
Feeding Lots Data to 
Language Models
CSCI 601-771 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/
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Long inputs/outputs in LM

▪ Books, scientific articles, government reports, videos, your daily 
experience, etc. they all are much longer than 10k tokens!! 
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Nominal 
Context Lengths
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Revisiting 

Encoding Positional 
Information 
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Recap: Self-Attention

▪ Given input 𝐱:
𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

𝛼
𝑉

▪ Remember that, without positional encoding the input is just bag of words 
for self-attention.
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𝑥4
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𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn 
relative positioning

𝑝𝑖 are positional 
embeddings

Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization
Notable models: 
Original Transformer 
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Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Limitations: 

o We can have fixed encoding for each index training position (e.g., 1, 2, 3, … 1000). 

o What happens if we get a sequence with 5000 words at test time?

▪ We want something that can generalize to arbitrary sequence lengths. 

Notable models: 
Original Transformer 

Notable models: 
GPT1/2/3 - OPT



18

Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Relative embeddings: add a vector to the attention computation
𝑄𝐾𝑖𝑗 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

o Intuition: encoding the relative positions, for example based on the distance of the tokens in 
a local window to the current token.

Notable models: 
Original Transformer 

Notable models: 
GPT1/2/3 - OPT

Notable models: 
T5, Gopher, Chinchilla
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Relative Positional Encoding: An Example

▪ "I took the bus and then a cab after work" 

o position of "bus": 4; 

o position of "cab": 8

▪ "During the last two weeks, when my car was in the shop for repair, I took the bus 
and then a cab after work." 

o position of "bus": 20; 

o position of "cab": 24

▪ You want to a way of encoding the sentence so that the attention patterns 
depend on the relative distances. 

[Example credit: Christian von der Weth] 
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Relative Positional Encoding

▪ There have been various choices:

o T5 models simplify this into learnable relative embeddings 𝑷𝒊𝒋 such that: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

o DeBERTa learns relative positional embeddings ෥𝒑𝑖−𝑗 such that: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗+෥𝒑𝑖−𝑗
𝑇 𝑊𝑞

𝑇𝑊𝑘𝒙𝒋

o Tranformer-XL learns relative positional embeddings ෥𝒑𝑖−𝑗 and trainable vectors 𝒖, 𝒗 s.t.: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗+𝒖
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋+𝒗
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗

o ALiBi learns learns a scalar 𝑚 such that:
𝑄𝐾𝑖𝑗 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 − 𝑚 |𝑖 − 𝑗|

Exploring the Limits of Transfer Learning with a Unified Text -to-Text Transformer, 2020

Train Short, Test Long: Attention with Linear Bia4s2es Enables Input Length Extrapolation (2022)
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Recap 

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Relative embeddings: add a vector to the attention computation

▪ RoPE embeddings:  (forthcoming)

Notable models: 
Original Transformer 

Notable models: 
GPT1/2/3 - OPT

Notable models: 
T5, Gopher, 
Chinchilla, Deberta
Tranformer-XL, 

Notable models: 
GPTJ, PaLM, LLaMA, 
Gemma3, Qwen3, 
GPL, Apple models.
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Rotary Positional Encoding (RoPE)

▪ We want our embeddings to be invariant to absolute position. 

▪ We know that inner products are invariant to arbitrary rotation.

[Slide credit: Tatsu Hashimoto] 

Bonus
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Thinking About Rotation Matrix

▪ In 2D, a rotation matrix can be defined in the following form: 

𝑅𝜃,𝑚 =
cos𝑚𝜃 − sin𝑚𝜃
sin𝑚𝜃 cos𝑚𝜃

▪ The rotation increases with increasing 𝜃 and 𝑚. 𝒙 =
𝑎
𝑏

𝒙′ = 𝑎′
𝑏′

𝑥′ = 𝑅𝜃,𝑚𝑥

𝑚𝜃

Bonus



27

Rotary Positional Encoding (RoPE): 2D

2
7

RoFormer: Enhanced Transformer with Rotary Posit ion Embedding (2022)
Figure source

▪ If you have two input representations 𝒙𝑛 and 𝒙𝑚
at positions 𝑛 and 𝑚:

𝑞𝑘𝑚𝑛 = 𝑅𝜃,𝑚𝑊𝑞𝒙𝑚
𝑇
𝑅𝜃,𝑛𝑊𝑘𝒙𝑛

= 𝒙𝑚
𝑇 𝑊𝑞

𝑇𝑅𝜃,𝑚
𝑇 𝑅𝜃,𝑛𝑊𝑘𝒙𝒋

= 𝒙𝑚
𝑇 𝑊𝑞

𝑇𝑅𝜃,𝑛−𝑚𝑊𝑘𝒙𝒋

o 𝑅𝜃,𝑚: rotation matrix, rotates a vector it gets 
multiplied to proportional to 𝜃 and the 
position indices 𝑚, 𝑛.  

▪ Intuition: nearby words have smaller relative 
rotation.

Bonus

https://colab.research.google.com/github/krasserm/krasserm.github.io/blob/master/notebooks/2022-12-13-rotary-position-embedding.ipynb
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Thinking d Dimensions

▪ Create pairs of coordinates that would rotate together 

▪ Each pair can have a different frequency of rotations

Bonus
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Thinking d Dimensions

▪ In practice, we are rotating 𝑑 dimensional embedding matrices. 

▪ Idea: rotate different dimensions with different angles: 

o 𝚯 = [𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑑/2]

▪ By using different frequencies for different dimensions of the positional encoding 
vector, a unique "fingerprint" can be created for each positional information.

Bonus

𝑑 = the dimension of the 

query and key space
𝑚𝜃 = total rotation angle
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RoPE, visualized. 

▪ Each pair of coordinates 
are rotated by an angle 
proportional to the token 
position 𝑛𝜃 or relative dist
of words (𝑛 − 𝑚)𝜃

▪ Top row:
high-freq dimensions. 

▪ Bottom row: 
low-freq dimensions. 

Visualization by Sasha Rush: 

https://colab.research.google.com/drive/1JhVaH1Tr6BMLKX9
mgIjN83qFh9DOOyvC?usp=sharing#scrollTo=xeBojFzJRfu1

(𝑛 − 𝑚)𝜃

https://colab.research.google.com/drive/1JhVaH1Tr6BMLKX9mgIjN83qFh9DOOyvC?usp=sharing#scrollTo=xeBojFzJRfu1
https://colab.research.google.com/drive/1JhVaH1Tr6BMLKX9mgIjN83qFh9DOOyvC?usp=sharing#scrollTo=xeBojFzJRfu1
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RoPE via Faster (Dense) Operations 
▪ While we can implement this matrix multiplication as is, we can make use of 𝑅Θ,𝑚

𝑑 ’s 
sparsity for faster multiplication via dense operations : 

Bonus
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Integrating RoPE to Self-Attention 

▪ Drop the additive positional encoding and make it multiplicative to QK matrices.

▪ Given input 𝐱, the standard SA is computed as: 

Attention(𝐱) = softmax
𝐐𝐊T

√𝑑
𝐕

𝑸 = 𝐖𝑞𝐱, 𝑲 = 𝐖𝑘𝐱, 𝑽 = 𝐖𝑣𝐱

▪ Given input 𝐱, SA with RoPE is computed as: 

Attention(𝐱) = softmax
𝐐rope𝐊rope

T

√𝑑
𝐕

▪ Note since each the rotation depends on distance each word pair, it’s not easy to 
write these in matrix form. 
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Setting 𝚯 = [𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑑/2]

▪ One common way is to set them using a “base” frequency: 

▪ Example: 

o 𝜃1 = 1, for any choice of 𝐵 or 𝑑

o 𝜃𝑑/2 =
1

𝐵1−2/𝑑
.  If 𝑑 = 512 and 𝐵 = 10𝐾, then 𝜃256 = 1/10,000

▪ The exponent −2(𝑖 − 1)/𝑑 scales the input so that: 

o lower dimensions correspond to higher-frequency sinusoids (rapid changes), and 

o higher dimensions correspond to lower-frequency sinusoids (slow changes)

▪ This spread of frequencies allows the model to represent both fine-grained (local) and 
coarse-grained (global) positional relationships.
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Q: How should we set the “base” freq? 

▪ You want the largest wavelength (lowest freq) be close to your longest context dist. 

▪ Lowest frequency: 𝜃𝑑/2 =
1

𝐵1−2/𝑑
⇒ The largest wavelength: 𝑇max =

2𝜋

𝜃𝑑/2
≈ 2𝜋𝐵

▪ Examples:

o If 𝐵 = 10,000 ⇒ 𝑇max ≈ 62𝐾 tokens 

o If 𝐵 = 100,000 ⇒ 𝑇max ≈ 628𝐾 tokens 

▪ In both original RoPE paper (and the original Transformer paper), 𝐵 = 10,000.
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Examples of Base Frequencies

▪ Llama3 positional encoding: RoPE (θ = 500,000)

▪ Gemma3 positional encoding: A mix of RoPE (θ = 1,000,000) + RoPE (θ = 10,000)

Llama3 tech report: https://arxiv.org/pdf/2407.21783

Gemma3 tech report: https://arxiv.org/abs/2503.19786

https://arxiv.org/pdf/2407.21783
https://arxiv.org/abs/2503.19786
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Summary 

▪ Encoding positional information in language models is a non-trivial problem. 

o We discussed various proposal: learned, absolute, relative encoding, NoPos, etc. 

▪ This is an important literature related to the length generalization of Transformers.

▪ This is an active research area and likely to change in the coming years. 
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Long Context Generalization
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Needle-in-Haystack Problems 

▪ You’re given k documents in the input. 

o (e.g., the retrieval results)

▪ One of these docs may contain the answer
to a given query which we want to answer.



44https://github.com/gkamradt/LLMTest_NeedleInAHaystack

https://github.com/gkamradt/LLMTest_NeedleInAHaystack


45

Recency vs Primacy bias 
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Recent vs Primacy Bias: Size of “Gold” doc

Hidden in the Haystack: Smaller Needles are More Difficult for LLMs to Find

https://arxiv.org/pdf/2505.18148
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Long Context Extensions
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Context Extension: Challenges 

▪ You’re given a transformer trained on a default length. 

▪ Now we want to extend its length. 

Chen et. al, 2023, Extending Context Window of Large Language Models via Positional Interpolation
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Context Extension: Challenges 

▪ Challenge 1: Adapting the positional encodings 

▪ Challenge 2: Efficiency challenge since the FLOP/memory footprint grows 
quadratically. 

▪ Challenge 3: Long data is very limited. 

Chen et. al, 2023, Extending Context Window of Large Language Models via Positional Interpolation
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Context Extension during Pre-training 

▪ Two ingredients: 

o Extensible positional encoding 

o Carefully selected long training data 

▪ Recipe: 

o Pre-train a short context model(block size = 4k) on 1 trillion tokens of text

o Adjust the hyperparameters of the positional embeddings

o Continue pre-training but increase the block size to support long-contexts 
(block size = 80k). This may involve training on a smaller amount of data. 
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Approach: Changing ROPE Frequencies 

▪ Assuming that we use RoPE encoding, reduce the base frequency by 𝜶 so that more 
tokens fit within each period.

→
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Uniform Scaling 

▪ Linear Position Interpolation (PI): 

o Scale all frequencies by the same scale: 

𝛼𝑗
PI =

𝐶

𝐶′
=

1

𝑡
o This lowers every frequency uniformly so more tokens fit in each sinusoidal period. 
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NTK Scaling

𝛼𝑗 = 𝜅
−
2𝑗
𝑑𝑘 , 𝑗 = 1,… ,

𝑑𝑘
2

o High frequencies scaled down less (~preserved) 

o Low frequencies are shrunk more (matching PI extension)

▪ Why is it called ”NTK”?

o Neural Tangent Theory is this idea that, high-frequency information are hard to learn. 

o So, it’s better to not mess with them! (i.e., scale high-frequencies minimally) 
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YaRN Scaling 

▪ Basically, piecewise scaling across dimensions. 

o Context length ratio: 𝑡 = 𝐶′/𝐶

o Temperature parameter: 𝑇 to reduce all freq uniformly, if needed.

o Interpolation gate for dimension 𝑗 : 𝛾𝑗
o Hyperparameters: 𝑝, 𝑞, 𝑇 which can be tuned as needed.

▪ Modes: 

o Low-frequency dimensions (𝜃𝑗 < 𝑝): fully PI-scaled (1/𝑡). 

o High-frequency dimensions (𝜃𝑗 > 𝑞): no scaling (kept as original RoPE) if T=1. 

o Middle band (𝑞 < 𝜃𝑗 < 𝑝): smoothly interpolated. 
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Empirical Comparison of RoPE extensions

▪ Base model: llama2-7B which has a context of window of ~4k tokens. 

▪ Goal: extending the context window from 4k to 32k

A Controlled Study on Long Context Extension and Generalization in LLMs, 2025

https://arxiv.org/pdf/2409.12181


• X-axis shows length of the input. 

• Y-axis shows where the “needle” was included in the context (first row: needle in the beginning) 
• The white dashed line denotes the longest length examples seen at training or finetuning

A Controlled Study on Long Context Extension and Generalization in LLMs, 2025

https://arxiv.org/pdf/2409.12181


• X-axis shows length of the input. 

• Y-axis shows where the “needle” was included in the context (first row: needle in the beginning) 
• The white dashed line denotes the longest length examples seen at training or finetuning

A Controlled Study on Long Context Extension and Generalization in LLMs, 2025

https://arxiv.org/pdf/2409.12181


A Controlled Study on Long Context Extension and Generalization in LLMs, 2025

• Y-axis shows perplexity. 

• The base model is trained up to 4k tokens. . 
• The extensions are trained on data up to 32k. 
• Note some generalize to 64k. 

https://arxiv.org/pdf/2409.12181


Model Positional enc Pre-training extension Post-training extension

Qwen 3 RoPE Increased base freq from  10K to 1M; used 

YaRN. Also uses Dual Chunk Attention. 

Training on a dataset of 

long Chain-of-Thoughts. 

Apple RoPE (local attention) 

and no encoding for 
global attention

Trained on seq up to 65K tokens sampled from 

“natural” data e.g., licensed books, code repos, 
synthetic long-form data. 

??

GLM RoPE Trained on 4K data (base=10K). Then did more 

training up to 128K (base=1M). Up-sample 
long documents from the pre-training corpus.

SFT with long reasoning 

traces (up to 128K)

Gemma3 RoPE Pre-train on 32K seq (base=10K) and scale to 

128K toward the end of training (base=1M). 

??

Lamma3 RoPE Pre-train on shorter sequences (base=500K) 

and then extend to 128K tokens. 

SFT on some (0.1%) long 

data

Qwen3 Technical Report, Apple Intelligence Foundation Language Models, 

GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models, Gemma3 tech report

https://arxiv.org/abs/2505.09388
https://arxiv.org/pdf/2507.13575
https://arxiv.org/pdf/2508.06471
https://arxiv.org/pdf/2508.06471
https://arxiv.org/pdf/2508.06471
https://arxiv.org/abs/2503.19786
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Examples in the wild: Qwen3

▪ Qwen2.5-7B-Instruct-1M

o Changing RoPE base frequency (to stretch positional embeddings further). 

o Training recipe to gradually expose the model to longer contexts.

Qwen2.5-1M Technical Report, 2025

https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2501.15383
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Examples in the wild: Gemma3 

▪ “Instead of training with 128K sequences from 
scratch, we pre-train our models with 32K 
sequences and then scale the 4B, 12B, and 27B 
models up to 128K tokens at the end of pre-
training while rescaling RoPE”

▪ “Our models generalize to 128K, but rapidly 
degrade as we continue to scale.”

Gemma3 tech report: https://arxiv.org/abs/2503.19786

https://arxiv.org/abs/2503.19786
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Examples in the wild: GLM-4.5

▪ We set the maximum sequence length to 4,096 during pre-training, and extended it to 
32,768 and 131,072 during the mid-training stage  …  When extending the sequence 
length to 32K, we also adjusted RoPE’s base frequency from 10,000 to 1,000,000 for 
better long-context modeling ability.”

Gemma3 tech report: https://arxiv.org/abs/2503.19786

https://arxiv.org/abs/2503.19786
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Examples in the wild: Lamma3 

Qwen2.5-1M Technical Report, 2025

https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2501.15383
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Summary 

▪ RoPE the dominant positional encoding. 

▪ People usually train short and extend longer. 
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Long Context: 
Efficiency Considerations
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▪ Length generalization: Do Transformers 
work accurately on long inputs? 

▪ Efficiency considerations: How efficient 
are LMs are long inputs? 

Transformer LMs and Long Inputs
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Sparse Attention Patterns

▪ The idea isto makethe attention operation sparse

[NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters]

https://github.com/allenai/naacl2021-longdoc-tutorial/
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Sparse Attention Patterns: Challenge

▪ Ok sparsity is great, but how to efficiently implement this?

▪ Challenge: Arbitrary sparse matrix multiplication is not supported in DL
libraries 

▪ A solution: Perform computations in blocks

[NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters]

https://github.com/allenai/naacl2021-longdoc-tutorial/
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▪ Efficient blockified implementation

▪ There are libraries for implementing 
blockified sparse matrix multiplication. 

o Can be hardware specific
o Block Sparse (Gray et al., 2017)
o TVM toolkit (Chen et al., 2018)
o cuSPARSE

[Big Bird (Zaheer et al., 2020)]

Pre-specified Sparsity Patterns: Computations 

https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://www.usenix.org/conference/osdi18/presentation/chen
https://arxiv.org/pdf/2007.14062.pdf
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Pre-specified Sparsity Patterns

▪ A variety of patterns hasbeen explored inthe past work
o Longformer (Beltagy et al., 2020), Sparse Transformer (Child et al., 2019), …

Slidingwindow Dilated Global Blocked

SparseTransformer 

Longformer

Longformer
Big Bird Big Bird

Random

Big Bird 

Sinkhorn

[NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters]

https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/1904.10509.pdf
https://github.com/allenai/naacl2021-longdoc-tutorial/
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Pre-specified Sparsity Patterns

▪ Different layers and attention heads can follow 
different patterns

▪ A common setup is to have earlier layers with sparser 
attention pattern. 

o Longformer (Beltagy et al., 2020)

https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2004.05150.pdf
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[Longformer (Beltagy et al., 2020)]

Pre-specified Sparsity Patterns: Computations 

https://arxiv.org/pdf/2004.05150.pdf
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A Notable Adoption: GPT-3 

▪ Sparse patterns also used in GPT-3 (Brown et al., 2020)

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
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Summary 

▪ How well do Transformers work on long sequences? Not so well. 

▪ How can we make them more efficient? Induce sparsity. 

▪ Many open questions we did not get into: 

o Limitations of sportifying Transformers 

o Alternatives to Transformers (e.g., state-space models) 

o …



81

Retrieval-Augmented 
LMs 



82

Retrieval-based Language Models

• It is a language model P(xn|x1, x2, ⋯, xn−1 )

The capital city of Ontario is 

(can be broadly extended to masked language 

models or encoder-decoder models)

• It retrieves from an external datastore (at least during inference time)

(Also referred to semiparametric 
and non-parametric models)

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Why retrieval-based LMs?
LLMs can’t memorize all (long-tail) knowledge in their parameters

Geoffrey Hinton is a renowned computer scientist … 

Here are five important papers authored by him:

1. "Learning Internal Representations by Error 

Propagation" (with D. E. Rumelhart and R. J. 

Williams) - This paper, published in 1986, ..

2. "Deep Boltzmann Machines" (with R.

Salakhutdinov) - Published in 2009, ..
…

4. "Deep Learning" (with Y. Bengio and A. Courville) -

Published as a book in 2016,…

5. "Attention Is All You Need" (with V. Vaswani, N. 

Shazeer, et al.) - Published in 2017, this paper 

introduced the Transformer model,…

(Mallen et al., 2023)

GPT-3 davinci-003: 20%-30% accuracy

What is Kathy Saltzman’s occupation?List 5 important papers authored by Geoffrey Hinton

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Why retrieval-based LMs?

Who is the CEO of Twitter?

As of my knowledge cutoff in 

September 2021, the CEO of 

Twitter is Jack Dorsey….

• Existing knowledge editing methods are still 

NOT scalable (active research!)

• The datastore can be easily updated and

expanded - even without retraining! New!

LLMs’ knowledge is easily outdated and hard to update

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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LLMs’ output is challenging to interpret and verify

Why retrieval-based LMs?

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Why retrieval-based LMs?
LLMs are *large* and expensive to train and run

LM
vs.

Long-term goal: can we possibly reduce the training and

inference costs, and scale down the size of LLMs?

e.g., RETRO (Borgeaud et al., 2021): “obtains 

comparable performance to GPT-3 on the Pile, 
despite using 25x fewer parameters”

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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What are the Key Design Questions?

● What are your memories?

○ Documents, database records, training examples, etc.

● How to retrieve memories?

○ Use an off-the-shelf search engine (e.g. Google, StackOverflow).

○ How to train your own memory retriever.

● How to use retrieved memories?

○ "Text fusion"

○ Common failure modes:

■ Underutilization: model ignores retrieved memories.

■ Overreliance: model depends too much on memories!

[Slides: Kelvin Guu]
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Anatomy of a Neural Retriever

1. Score the input against each key.

2. Return the value for the highest scoring key.

key

key

key

key

value

value

value

value

input

1.2

0.3

6.8

7.1

[Slides: Kelvin Guu]

A similarity function: sim(input, key) → score
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Finding Nearest Neighbors 

[Slides: Yusuke Matsui]
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Approximate Finding Nearest Neighbors 

[Slides: Yusuke Matsui]
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Approximate NNs: Algorithms, Libraries, Services 

▪ More information: https://github.com/facebookresearch/faiss/wiki

[Slides: Martin Aumüller]

Space partitioning                +                    data compression

https://github.com/facebookresearch/faiss/wiki


29

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Service (e.g., vector DB)
➢ Library + (handling metadata,

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ) 

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW) 

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI 
Matching Engine

Vald

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

faiss

NMSLIB

hnswlib

ScaNN

jina

[Slides: Yusuke Matsui]

Approximate NNs: Algorithms, Libraries, Services 



Three levels of technology
Algorithm Library Service (e.g., vector DB)
➢ Scientific paper ➢ Implementations of algorithms ➢ Library + (handling metadata,
➢ Math ➢ Usually, a search function only serving, scaling, IO, CRUD, etc)
➢ Often, by researchers ➢ By researchers, developers, etc ➢ Usually, by companies

Pinecone

Qdrant

Milvus

NMSLIB jina

Vald Vertex AI

ScaNN (4-bit PQ)
hnswlib Matching Engine

[Guo+, ICML 2020]

ScaNN Weaviate
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Product Quantization + 
Inverted Index (PQ, IVFPQ) 

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW) 

[Malkov+, TPAMI 2019]

faiss

One library may implement
multiple algorithms

 “I benchmarked faiss”
 “I benchmarked PQ in faiss”

[Slides: Yusuke Matsui]



Three levels of technology
Algorithm Library Service (e.g., vector DB)
➢ Scientific paper ➢ Implementations of algorithms ➢ Library + (handling metadata,
➢ Math ➢ Usually, a search function only serving, scaling, IO, CRUD, etc)
➢ Often, by researchers ➢ By researchers, developers, etc ➢ Usually, by companies

Product Quantization + Pinecone
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Qdrant

Milvus

jina

Vald Vertex AI

ScaNN (4-bit PQ) Matching Engine

[Guo+, ICML 2020]

ScaNN Weaviate
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Hierarchical Navigable 
Small World (HNSW) 

[Malkov+, TPAMI 2019]

faiss

NMSLIB

hnswlib

One algorithm may be
implemented in multiple libraries

[Slides: Yusuke Matsui]



Three levels of technology
Algorithm Library Service (e.g., vector DB)
➢ Scientific paper ➢ Implementations of algorithms ➢ Library + (handling metadata,
➢ Math ➢ Usually, a search function only serving, scaling, IO, CRUD, etc)
➢ Often, by researchers ➢ By researchers, developers, etc ➢ Usually, by companies

Product Quantization + Pinecone
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Qdrant

NMSLIB jina

Vald Vertex AI

ScaNN (4-bit PQ) Matching Engine

[Guo+, ICML 2020]

ScaNN
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Weaviate

Milvus

faiss

hnswlib

Hierarchical Navigable 
Small World (HNSW) 

[Malkov+, TPAMI 2019]

One service may use some libraries

… or re-implement 
algorithms from 
scratch (e.g., by Go) [Slides: Yusuke Matsui]
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Let’s assume that we have our 
retrieval engine and data ready



98

Defining Similarity Metrics: Approach 1

▪ Advantages: 

o Not differentiable; you can’t 
easily optimize it. 

▪ Disadvantages: 

o Simple and fast. Often the first 
idea that you should try! 

sim(I,M)= tf(I, M) x log N/d_I

[Slides: Kelvin Guu]

▪ tf(I, M): # of occurrences of I in M. 

▪ N: # of documents 

▪ d_I: # of documents that contain I. 
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Defining Similarity Metrics: Approach 2

▪ Advantages: 

o Differentiable -- can optimize 
with gradient descent.

▪ Disadvantages: 

o Works well for data on which 
your LM is pre-trained on. 

sim(I,M)= Encoder(I) x Encoder(M)

[Slides: Kelvin Guu]

input

input vector

memory

memvector

dot product
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Retrieval-Augmented LM

▪ x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Encoder

Encoder

Encoder

z = Encoder(z)
Team USA celebrated 

after winning its match 

against Iran …

In 2022, the 32

national teams involved

in the tournament.

FIFA World Cup 2026  

will expand to 48 teams.

Wikipedia

13M chunks (passages)
(called documents in the paper)

7

Retrieval-Augmented LM

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Encoder

Encoder

Encoder

z = Encoder(z)
Team USA celebrated 

after winning its match 

against Iran …

In 2022, the 32

national teams involved

in the tournament.

FIFA World Cup 2026  

will expand to 48 teams.

Wikipedia

13M chunks (passages)
(called documents in the paper)

7

x = World Cup 2022 was … the increase to [MASK] in 2026.

Retrieval-Augmented LM

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Encoder

Encoder

Encoder

z = Encoder(z)

x = Encoder(x)
Team USA celebrated 

after winning its match 

against Iran …

In 2022, the 32

national teams involved

in the tournament.

FIFA World Cup 2026  

will expand to 48 teams.

Wikipedia

13M chunks (passages)
(called documents in the paper)

7

Encoder

x = World Cup 2022 was … the increase to [MASK] in 2026.

Retrieval-Augmented LM

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Encoder

Encoder

Encoder

Team USA celebrated 

after winning its match 

against Iran …

In 2022, the 32

national teams involved

in the tournament.

FIFA World Cup 2026  

will expand to 48 teams.

Wikipedia

13M chunks (passages)
(called documents in the paper)

7

Encoder

Fast nearest neighbor

search

z = Encoder(z)

x = Encoder(x)

x = World Cup 2022 was … the increase to [MASK] in 2026.

Retrieval-Augmented LM

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]



105

Encoder

Encoder

Encoder

Team USA celebrated 

after winning its match 

against Iran …

In 2022, the 32

national teams involved

in the tournament.

FIFA World Cup 2026  

will expand to 48 teams.

k retrieved chunks13M chunks (passages)
(called documents in the paper)

7

Encoder

Wikipedia

Fast nearest neighbor

search

z = Encoder(z)

x = Encoder(x)

z1, . . . , zk = argTop-k (x ⋅z)

x = World Cup 2022 was … the increase to [MASK] in 2026.

Retrieval-Augmented LM

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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LM P(y |x, z1)

P(y |x, z2)

LM P(y |x, zk)

LM

…

8

Retrieval-Augmented LM

x + z1

x + z2

x + zk

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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RAG: A more simplified pipeline
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Retrieval-Augmented LM: Variants 

- Chunks

- Tokens

- Others

What to retrieve? How to use retrieval? When to retrieve?

- Input layer

- Intermediate layers

- Output layer

- Once

- Every n tokens (n>1)

- Every token

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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Retrieval-Augmented LM: Common Variant

- Chunks

- Tokens

- Others

What to retrieve? How to use retrieval? When to retrieve?

- Input layer

- Intermediate layers

- Output layer

- Once

- Every n tokens (n>1)

- Every token

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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IR in the Middle of LM 

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”

x = World Cup 2022 was the last with 32 teams, before the increase to

1 2 3

(k chunks of text per split)

Index
Retrieval  
Encoder

1

2

3

p1 . . . pk

1 1

p1 . . . pk

2 2

p1 . . . pk

3 3

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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IR in the Middle of LM 

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”

x = World Cup 2022 was the last with 32 teams, before the increase to

1 2 3

(k chunks of text per split)

LM
EncoderIndex

Retrieval  
Encoder

1

2

3

p1 . . . pk

1 1

p1 . . . pk

2 2

p1 . . . pk

3 3

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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IR in the Middle of LM 

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”

x = World Cup 2022 was the last with 32 teams, before the increase to

1 2 3

(k chunks of text per split)

LM
Encoder

E1

E2

E3

Index
Retrieval  
Encoder

1

2

3

p1 . . . pk

1 1

p1 . . . pk

2 2

p1 . . . pk

3 3

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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EMB

1

2

3

ATTN FFN
HEAD

Transformers blocks (xL)

Regular Decoder 
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EMBEMB

1

2

3

ATTN CCA FFN
HEAD

Chunked CrossAttention (CCA)

RETRO blocks (xL)

E1 E2 E3

Regular Decoder with IR Embeddings
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Significant improvements by retrieving from 1.8 trillion tokens

Perplexity: The lower the

better

42

Results 
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Retrieval-Augmented LM

- Chunks

- Tokens

- Others

What to retrieve? How to use retrieval? When to retrieve?

- Input layer

- Intermediate layers

- Output layer

- Once

- Every n tokens (n>1)

- Every token

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]
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How do you train 
these models? 
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End-to-end Training 

▪ There are various ideas in the literature for how to train these models efficiently and 
in an end-to-end fashion. 
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Main takeaways

● How do we enable LMs to utilize external knowledge? 
● Retrieval-augmented language models  

● A retriever is a function, f(input, memory) → score

● What we did not discuss:
● Attribution: Tracing decisions to the source knowledge
● How to modify the knowledge 
● Conflicting knowledge
● Editing knowledge 
● More efficient scaling 
● ....  
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Practical tips for building IR systems 

▪ Try the easiest approach. 

▪ For example, you can fire up an Elastic Search IR with a single line of command: 

▪ …

▪ And here is how you query. 
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Practical tips for building IR systems 

▪ Try the easiest approach. 

▪ For example, you can fire up an Elastic Search IR with a single line of command: 

▪ …

▪ And here is how you query. 
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Always try the easiest test

▪ Sample sentences from indexed corpus and see if the IR engine is able to retrieve 
them. 

o (may be useful to define a few retrieval metrics here) 

▪ If it’s robust, try queries that are perturbations of the indexed content. 
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Retrieval-Augmented Generation Limitations 

▪ However, RAG has several limitations:

▪ Extra complexity

o It needs to define what to store in the database.

▪ Lacks contextual understanding.

o Summarization / Complex Reading Comprehension

▪ Stateless.

o It does not hold memory of what is previously retrieved. 
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How were retrieval engines 
designed before NNs? 
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Classic Information Retrieval

▪ A vector for d is produced by stacking tf-idf(t,d) in an order determined by the toke vocab IDs

▪ BM25 adds two parameters: k, a knob that adjust the balance between term frequency and 
IDF, and b, which controls the importance of document length normalization [Kamphuis et al. (2020)]

▪ We can represent a question and each document in the external databases like this, and use 
vector similarity measurements to find the most similar documents for a given question 

t = token

d = document (movie review)

term_frequency(t,d) = number of times t occurs in d
document_frequency(t) = # documents t occurs in

N = number of documents

inverse_document_frequency(t) = N / document_frequency(t)
tf-idf(t,d) = tf(t,d) x inverse_document_frequency(t)

[Slide credit: Ana Marasovic] 

https://link.springer.com/content/pdf/10.1007/978-3-030-45442-5_4.pdf
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Inverted Index

▪ We need to efficiently find documents that contain words in the question

▪ The basic search problem in IR is thus to find all documents that contain a term 

▪ The data structure for this task is the inverted index, which we use for making this 
search efficient, and also conveniently storing useful information like the document 
frequency and the count of each term in each document

[Slide credit: Ana Marasovic] 

t = token

d = document (movie review)

term_frequency(t,d) = number of times t occurs in d
document_frequency(t) = # documents t occurs in

N = number of documents

inverse_document_frequency(t) = N / document_frequency(t)
tf-idf(t,d) = tf(t,d) x inverse_document_frequency(t)



128

Inverted Index (cont.)

▪ An inverted index, given a query term, gives a list of 
documents that contain the term

▪ It consists of two parts:

o Dictionary 

o Postings 

▪ Dictionary is a list of terms (designed to be efficiently 
accessed), each pointing to a postings list for the term.

o The dictionary can also store the document frequency for each term

▪ A postings list is the list of document IDs associated with each term

o It can also contain information like the term frequency or even the exact positions of 
terms in the document 

Figure: [Jurafsky and Martin] 

In how many documents 
this term appears

Document ID The count of the 
term in this 
document

https://web.stanford.edu/~jurafsky/slp3/ed3bookaug20_2024.pdf
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Why could this classic IR be limited?

▪ tf-idf/BM25 algorithms work only if there is exact overlap of words between the 
question and document

▪ What if a question contains a lot of synonyms of tokens in a relevant document?

▪ Vocabulary mismatch problem: The user posing a query (or asking a question) 
needs to guess exactly what words the writer of the answer might have used

o Instead of (sparse) word-count vectors, using (dense) embeddings
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Two ways to dense retrieval 

130

Figure: [Jurafsky and Martin] 

Problem?

https://web.stanford.edu/~jurafsky/slp3/ed3bookaug20_2024.pdf


131

Two ways to dense retrieval 

131

[DPR; Karpukhin et al., 2020]

Figure: [Jurafsky and Martin] 

https://aclanthology.org/2020.emnlp-main.550/
https://web.stanford.edu/~jurafsky/slp3/ed3bookaug20_2024.pdf


132

Another way to the second approach – ColBERT 
[Khattab et al., 2021]

132

BERT output vectors 
rescaled to unit length

Essentially, for each token 
in q, ColBERT finds the 
most contextually similar 
token in d, & then sums up 
these similarities

Figure: [Jurafsky and Martin] 

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00405/107205/Relevance-guided-Supervision-for-OpenQA-with
https://web.stanford.edu/~jurafsky/slp3/ed3bookaug20_2024.pdf
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Training dense retrievals 

▪ Train the model to maximize the score for positive documents and minimize the score 
for negative ones:
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No “Free Lunch” in Long Context 

▪ No single approach is universally optimal for long context learning.

▪ There is always a tradeoff between performance and cost.

▪ It makes long context learning a challenging problem.
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