

57 JoHNS HOPKINS
v https://docs.pytorch.org/docs/stable/distributed.pipelining.html 185

https://docs.pytorch.org/docs/stable/distributed.pipelining.html

Summary

Naive Data Tensor Parallel | Pipeline Parallel
T TS P P Teror el s

Split /ayers of

Replicate full Shard Shard optimizer Shard optimizer Split tensors
Core . - : oy the model*
. model; split optimizer states + states + gradients within layers
idea i across GPUs
data. states. gradients. + parameters. across GPUs. :
sequentially.
Memor Lo (71 Eoue; e Minimal/no Low—
foot rirzlt Very high optimizer optimizer/grad redundanc moderate Moderate
P redundancy) redundancy) y
Ease of Complex Moderate
use Very easy Easy Moderate More complex (custom (microbatch
kernels) tuning)
Used for Training only Training only Training only Training only Training + inf Training + inf
Typical Often + Paired with Often w/ TP or Combined with TP Paired with PP Paired with TP
combo ZeRO DP PP + PP (3D) + ZeRO

E-N
]
-

192

Distilling the knowledge of

larger models

Distillation

Knowledge
andfor
capabilities of
a larger model

small model

202

Revisit: Standard Training (NLLloss)

prefix: The strange case ___

groundtruth: of

Loss = -log p(of)

-1.6 1

|
-
©

|
N
o

!

|
g
[N}

|
N
i

L

Next Token Distribution (Log-Probability)

= Cross Entropy(y_pred,
groundtruth)

','.:". [OHNS HOPEINS
TR

Log-Probability

|
N
o

|

|
N
o0

|
w
=)

|
w
[N

of that was the a to he in is
Token (Ordered by Probability)

and

203

Revisit: Standard Training (NLLloss)

-1.6 1

prefix: The strange case ___
groundtruth: of

|
-
©

|
N
o

!

|
g
[N}

loss = -log p(of)

Next Token Distribution (Log-Probability)

Log-Probability
| | | |
w N N N
o 0 o I

|
w
[N

557 JOHNS HOPKINS
1rf : 1

of that was the a to he in is
Token (Ordered by Probability)

and

204

Log-Probability

Revisit: Standard Training (NLLloss)

—
loss = -log p(of) = Cross Entropy(groundtruth, y_pred)

Next Token Distribution (Log-Probability)

Next Token Distribution (Log-Probability)
04
-1
Z
-2 4 =
re
o
=}
[=}
a
[=
o
=34 =
—4 4
-5
of he was that H in a to and the
Token (Ordered by Probability) of that was the a to . .he
Token (Ordered by Probability)

Groundtruth y_pred
(one-hot)

[e | ¥ I
e [OHNS HOPEITNS
v

205

Knowledge Distillation

KD loss = Cross Entropy(y_large, y_pred)

Next Token Distribution (Log-Probability)

~1.5 4

Log-Probability
o
=)

|
N
w

-3.04

that a he and is was to
Token (Ordered by Probability)

Large model next token

probs (y_large)

[e | ¥ I
e [OHNS HOPEITNS
v

of

the

Log-Probability

-1.64

-1.84

=2.0

=2.2

-2.4

-2.64

-2.84

-3.04

-3.2 1

Next Token Distribution (Log-Probability)

of that was the a to he
Token (Ordered by Probability)

small model next token probs

(y_pred)

206

Knowledge Distillation

Step 1: Initialize teacher
model with a large and
capable model

Step 2: Feed input data to
both student and teacher
(freezed)

E-N i
e JOHNS
-

Input
Data

Pre-trained Teacher
Network

Trainable Student
Network

Zteacher

Z.\‘tutlcnt
—_—

Step 3: Use teacher
outputs to train student

(Cross Entropy)

Knowledge
Distillation

207

What if the teacher is Proprietary (GPT)?

Step 1: Initialize teacher
model with a large and
capable model

Step 2: Feed input data to
both student and teacher
(freezed)

E-N I
e JOHNS
-

Input
Data

Pre-trained Teacher
Network

Trainable Student
Network

Zteacher

Knowledge

Z.\‘tutlcnt ol :
O — Distillation

Step 3: Use teacher
generations (instead of
outputs) to train student!

208

Log-Probability

Revisit: Standard Training (NLLloss)

—
loss = -log p(of) = Cross Entropy(sampled text, y_pred)

Next Token Distribution (Log-Probability)

Next Token Distribution (Log-Probability)
04
-1
Z
-2 4 =
re
o
=}
[=}
a
[=
o
=34 =
—4 4
-5
of he was that H in a to and the
Token (Ordered by Probability) of that was the a to . .he
Token (Ordered by Probability)

Sampled output y_pred
(one-hot)

[e | ¥ I
e [OHNS HOPEITNS
v

209

What works better (a study in 2016)

Model BLEUK:1 AK:l BLEUK:5 AK:5

English — German WMT 2014

Teacher Baseline 4 x 1000 (Params: 221m) 17.7 — 19.5 —
Baseline + Seq-Inter 19.6 +1.9 19.8 +0.3

Student Baseline 2 x 500 (Params: 84m) 14.7 — 17.6 —
Word-KD 154 +0.7 17.7 +0.1

Use teacher log-probs

Seq-KD \\ 18.9 +4.2 19.0 +1.4

Use teacher generations

Seqguence-L evel Knowledge Distillation (Kim & Rush, EMNLP 2016)

SV H 210

https://aclanthology.org/D16-1139/
https://aclanthology.org/D16-1139/
https://aclanthology.org/D16-1139/

Knowledge Distillation

- Train student (usually smaller model) on the output of a teacher (usually
a larger model)

- The output can be log-probabilities or sampled outputs

- Effective in "distilling" the knowledge of large models to smaller ones.

211

Model
Serving

In-flight batching

LLMs handle diverse workloads (chat, summarization, code generation,
etc.) with highly variable output lengths, making batching difficult.

Traditional batching struggles because some requests finish much earlier,
leaving GPU resources idle.

In-flight (continuous) batching addresses this by dynamically managing
active requests.

During generation, completed sequences are immediately evicted from the
batch.

New requests are inserted into available slots without waiting for others to
finish.
This allows continuous execution across iterations of model inference.

213

Speculative Inference

« Speculative inference (aka speculative sampling, assisted generation, or
blockwise parallel decoding) accelerates LLM generation by partially
parallelizing token prediction.

« Standard autoregressive decoding is sequential—each token depends on all
prior ones.

« Core idea: use a smaller, faster “draft” model to predict several future
tokens ahead of time.

Blockwise Parallel D ing for D Autoregressive M [s, 201 214

https://arxiv.org/abs/1811.03115

Speculative Inference

« The larger “verification” model then checks these draft tokens in parallel.

« If the verifier's outputs match the draft’s predictions, those tokens are
accepted immediately.

« If a mismatch occurs, tokens after the first disagreement are discarded,
and a new draft is generated

L T
° Th|s process reduces Predict ‘I saw a dog ride] in the bus
the number Of /_\‘ ..
sequential verification steps. Verity [saw a dog ride| in v
|I saw a dog ride iﬂe v i?;::;ﬁgl

v 3 Blockwise Parallel Decodina for Deep Autorearessive Models, 201 215

https://arxiv.org/abs/1811.03115

https: //www.tensoreconomics.com/p/lim-inference-economics-from-
first?utm source=substack&utm medium=email

E:_i":”‘ y |I\a|h.1.-h:.\~ 216

https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email
https://www.tensoreconomics.com/p/llm-inference-economics-from-first?utm_source=substack&utm_medium=email

VERY GOOD: Incorporate

https://arxiv.org/pdf/2502.17129
Here are some topics:

— KV cache optimization

- memory management

217

https://arxiv.org/pdf/2502.17129

	Slide 1: LM Efficiency
	Slide 2: Our models are getting larger!
	Slide 3: And consumes a lot of data!
	Slide 4: Reasoning models solving long tasks
	Slide 5
	Slide 6: Diversion: Floating-point Ops: FLOPS
	Slide 7: FLOPS of Matrix Multiplication
	Slide 8: Quiz: thinking about computations
	Slide 9: Computations in Self-Attention Block
	Slide 10: Computations in Self-Attention Block
	Slide 11: The bottlenecks
	Slide 12: Recap
	Slide 13
	Slide 14: Q: Pulse Check: What is a KV-Cache?
	Slide 15: Self-Attention During Inference
	Slide 16: Self-Attention During Inference
	Slide 17: Self-Attention During Inference
	Slide 18: Self-Attention During Inference
	Slide 19: Self-Attention During Inference
	Slide 20: Self-Attention During Inference
	Slide 21: Self-Attention During Inference
	Slide 22: KV-Cache for reducing inference redundancy
	Slide 23: Quiz: KV-Cache
	Slide 24: KV-Cache size
	Slide 25: Q: Where do we store the KV Cache?
	Slide 26: Who has played w/ KV-Cache in practice?
	Slide 27: KV-Cache in practice
	Slide 28: KV-Cache in practice
	Slide 29: KV-Cache in practice
	Slide 30: KV-cache for knowledge intensive tasks
	Slide 31: Recap
	Slide 32: Decoding Computations
	Slide 34: Summary: Computational Complexity of Transformers
	Slide 35
	Slide 36: Diversion: Arithmetic Intensity
	Slide 37: Quiz
	Slide 38: Arithmetic Intensity: An example
	Slide 39: Quiz
	Slide 40: Arithmetic Intensity of Training Self-Attention
	Slide 42: Self-Attention Cost of Computation During Incremental (Autoregressive) Generation
	Slide 43: KV-Cache drag
	Slide 44: Sparse / sliding window attention
	Slide 45: Quiz
	Slide 46: Terminology: “Eviction”
	Slide 47: Terminology: “Eviction”
	Slide 48: Examples of Last-only window
	Slide 49: Sliding Window Attention with “Sinks”
	Slide 50: Sliding Window Attention with “Sinks”
	Slide 51: Examples of Caching the ”sinks” (last+first)
	Slide 52
	Slide 53: Prefix Caching
	Slide 54: Prefix Caching
	Slide 55: Prefix Caching
	Slide 56
	Slide 57: Multi-Query Attention (MQA)
	Slide 58: MQA in practice
	Slide 59: Grouped Query-Attention (GQA)
	Slide 60: Grouped Query-Attention (GQA)
	Slide 62: Recap
	Slide 63
	Slide 64: Low-Rank Key-Value Joint Compression
	Slide 65: Low-Rank Key-Value Joint Compression
	Slide 66: MLA: KV-Cache size comparison
	Slide 67: MLA: KV-Cache size comparison
	Slide 69
	Slide 70: Quantization: Mapping from high to low precision
	Slide 71: Numeric Data Types: FP32
	Slide 72: Numeric Data Types: FP32 (example)
	Slide 73: Floating Point Numbers: Range vs Precision
	Slide 74: Floating Point Numbers
	Slide 75: Range vs Precision
	Slide 78: During training LLMs, what numeric type is used where?
	Slide 79: Example: LLama3 paper
	Slide 80: Example: LLama3 paper
	Slide 81: Terminology: “Full Precision"
	Slide 82: Linear Quantization
	Slide 83: Linear Quantization
	Slide 84: Linear Quantization
	Slide 85: Linear Quantization: Scale
	Slide 86: Linear Quantization: Zero Point
	Slide 87: Linear Quantization: Zero Point
	Slide 88: Linear Quantization: Zero Point
	Slide 89: Quantization of LLMs
	Slide 90: Quantization of LLMs: Weight vs Activations
	Slide 91: Quantization of LLM Activations: Outliers
	Slide 92: Quantization of LLM Activations : Outliers
	Slide 95: Quantization of LLM Activations: Ignoring Outliers?
	Slide 97: Quantization of LLM Activations: LLM.int8()
	Slide 99: Quantization of LLM Activations: LLM.int8()
	Slide 100: Quantization of LLMs: Recap
	Slide 103
	Slide 104: Motivation
	Slide 105: Where did all the memory go?
	Slide 107: Distributed Training and Inference
	Slide 108
	Slide 109: NCCL: NVIDIA Collective Communication Library
	Slide 110: NCCL: NVIDIA Collective Communication Library
	Slide 111: NCCL Operations: Reduce
	Slide 112: NCCL Operations: Broadcast
	Slide 118: Broadcast vs Scatter
	Slide 121: Gather vs Reduce
	Slide 124
	Slide 125: Naïve Data Parallelism
	Slide 126: Naïve Data Parallelism
	Slide 127: Naïve Data Parallelism
	Slide 128: Naïve Data Parallelism
	Slide 130: What is wrong with Naïve DP 
	Slide 132: Naïve DP: Summary
	Slide 133: Naïve DP – Requires too much memory!
	Slide 134: ZeRO: Sharding Optimizer States
	Slide 135: ZeRO Stage 1: Sharding Optimizer States
	Slide 136: ZeRO Stage 1: Sharding Optimizer States
	Slide 137: ZeRO Stage 1: How it works
	Slide 138: ZeRO Stage 1: How it works
	Slide 139: ZeRO Stage 1: How it works
	Slide 140: ZeRO Stage 1: How it works
	Slide 141: ZeRO Stage 1: How it works
	Slide 142: ZeRO Stage 1: How it works
	Slide 145: Summary: ZeRO 1
	Slide 147: ZeRO Stage 2: Sharding Gradients
	Slide 148: ZeRO Stage 2: How it works
	Slide 149: ZeRO Stage 2: How it works
	Slide 150: ZeRO Stage 2: How it works
	Slide 151: ZeRO Stage 2: How it works
	Slide 152: ZeRO Stage 2: How it works
	Slide 153: ZeRO Stage 2: How it works
	Slide 154: Summary: ZeRO Stage 2
	Slide 155: ZeRO-3 (aka FSDP): Shard Everything!
	Slide 157: ZeRO Stage 3
	Slide 158: ZeRO Stage 3: How it works (simplified)
	Slide 159: ZeRO Stage 3: How it works (simplified)
	Slide 160: ZeRO Stage 3
	Slide 161: Communication Costs
	Slide 163: Memory consumption is not static
	Slide 164: Memory consumption is not static
	Slide 165: Memory consumption is not static
	Slide 166: Where did all the memory go?
	Slide 167: Tensor Parallelism
	Slide 168: Column-wise Tensor Parallelism
	Slide 169: Row-wise Tensor Parallelism
	Slide 170: Tensor Parallelism
	Slide 171: Tensor Parallelism: Llama Feed-Forward
	Slide 172: Tensor Parallelism: Llama Attention
	Slide 173: Summary so far 
	Slide 174: Tensor Parallelism
	Slide 175: Throughput Scaling of Tensor Parallelism
	Slide 176: Throughput Scaling of Tensor Parallelism
	Slide 177: Pipeline Parallelism: The idea
	Slide 178: Pipeline Parallelism
	Slide 180: Pipeline Parallelism: Improvement
	Slide 181: Pipeline Parallelism
	Slide 182: Pipeline Parallelism Throughput
	Slide 183: Interleaving Pipeline Parallelism (LLama3)
	Slide 184: Interleaved Pipeline Parallelism (DeepSeek)
	Slide 185: Pipeline Parallelism, in practice
	Slide 192: Summary
	Slide 201
	Slide 202: Distillation
	Slide 203: Revisit: Standard Training (NLLloss)
	Slide 204: Revisit: Standard Training (NLLloss)
	Slide 205: Revisit: Standard Training (NLLloss)
	Slide 206: Knowledge Distillation
	Slide 207: Knowledge Distillation
	Slide 208: What if the teacher is Proprietary (GPT)?
	Slide 209: Revisit: Standard Training (NLLloss)
	Slide 210: What works better (a study in 2016)
	Slide 211: Knowledge Distillation
	Slide 212
	Slide 213: In-flight batching
	Slide 214: Speculative Inference
	Slide 215: Speculative Inference
	Slide 216
	Slide 217: VERY GOOD: Incorporate

