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Long inputs/outputs in LM

= Books, scientific articles, government reports, videos, your daily
experience, etc. they all are much longer than 10k tokens!!

Long Documents

{Review guideline] Now the review guideline ends.
Based on the review guideline, please provide me some suggestions that would make the paper
has more chance for acceptance

@ Here are some suggestions 1o improve the chances of the paper being accepted

+ Clarify the contributions and novelty more concisely. The introduction covers a Jot of background and related work,
which is goad, but the specific contributions and how they differ from prior work could be highlighted more. Clanifying
the key differences from other NCA and VAE based approaches will help the reviewers understand the novelty

* Provide more expenmental details and results. Since the paper aims to evaluate the model as a gencrative model, more
thorough metrics and comparisons 10 state-of-the-art are noeded. Specifically

- Report Jog-likelihood numbers on test sets for both MNIST and CelebA using the same method (eg importance
sampling)

- Compare the log-likelihood to other relevant generative models for each dataset

- Report Fréchet Inception Distance (FID) scores for the CelebA samples

- Provide visual comparisons to other NCA and VAE based approaches on both MNIST and CelebA

+ Discuss more potential applications and future dircctions. Since the approach is inspired by biological processes,

potential appl in ficlds like develop I robotics, medicine, ctc. could be of interest. Similardy, future
directions like combining the doubling variant with the resilience of the non-doubling vaniant to improve performance
would strengthen the impact,

In summary, by clanifying the novelty more precisely, providing more rigoroas and comparative cxpenmental rosults, and
discussing broader applications and future directions, the paper’s chances of acceptance would likely improve. The basic
approach and results scom promising. so focusing the paper more sharply on its key contributions and impact would help.

Below is a paper. Memorize the paper and answer my question after the paper
The paper begins. \n {paper} ‘\n Now the paper ends. :@
Below is the review guideline for the | | Conference on Leaming Rep

Inference-time Reasoning

Assume laws of physics on Earth. A small strawberry is put into a
normal cup and the cup is placed upside down on a table. Someone
then takes the cup and puts it inside the microwave. Where is the
strawberry now? Explain your reasoning step by step

To determine the current location of the strawberry, let's break down the events step by step:

1. Initial Placement: A small strawberry is placed into a normal cup. The strawberry is inside the
cup, resting at the bottom.

2. Cup Inversion: The cup is then placed upside down on a table. This means the open end of
the cup (where the strawberry was initially placed) is now facing down, in contact with the

table surface. The strawberry is now sitting on the table, covered by the inverted cup.

3. Cup Removal: Someone picks up the cup to put it inside the microwave. When lifting the
inverted cup off the table



Nominal
Context Lengt

|Model |Creators | Year | ModelSize | ContextSize _
h GPT-2

GPT-3
PaLM
LLaMA
LLaMA-2
Claude-2
Claude-2.1
GPT-4
Mistral
Mixtral
Gemini (Ultra)
LWModel
Gemini-1.5
GPT-40
LLaMA-3
LLaMA-3.1
Claude-3.5

OpenAl
OpenAl
Google
Meta
Meta
Anthropic
Anthropic
OpenAl
Mistral Al
Mistral Al
Google
academia!
Google
OpenAl
Meta
Meta
Anthropic

2019
2020
2022
2023
2023
2023
2023
2023
2023
2023
2023
2023
2024
2024
2024
2024
2024

1.5 billion

175 billion
540 billion
65 billion

70 billion

? (130 billion)
? (130 billion)
? (1.76 trillion)
7 billion

47 billion

? (1.5 trillion)
7 billion

? (1.5 trillion)
?

405 billion
405 billion

?

1024
2048
2048
2048
4096
100k
200k
8192

8192 (32k)
8192 (128k)
32k

1 million

1 million
128k

8192

128k
200k



Revisiting

Encoding Positional
Information




Recap: Self-Attention

= Given input x:

Q = Wix
K = Wkx
V=W
| (QK T)
Attention(x) = softmax — V

= Remember that, without positional encoding the input is just bag of words
for self-attention.

11



Positional Embeddings: The Flavors

Notable models: }

= Sine embeddings: add sines and cosines that enable localization { Original Transformer

Embed(x,i) = vy + PEpps

PE[IMS,‘EE'} — v"-l'f--*!.(f'lfjﬁ/] UUUUEH’-EIHM._-[ }
PE(;0s,2i+1) = cos(pos/] U{JUUEH’H‘ME[)

o | — | — | |
o E Allows model to learn }

t 1 relative positioning

(ON©)
o]
—~°°]

p; are positional
embeddings

/B :
‘00000 | 00000 ‘00000
Pl 60000 | "I 00000 | P*[ 00000 | P4 50000

¥ o X1 X2 X3 X4 12



Positional Embeddings: The Flavors

oy
. |

Notable models:

Sine embeddings: add sines and cosines that enable localization { Original Transformer

|

Embed(x,i) = vy + PEpqs

PE(pos 2i) = sin(pos/1 000(2%/ dmoser)
PE(pos,2i+1) = cos(pos/1 0000/ dmode )

inas: " h i Notable models:
Absolute embeddings: add a position vector to the embedding { GPTL/2/3 - OPT

|

Embed(x,i) = vy + u;

Limitations:
o We can have fixed encoding for each index training position (e.g., 1, 2, 3, ... 1000).
o What happens if we get a sequence with 5000 words at test time?

We want something that can generalize to arbitrary sequence lengths.

17



Positional Embeddings: The Flavors

= Sine embeddings: add sines and cosines that enable localization
Embed(x,i) = vy + PEpos

PE(pos 2i) = sin(pos/1 000(2%/ dmoser)

PE(pos,2i+1) = {'u.ﬁ(pu:-s/lUUUUQ’-"M"“’“' )

= Absolute embeddings: add a position vector to the embedding
Embed(x,i) = vy + u;

= Relative embeddings: add a vector to the attention computation
QKU = x’{WqTka]' + Pl]

<

Notable models:
Original Transformer

<

Notable models:
GPT1/2/3 - OPT

J

<

Notable models:
T5, Gopher, Chinchilla)

o Intuition: encoding the relative positions, for example based on the distance of the tokens in

a local window to the current token.

oy
. |
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Relative Positional Encoding: An Example

= "J took the bus and then a cab after work"”
o position of "bus": 4;
o position of "cab": 8

= “During the last two weeks, when my car was in the shop for repair, I took the bus
and then a cab after work."

o position of "bus": 20;
o position of "cab": 24

= You want to a way of encoding the sentence so that the attention patterns
depend on the relative distances.

o [Example credit: Christian von der Weth] 19



Relative Positional Encoding

= There have been various choices:
o T5 models simplify this into learnable relative embeddings P;; such that:
QKU = x{WqTkaj + Pl]

o DeBERTa learns relative positional embeddings p;_; such that:
QKij = x] W, " Wiexj + x] W, Wy B j+D1_ W, Wyex;

o Tranformer-XL learns relative positional embeddings p;_; and trainable vectors u, v s.t.:
QKU = ngqTWRXj + x’{WqTWk ﬁi_j+uTWqTkaj+vTWqTWk ﬁi—j

o ALIBi learns learns a scalar m such that:
QK;j = xI W, Wyxj —m |i — j|

53 | Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2020
w Train Short, Test Long: Attention with Linear Biads2es Enables Input Length Extrapolation (2022) 23



Recap

Sine embeddings: add sines and cosines that enable localization { ezl e }

Original Transformer

Notable models:
GPT1/2/3 - OPT

Absolute embeddings: add a position vector to the embedding {

J

\

Notable models:

Relative embeddings: add a vector to the attention computation | T5, Gopher,
Chinchilla, Deberta

Tranformer-XL, )

RoOPE embeddings: (forthcoming) Notable models:
GPTJ, PaLM, LLaMA,
Gemma3, Qwen3,

GPL, Apple models.
24




Rotary Positional Encoding (RoPE)

= We want our embeddings to be invariant to absolute position.
= We know that inner products are invariant to arbitrary rotation.

we we
know
know we KNow
\h
Position independent Embedding ) Embedding )
embedding “of course we know” we know that
Rotate by ‘2 positions’ Rotate by ‘0 positions’

[Slide credit: Tatsu Hashimoto]

@ lons 25



Thinking About Rotation Matrix

= In 2D, a rotation matrix can be defined in the following form:

cosmf —sin m@)

Ro. —
6.m (sian cos mé

= The rotation increases with increasing 6 and m.

26



Bonus

Rotary Positional Encoding (RoPE): 2D

= If you have two input representations x,, and x,,
at positions n and m:

T
Qkmn = (RQ,quxm) (RQ,anxn)
= xL W RG .\ Ro n Wiex;

— a1 T

o Rg - rotation matrix, rotates a vector it gets
multiplied to proportional to 6 and the
position indices m, n.

= Intuition: nearby words have smaller relative
rotation.

r— . RoFormer: Enh_anced Transformer with Rotary Position Embedding (2022)
L ety

q' k =g(x ,x ,n—m)

Figure source

Token representations
at positions m and n

Non-rotated query and key
(no position information)

Rotated query and key
(absolute position information)

Inner product of query and key
(relative position information)

27


https://colab.research.google.com/github/krasserm/krasserm.github.io/blob/master/notebooks/2022-12-13-rotary-position-embedding.ipynb

Thinking d Dimensions

= Create pairs of coordinates that would rotate together
= Each pair can have a different frequency of rotations

— M
—
|

&9 JouNs H
L

Bonus

28



Bonus

Thinking d Dimensions

= Idea: rotate different dimensions with different angles: query and key space

= In practice, we are rotating d dimensional embedding matrices. id — the dimension of the
m6 = total rotation angle
o 0 =1[6,003 ..., 00] ge

[cosmf; —sinmb, 0 0 0 0
sinmf; cosmb; 0 0 0 0
0 0 cosmfs — sinmé, 0 0
Re  — 0 0 sinmf, cosm#f, 0 0
Om
0 0 0 0 -+ cosmby, —sinmbg/o
0 0 0 0 -+ sinmby,  cosmbyy |

= By using different frequencies for different dimensions of the positional encoding
<" “'vector, a unique "fingerprint" can be created for each positional information. 29



ROPE, visualized.

= Each pair of coordinates (n —m)6
are rotated by an angle

proportional to the token .
position n6 or relative dist @ @ @ © © @

of words (n — m)#@

* Top o — QOQOOOOOLO

high-freq dimensions.

s, | — OOOOO00C
_. OO0CO0000OC

Visualization by Sasha Rush:
2 101 HOPKINS https://colab.research.google.com/drive/1JhVaH1Tr6BMLKX9
- D mgliN83qFh9DO0yvC?usp=sharing#scrollTo=xeBojFzJRfu1 30



https://colab.research.google.com/drive/1JhVaH1Tr6BMLKX9mgIjN83qFh9DOOyvC?usp=sharing#scrollTo=xeBojFzJRfu1
https://colab.research.google.com/drive/1JhVaH1Tr6BMLKX9mgIjN83qFh9DOOyvC?usp=sharing#scrollTo=xeBojFzJRfu1

Bonus

ROPE via Faster (Dense) Operations

= While we can implement this matrix multiplication as is, we can make use of R§..’s
sparsity for faster multiplication via dense operations :

Cxq ] [ cosmby (2o " sinm@; |
T cos mb; T sin m6;
T3 cos mb- —24 sin mé,
x| — R@ x=|%|® cosmby | 4 | z3 | g | sinmb;
Tq_1 cos mb gy —xg sinmf
T4 cos mby, Tg1 sinmbg,

E-N
L ]

@ JOHNS ' 31



Integrating RoPE to Self-Attention

= Drop the additive positional encoding and make it multiplicative to QK matrices.
= Given input x, the standard SA is computed as:

| QK"
Attention(X) = softmax NZ \Y
Q = Wik, K = Wkx, V = Wk

= Given input x, SA with RoPE is computed as:

QropeKrIFope> V
Vd

= Note since each the rotation depends on distance each word pair, it's not easy to
write these in matrix form.

Attention(x) = softmax<

oy
ol



Setting © = [6,,0;,05, ...,04;]

One common way is to set them using a “base” frequency:

O = {91- — B2/ 19 ,d/z]}

Example:

o 6, =1, for any choice of B or d

© B4, = =573~ 1f d = 512 and B = 10K, then 8,55 = 1/10,000

The exponent —2(i — 1)/d scales the input so that:
o lower dimensions correspond to higher-frequency sinusoids (rapid changes), and
o higher dimensions correspond to lower-frequency sinusoids (slow changes)

This spread of frequencies allows the model to represent both fine-grained (local) and
coarse-grained (global) positional relationships.



Q: How should we set the “"base” freq?

® = {93- — B 2D/ 519, ,d/z]}

2T

Lowest frequency: 6/, = BTlZ/d = The largest wavelength: Ty,.x = ~ 27B

Oa/2

Examples:
o If B=10,000 > Ty, = 62K tokens
o If B =100,000 > Ty, = 628K tokens

In both original ROPE paper (and the original Transformer paper), B = 10,000.

oy
ol

You want the largest wavelength (lowest freq) be close to your longest context dist.

34



Examples of Base Frequencies

Llama3 positional encoding: RoPE (6 = 500,000)

We increase the RoPE base frequency hyperparameter to 500,000. This enables us to better support |
longer contexts; Xiong et al. (2023) showed this value to be effective for context lengths up to 32,768. ‘

= Gemma3 positional encoding: A mix of RoPE (6 = 1,000,000) + RoPE (6 = 10,000)

Long context. Gemma 3 models support context
length of 128K tokens, with the exception of the
1B model that has 32K. We increase RoPE base
frequency from 10k to 1M on global self-attention
layers, and keep the frequency of the local lay-
ers at 10k. We follow a process similar to the

Llama3 tech report: https://arxiv.org/pdf/2407.21783
Gemma3 tech report: https://arxiv.org/abs/2503.19786

35


https://arxiv.org/pdf/2407.21783
https://arxiv.org/abs/2503.19786

Summary

= Encoding positional information in language models is a non-trivial problem.
o We discussed various proposal: learned, absolute, relative encoding, NoPos, etc.

= This is an important literature related to the length generalization of Transformers.

= This is an active research area and likely to change in the coming years.

41



Long Context Generalization




Needle-in-Haystack Problems

= You're given k documents in the input.
o (e.g., the retrieval results)

= One of these docs may contain the answer Retrieved Documents > Documents (k)
to a given query which we want to answer.

Final answer

OHMNS HOPKINS
%?J QII!I-.'I .'\--I 43



Pressure Testing Claude-2.1200K via “Needle In A HayStack”

Asking Claude 2.1 To Do Fact Retrieval Across Context Lengths & Document Depth

Top Of
Document 0% Dac Depth 100%
Accuracy Of
Retrieval
Claude 2.1 200K retrieval
accuracy progressively
decreased as context
lengths increased.
2356%
2028%
3570%
Placed Fact B0%

Document oo oo oo

Accuracy Of
oo Retrieval

Depth a0%

Bottom Of 100% Dac Depth

9E.30% o%
Accuracy Of
Retrieval

Document 24K 30K 36K 43K 48K S4K BOK  6SK T 77K 83K BOK 08K 10K I0BK  N2K 18K 124K 130K 138K MIK  MTK 153K 150%  IBSK 70K 177K 142K 188K 194K 200K

)

-— Context Length (# Tokens) —_—

Goal: Test Claude 2.1 Ability To Retrieve Information From Large Context Windows
A fact was placed within a document. Claude 2.1 (200K) was then asked to retrieve it. The output was evaluated (with GPT-4) for accuracy.
This test was run at 35 different document depths (top > bottom) and 35 different context lengths (1K >200K tokens).
Document Depths followed a sigmoid distribution

Dt https://github.com/gkamradt/LLMTest_NeedlelnAHaystack

WA

44


https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Recency vs Primacy bias

[ ]
20 Total Retrieved Documents
=)
L
=
—_
o
<
1st 5th 10th 15th 20th
Position of Document with the Answer
—@— gpt-3.5-turbo-0613 (open-book)
== gpt-3.5-turbo-0613 (closed-book)
E-A B

B3 JOHNS HOPKINS
v

45



Recent vs Primacy Bias: Size of "Gold"” doc

CARDBiomedBench NuminaMathl.5
small Bl medium [ large small Bl medium Bl large

1.0 1.0

0.4 0.94

08 0.8 Q)

@
0.7 =07 E
L] c =
-4 - =.
Z06 Z06 B3
g g 2
505 EDS
e

0.4 0.4 E‘

0.3 0.3

0.2 0.21

04 0.91

T I
P+

0.8 0.8| 1
Zo7 20.7| 6
5 : 3
=
;06 _:06 .ih
(-] E o
&0.5 EO0S

0.4 0.4

0.3 0.3

0.2 o.21

".

& JOHNS HOPKINS Hidden in the Haystack: Smaller Needles are More Difficult for LLMs to Find 46



https://arxiv.org/pdf/2505.18148

Long Context Extensions




Context Extension: Challenges

= You're given a transformer trained on a default length.
= Now we want to extend its length.

-
Transformer
L J L J
T T
Default context length Directly extension

IF,.._‘. JOHMNS HOPEINS
v

Chen et. al, 2023, Extending Context Window of Large Language Models via Positional Interpolation 52



Context Extension: Challenges

= Challenge 1: Adapting the positional encodings

= Challenge 2: Efficiency challenge since the FLOP/memory footprint grows
quadratically.

= Challenge 3: Long data is very limited.

WikiPedia Github CommonCrawl StackExchange

o

[1+]

J

[5]

(o]

9

>

e

L]

| -

[

a

Ok 4k 8k 12k 16k 20k 24k Ok 4k 8k 12k 16k 20k 24k Ok 4k 8k 12k 16k 20k 24k Ok 4k 8k 12k 16k 20k 24k

Length Length Length Length

557 JOHNS HOPKINS
v ¥ f Chen et. al, 2023, Extending Context Window of Large Language Models via Positional Interpolation
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Context Extension during Pre-training

= Two ingredients:
o Extensible positional encoding
o Carefully selected long training data
= Recipe:
o Pre-train a short context model(block size = 4k) on 1 trillion tokens of text
o Adjust the hyperparameters of the positional embeddings

o Continue pre-training but increase the block size to support long-contexts
(block size = 80k). This may involve training on a smaller amount of data.

54



Approach: Changing ROPE Frequencies

= Assuming that we use ROPE encoding, reduce the base frequency by a so that more
tokens fit within each period.

fw(x;,0) =R(0,)W'x; — f(z;,ax®8)

[ &
1 0.5 sec 1

T T 1 sec
A [\ VANE:
0 -t 0 | o t

\
SAVAVAY SIAVARV/

(b) Higher frequency: sin(2n2t) (a) Original sine wave: sin(2nt)




Uniform Scaling

= Linear Position Interpolation (PI):

o Scale all frequencies by the same scale:

C 1
QPl=C_1
J c' t
o This lowers every frequency uniformly so more tokens fit in each sinusoidal period.

@ lons 56



NTK Scaling

o High frequencies scaled down less (~preserved)
o Low frequencies are shrunk more (matching PI extension)

= Why is it called "NTK"?
o Neural Tangent Theory is this idea that, high-frequency information are hard to learn.
o So, it's better to not mess with them! (i.e., scale high-frequencies minimally)

57



YaRN Scaling

= Basically, piecewise scaling across dimensions.

1 (0 if 9; < p,
YaRN \/ ’ ’
aja = ((1—’)/3');4")’3')/ T v, =< 1, if 0, > g,
Hj—p .
= otherwise.

o Context length ratio: t = C'/C
o Temperature parameter: T to reduce all freq uniformly, if needed.
o Interpolation gate for dimension j : y;
o Hyperparameters: p, q, T which can be tuned as needed.
= Modes:
o Low-frequency dimensions (6; < p): fully PI-scaled (1/t).
o High-frequency dimensions (6; > q): no scaling (kept as original RoPE) if T=1.
o Middle band (q < 6; < p): smoothly interpolated.

58



Empirical Comparison of ROPE extensions

= Base model: llama2-7B which has a context of window of ~4k tokens.
= Goal: extending the context window from 4k to 32k

Table 1: Overview of results across different extension types.

Attention Mechanisms | Model | PPL Needle Mshots LongB RULER

Frozen | NTK-F | 14.52 18.8 64.5 25.54 0.72
Exact PI 5.85 42.1 75.5 33.48 57.66
Attention YaRN 5.85 46.7 75.0 33.45 36.95

Fine-Tuned CLEX 582  71.1 74.0 33.48 52.17
NTK-32K | 579 837 71.0 3532  59.42
NTK-64K | 593  69.1 73.0 3430  60.03

E-N
]
ol

A Controlled Study on Long Context Extension and Generalization in LLMs, 2025 59



https://arxiv.org/pdf/2409.12181

LlamaZ2
0%

33%

67%

100%

1K Bk 16k 32k Gk

+ X-axis shows length of the input.
* Y-axis shows where the “needle” was included in the context (first row: needle in the beginning)
* The white dashed line denotes the longest length examples seen at training or finetuning

A Controlled Study on Long Context Extension and Generalization in LLMs, 2025



https://arxiv.org/pdf/2409.12181

T
T

Gk 1K

NTK-32k NTK-64k NTK-64k-2B

16k 32 k 64K

» X-axis shows length of the |nput.
» Y-axis shows where the “needle” was included in the context (first row: needle in the beginning)
* The white dashed line denotes the longest length examples seen at training or finetuning

A Controlled Study on Long Context Extension and Generalization in LLMs, 2025



https://arxiv.org/pdf/2409.12181

12.54

.
©

2k T 4k 8k 16k ' 32k 64k
< LLaMA2 - LM-Infinite - NTK-Frozen - Self-Extend < Pl o NTK-32K - YaRN -o-CLEX --Longlora indmark -o- NTK-64K
« Y-axis shows perplexity.
 The base model is trained up to 4k tokens. .

« The extensions are trained on data up to 32k.
* Note some generalize to 64k.

A Controlled Study on Long Context Extension and Generalization in LLMs, 2025



https://arxiv.org/pdf/2409.12181

Pre-training extension Post-training extension

Qwen3  RoPE Increased base freq from 10K to 1M; used Training on a dataset of
YaRN. Also uses Dual Chunk Attention. long Chain-of-Thoughts.

Apple ROPE (local attention) Trained on seq up to 65K tokens sampled from  ??

and no encoding for “natural” data e.g., licensed books, code repos,
global attention synthetic long-form data.

GLM RoPE Trained on 4K data (base=10K). Then did more SFT with long reasoning
training up to 128K (base=1M). Up-sample traces (up to 128K)
long documents from the pre-training corpus.

Gemma3 RoPE Pre-train on 32K seq (base=10K) and scale to ?7?
128K toward the end of training (base=1M).

Lamma3 RoPE Pre-train on shorter sequences (base=500K) SFT on some (0.1%) long
and then extend to 128K tokens. data

Qwen3 Technical Report, Apple Intelligence Foundation Language Models,
GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models, Gemma3 tech report



https://arxiv.org/abs/2505.09388
https://arxiv.org/pdf/2507.13575
https://arxiv.org/pdf/2508.06471
https://arxiv.org/pdf/2508.06471
https://arxiv.org/pdf/2508.06471
https://arxiv.org/abs/2503.19786

Examples in the wild: Qwen3

= Qwen2.5-7B-Instruct-1M

o Changing RoPE base frequency (to stretch positional embeddings further).

o Training recipe to gradually expose the model to longer contexts.

. Pre-Training |

Initial § 4K PT 32K PT 64K PT 128K PT

Base Model | Base=10K Base=100K Base=100K Base=500K 5
Post-Training

Instruct Model RLHF Stage SFT Stage SFT Stage 5 256K PT
256K shorttask only 32K + 256K 32K Base=1000K '

o ; Qwen2.5-1M Technical Report, 2025

64


https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2501.15383

Examples in the wild: Gemma3

0.70

= "“Instead of training with 128K sequences from
scratch, we pre-train our models with 32K

sequences and then scale the 4B, 12B, and 278 ‘g
models up to 128K tokens at the end of pre- S
training while rescaling RoPE” >
= "Our models generalize to 128K, but rapidly .
degrade as we continue to scale.” 0.54

16K 32K 64K 128K 256K 512K
Context length

= 4B 12B - = 27B
= 4B + long context 12B + long context == 27B + long context

Figure 7 | Long context performance of pre-
trained models before and after RoPE rescaling.

[ ==

W e Gemmaa3 tech report: https://arxiv.org/abs/2503.19786 65



https://arxiv.org/abs/2503.19786

Examples in the wild: GLM-4.5

We set the maximum sequence length to 4,096 during pre-training, and extended it to

32,768 and 131,072 during the mid-training stage ... When extending the sequence
length to 32K, we also adjusted RoPE’s base frequency from 10,000 to 1,000,000 for

better long-context modeling ability.”

Pre-training Mid-training y 4
Repo-Level Syntheﬂc
— —p Code Data m——p- | Reasoning Data | e
(500B) (500B)

32K 32K

Figure 3: Pre-training and mid-training stages for GLM-4.5. We adapt a multi-stage training recipe
and extend the sequence length from 4K to 128K.
ot Gemmag3 tech report: https://arxiv.org/abs/2503.19786

L
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https://arxiv.org/abs/2503.19786

Examples in the wild: Lamma3

3.4.2 Long Context Pre-Training

In the final stages of pre-training, we train on long sequences to support context windows of up to 128K tokens.
We do not train on long sequences earlier because the compute in self-attention layers grows quadratically in
the sequence length. We increase the supported context length in increments, pre-training until the model has
successfully adapted to the increased context length. We assess successful adaptation by measuring whether (1)
model performance on short-context evaluations has recovered completely and (2) the model perfectly solves
“needle in a haystack” tasks up to that length. In Llama 3 405B pre-training, we increased context length
gradually in six stages, starting from the original 8K context window and ending in the final 128K context
window. This long-context pre-training stage was performed using approximately 800B training tokens.

r-_-'.- JOHNS HOPEINS
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https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2501.15383

Summary

= ROPE the dominant positional encoding.
= People usually train short and extend longer.

oy
. |
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Long Context:
Efficiency Considerations



Transformer LMs and Long Inputs

- - M Attention ti
= Length generalization: Do Transformers 500 = - e

work accurately on long inputs? 12500 1 100 {
10000 1 - 80
FEE 7500 A g 60 -
5000 A E 40
2500 - 20 4

0 . . 0 . .

- = - - .. 5000 10000 15000 5000 10000 15000
= Efficiency considerations: How efficient seq len seq len
are LMs are Iong inputs? Forward pass Backward pass
500 1
150 4
400 A
{}f; 100 % 300
é § 200
50 A

100 +

0 : s 0 : :

5000 10000 15000 5000 10000 15000
B3 1o H seq len seq len
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SEarse Attention Patterns

» The ideaisto makethe attentionoperationsparse
Keys -

=)

« Saland
« Saland

@J'UHN\II:W]M

1
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https://github.com/allenai/naacl2021-longdoc-tutorial/

Sparse Attention Patterns: Challenge

= Ok sparsity is great, but how to efficiently implement this?

= Challenge: Arbitrary sparse matrix multiplication is not supported in DL
libraries

= A solution: Perform computations in blocks

72


https://github.com/allenai/naacl2021-longdoc-tutorial/

Pre-specified Sparsity Patterns: Computations

= Efficient blockified implementation EERRE

-

= There are libraries for implementing
blockified sparse matrix multiplication.

o Can be hardware specific

o Block Sparse (Gray et al., 2017)
o TVM toolkit (Chen et al., 2018)
o CUSPARSE

&3 loHNS H ;
. [Big Bird (Zaheer et al., 2020)] 73


https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://www.usenix.org/conference/osdi18/presentation/chen
https://arxiv.org/pdf/2007.14062.pdf

Pre-specified Sparsity Patterns

= Avarietyof patternshasbeenexploredinthe past work
o Longformer (Beltagy et al., 2020), Sparse Transformer (Child et al., 2019), ...

Slidingwindow Dilated Global Blocked Random
- B i
Sparse Transformer Longformer BigBird BigBird BigBird
Longformer Sinkhom


https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/1904.10509.pdf
https://github.com/allenai/naacl2021-longdoc-tutorial/

Pre-specified Sparsity Patterns

= Different layers and attention heads can follow
different patterns

= A common setup is to have earlier layers with sparser
attention pattern.
o Longformer (Beltagy et al., 2020)

77


https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2004.05150.pdf

Pre-specified Sparsity Patterns: Computations

Time Memory
2500 7 15000
-+ Full self-attention
2000 - =@ Loop Naive Impl. 12500 -
-4 Longformer
r 1500 A 10000 -
g S 7500 -
& 1000 A
E 5000 A
500 A
2500 A
0 -
T T 0 T T
5000 10000 15000 5000 10000 15000
seq len seq len
!."_‘I | yH A |
W 7 e 78

[Longformer (Beltagy et al., 2020)]


https://arxiv.org/pdf/2004.05150.pdf

A Notable Adoption: GPT-3

= Sparse patterns also used in GPT-3 (Brown et al., 2020)

2.1 Model and Architectures

We use the same model and architecture as GPT-2 [RWC " 19], including the modified initialization, pre-normalization,
and reversible tokenization described therein, with the exception that we use alternating dense and locally banded sparse
attention patterns in the layers of the transformer, similar to the Sparse Transformer [CGRS19]. To study the dependence
of ML performance on model size, we train 8 different sizes of model, ranging over three orders of magnitude from 125
million parameters to 175 billion parameters, with the last being the model we call GPT-3. Previous work [KMH20]

r‘!l" : 79


https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf

Summary

= How well do Transformers work on long sequences? Not so well.
= How can we make them more efficient? Induce sparsity.

= Many open questions we did not get into:
o Limitations of sportifying Transformers
o Alternatives to Transformers (e.g., state-space models)
O ...
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Retrieval-Augmented
LMS




Retrieval-based Language Models

Itis a language model P(x, | x1, X2, =+, Xy—1) Toronto 052
Ottawa e— (.31
Vancouver s 0.13
Montreal = 0.03

Calgary 1 0.01

The capital city of Ontariois ____

(can be broadly extended to masked language
models or encoder-decoder models)

It retrieves from an external datastore (at least during inference time)

Input
Datastore ¥

(Also referred to semiparametric
and non-parametric models)

&7 Jorns Horins 82
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



Why retrieval-based LMs?

LLMs can’t memorize all (long-tail) knowledge in their parameters

8 List 5 important papers authored by Geoffrey Hinton What is Kathy Saltzman’s occupation?
]
Geoffrey Hinton is a renowned computer scientist ... 0.8 W= ““ta_SS‘Stled LM g |
o< Here are five important papers authored by him: - e
1. "Learning Internal Representations by Error § 0.4 ‘ !
Propagation" (with D. E. Rumelhart and R. J. < '
Williams) - This paper, published in 1986, .. / l :
2. "Deep Boltzmann Machines" (with R. 005 107 103 1ot 105
Salakhutdinov) - Published in 20009, .. / Popularity
4."Deep Learning" (with Y. Bengio and A. Courville) - (Mallen et al., 2023)

Published as a book in 2016, ... o
upblished as a booxn X GPT-3 davinci-003: 20%-30% accuracy

5. "Attention Is All You Need" (with V. Vaswani, N.
Shazeer, et al.) - Published in 2017, this paper x
- i_r_ltrod uced the Transformer model,...

& Jou 83
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



Why retrieval-based LMs?

I
LLMs’ knowledge is easily outdated and hard to update
g Who is the CEO of Twitter? Google  Whois the CEOof Twiter? X 4@ Q
AS Of my knowledge cutoff in 2 Al & News [ Images | ) Shopping  [¥] Videos : More Tools
September 2021, the CEO Of About 1,090,000,000 results (0.45 seconds)
" Twitter is Jack Dorsey.... e

Linda Yaccarino

Jun 5, 2023~

 Existing knowledge editing methods are still Input
NOT scalable ( ) |

Datastore ¢

» The datastore can be easily updated and
expanded - even without retraining!

[ e |

&3 JOHNS HOPKINS
1[’

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



57 JouNs HoPkl
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Why retrieval-based LMs?

LLMs’ output is challenging to interpret and verify

(). Create an itinerary for exploring Toronto over a span of two days. 0 o
@ i i3 | s « Day 2: Explore the history and culture of Toronto at the
Royal Ontario Museum, one of the largest and most

comprehensive museums in North America, featuring

exhibits on art, natural history, world cultures and more
4

Toronto is a vibrant and diverse city with many attractions

and activities to suit different tastes and preferences. Here
are some suggestions for creating an itinerary for exploring
Toronto over two days: (o)

lands that offer a relaxing escape from the city, with
3 S5

» Day 1: Start your day with a visit to the CN Tower, the beaCRgs, parks, trails and amusement rides 4 = . You
iconic landmark that offers panoramic views of the city can al islands at
and beyond ' . You can also experience the thrill of your own ilatown, one of
walking on the glass floor or the EdgeWalk, the world’s the largest a

local specialties * . After lunch, take a stroll along Queen
West, a trendy neighborhood with eclectic shops,
galleries, cafes and street art * . In the evening, enjoy a
show at one of the many theaters or comedy clubs in the 1.cntowerca 2. travel.usnews.com 3. bing.com
Entertainment District, or catch a game at the
Scotiabank Arena if you're a sports fan.

Learn more:

4. rom.on.ca 5. tripadvisor.com

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]

. Then, hop on a ferry to the Toronto Islands, a group

merica, where you
3

highest hands-free walk < xt, head to the nearby St. can findavan
Lawrence Market, one of the worl :
markets, where you can sample a variety of cuisines 1 'JOEe this helps you onto. Have fun! &
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Why retrieval-based LMs?

LLMs are *large* and expensive to train and run

Datastore

Long-term goal: can we possibly reduce the training and
inference costs, and scale down the size of LLMs?

e.g., RETRO (Borgeaud et al., 2021): “obtains
comparable performance to GPT-3 on the Pile,
despite using 25x fewer parameters”

57 JoHNS HOPKINS

v ; ' [Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]
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What are the Key Design Questions?

e What are your memories?
o Documents, database records, training examples, etc.

e How to retrieve memories?
o Use an off-the-shelf search engine (e.g. Google, StackOverflow).
o How to train your own memory retriever.

e How to use retrieved memories?
o "Text fusion"
o Common failure modes:
m Underutilization: model ignores retrieved memories.
m Overreliance: model depends too much on memories!

o [Slides: Kelvin Guu]
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Anatomy of a Neural Retriever

1. Score the input against each key.
2. Return the value for the highest scoring key.

key / value \
/
03 —1 key / value \
input
; 68 | key / value \
key / value \

A similarity function:  sim(input, key) — score

o [Slides: Kelvin Guu]



Finding Nearest Neighbors

Result

(0.23] (0.20]
3.15 - 2 3.25

argmin ||q — x,||
0.65 w ne{1,2,...N} iz 0.72
-1'43- Often, argmax + inner product is also considered. -1-68-
q = ]:RD xX. € RD Don’t care in this talk. x74
n

»N D-dim database vectors: {x, }h_,

»Given a query ¢, find the closest vector from the database

»One of the fundamental problems in computer science
»Solution: linear scan, O(ND), slow ®

[Slides: Yusuke Matsui]



Approximate Finding Nearest Neighbors

Result

0.23] - [0.20]

3.15 : _ 2 3.25
argmin || Xy, ||

0.65 w ez 2 0.72

11.43. 11.68.

g € RP x, € RP X74

» Faster search
»Don’t necessarily have to be exact neighbors
» Trade off: runtime, accuracy, and memory-consumption

[Slides: Yusuke Matsui] 20



Approximate NNs: Algorithms, Libraries, Services

Space partitioning + data compression

Find the nearest vector to tu/r

—
v

[0.54]
2.35
0.82
0.42
0.14

L0.32

= More information: https://github.com/facebookresearch/faiss/wiki

[Slides: Martin Aumiller] 91


https://github.com/facebookresearch/faiss/wiki

Approximate NNs: Algorithms, Libraries, Services

Algorithm Library
» Scientific paper

» Math

» Often, by researchers

Service (e.g., vector DB)
» Library + (handling metadata,

serving, scaling, 10, CRUD, etc)
» Usually, by companies

» Implementations of algorithms
» Usually, a search function only
» By researchers, developers, etc

Product Quantization +

Inverted Index (PQ, IVFPQ) _ [ Pinecone ]
[Jégou+, TPAMI 2011] faiss
[ Qdrant ]
Hierarchical Navigable [ Milvus ]
Small World (HNSW) NMSLIB [ ina ]
[Malkov+, TPAMI 2019]
hnswlib [ Vald ] Vertex Al
ScaNN (4-bit PQ) Matching Engine
[Guo+, ICML 2020]
[ ScaNN ] [ Weaviate ]

[Slides: Yusuke Matsui]




Product Quantization +
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]

One library may implement
multiple algorithms

(1 “l benchmarked faiss”
(1 “l benchmarked PQ in faiss”




One algorithm may be
implemented in multiple libraries

faiss

Hierarchical Navigable
Small World (HNSW) NMSLIB
[Malkov+, TPAMI 2019]




One service may use some libraries

—\
Hierarchical Navigable
Small World (HNSW)

[Malkov+, TPAMI 2019]

... Or re-implement

algorithms from
scratch (e.g., by Go)




=

Let’s assume that we have our
retrieval engine and data ready _|

97



Defining Similarity Metrics: Approach 1

sim(I,M)= tf(I, M) x log N/d_I
= Advantages:

o Not differentiable; you can't

= tf(I, M): # of occurrences of Iin M. easily optimize it.

= N: # of documents

= Disadvantages:

o Simple and fast. Often the first

= d_I: # of documents that contain I. idea that you should try!

[Slides: Kelvin Guu] 98



Defining Similarity Metrics: Approach 2

sim(I,M)= Encoder(I) x Encoder(M)
= Advantages:
o Differentiable -- can optimize

with gradient descent.

input vector [ mem vector

= Disadvantages:
C— BERT C— BERT o Works well for data on which
your LM is pre-trained on.

input memory

[Slides: Kelvin Guu]



Retrieval-Augmented LM

I
= x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.
— FIFA World Cup 2026 will expand to 48 teams.

X
¢ World Cup 2022 was ... the increase to [MASK] in 2026.

:
|

k chunks of text FIFA World Cup 2026 i
(passages) will expand to 48 teams. | | | 48

-

Retrieve stage Read stage

Ay JOHMNS HOPKINS
& | - | | 100
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



Retrieval-Augmented LM

FIFA World Cup 2026

will expand to 48 teams. \
(]
(] (]
In 2022, the 32 / °
national teams involved Encoder @ ®

in the tournament. ® A

Team USA celebrated z = Encoder(z)

after winning its match

against Iran ...

Wikipedia
13M chunks (passages)

;;,r?. ! (called, documents in the paper)
W T vimeesowoos 101
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



Retrieval-Augmented LM

I : :
X = World Cup 2022 was ... the increase to [MASK] in 2026.

FIFA World Cup 2026

will expand to 48 teams.
®
@

In 2022, the 32 / LI
national teams involved @ ®

in the tournament. ~

Team USA celebrated z = Encoder(z)

after winning its match

against Iran

Wikipedia
13M chunks (passages)

;.;_r?. ! (called, documents in the paper)
v -

102
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



Retrieval-Augmented LM

I : :
X = World Cup 2022 was ... the increase to [MASK] in 2026.

FIFA World Cup 2026

will expand to 48 teams. \
(]
(] (]
In 2022, the 32 / °
national teams involved @ ®

in the tournament. ® °

Team USA celebrated z = Encoder(z)
after winning its match x = Encoder(x)

against Iran ...

Wikipedia
13M chunks (passages)

!.‘-?,I i (called, documents in the paper)
W T vimeesowoos 103
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



Retrieval-Augmented LM

I : :
X = World Cup 2022 was ... the increase to [MASK] in 2026.

FIFA World Cup 2026 Fast nearest neighbor
will expand to 48 teams. HCOCE! search

[ )
In 2022, the 32 / )
national teams involved Encoder @ ®
@

in the tournament. ° °
T
Team USA celebrated z = Encoder(z)
after winning its match x = Encoder(x)
against Iran ...
Wikipedia

13M chunks (passages)

;;,r?. ! (called, documents in the paper)
W T vimeesowoos 104
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



Retrieval-Augmented LM

I : :
X = World Cup 2022 was ... the increase to [MASK] in 2026.

FIFA World Cup 2026 Fast nearest neighbor
will expand to 48 teams. HCOCE! search

[ )
In 2022, the 32 / )
national teams involved Encoder @ ®
@

in the tournament. ° °
T
Team USA celebrated z = Encoder(2)
after winning its match x = Encoder(x)
against Iran ...

Wikipedia Zy ..., 2z = argTop-k (x - z)

13M chunks (passages) k retrieved chunks

) (called,documents in the paper)
W wvimeesowoos 105
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



Retrieval-Augmented LM

I
xtn = —> P(y|x, 71)
e — P(rl52)
R —> P(y|x, 2)
/"‘ 0 if not one of top k
Y P|x)P(y|x,2)
Need to approximate
— Consider top k chunks only @etrie&ggégg frgg g;:ge
E-;r'." JOHNS HOPKINS 106 8

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



RAG: A more simplified pipeline

Documents Vtor B

Chunked
Texts

Embeddings

Generate

Prompt Embedding
<
Embeddings

Most relevant text passages (context)
Prompt
Prompt L L M W
< I > J
Context

[ e | ¥ I
e [OHNS HOPEITNS
v
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Retrieval-Augmented LM:

to retrieve? to use retrieval?
- Chunks - Input layer
- Tokens - Intermediate layers
- Others - Output layer

oy
ol

Variants

to retrieve?

- Once
- Every n tokens (n>1)
- Every token

108
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Retrieval-Augmented LM: Common Variant

to retrieve?

- Chunks
- Tokens
- Others

oy
ol

to use retrieval? to retrieve?
- Input layer - Once
- Intermediate layers - Every n tokens (n>1)
- Output layer - Every token

109
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]

IR in the Middle of LM

I
x = World Cup 2022 wa%he last with 32 teams/before the increase to

(k chunks of text per split)

1 k

. DR PP,
Retrieval 1 pk

2 Encoder K e d 'ndex pz pz
1 k

3 S P ---P,

&3 10HNS HOPEINS
W s, Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens” 110



IR in the Middle of LM

= i
B JOHMNS HOPKIMNS
1"‘ J 1 i

(k chunks of text per split)

D

Retrieval

Encoder

o

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”

p-..

1
1
1

DY Index IR
1

p,.-

Y
Y

P

k
1
k
2
k
3

LM

Encoder

[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]

x = World Cup 2022 was/[he last with 32 teams/before the increase to

111



[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen]

IR in the Middle of LM

I Jl‘
e 1||\al1n RIS
v )

x = World Cup 2022 wagf[he last with 32 teams/before the increase to

(k chunks of text per split)

1 k
. PP . E
Retrieval 1 k -
Encoder o Jumd 'Ndex pz...pz Encoder E,
1 k
o — BN P, P, o E

(A7 X k X d matrix)

(r = # tokens per text chunk)
(d = hidden dimension)
(k = # retrieved chunks per split)

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens” 112



Regular Decoder

v

. l

Transformers blocks

||\ I!th‘\

113



Regular Decoder with IR Embeddings

Eq Ez E;

. |““‘\ “““l

RETRO blocks (xL

HEAD

Chunked CrossAttention (CCA)

E;I,. ||\ I! Ihl‘\ 114



Results

Perplexity: The lower the

better /\
Model Retrieval Set #Database tokens #Database keys  Valid Test
Adaptive Inputs (Baevski and Auli, 2019) - - - 17.96 18.65
SpaLMm (Yogatama et al., 2021) Wikipedia 3B 3B 17.20 17.60
kNN-LM (Khandelwal et al., 2020) Wikipedia 3B 3B 16.06 16.12
Megatron (Shoeybi et al., 2019) - - - - 10.81
Baseline transformer (ours) - - - 21.53 22.96
kNN-LM (ours) Wikipedia 4B 4B 18.52 19.54
RETRO Wikipedia 4B 0.06B 18.46 18.97
RETRO C4 174B 29B 12.87 10.23
RETRO MassiveText (1%) 18B 0.8B 18.92 20.33
RETRO MassiveText (10%) 179B 4B 13.54 14.95
RETRO MassiveText (100%) 1792B 28B 3.21 3.92

&S [OHNS
L

Significant improvements by retrieving from 1.8 trillion tokens

115
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Results

Perplexity: The lower the

better /\

Model Retrieval Set #Database tokens #Database keys  Valid Test
Adaptive Inputs (Baevski and Auli, 2019) - - - 17.96 18.65
SpaLMm (Yogatama et al., 2021) Wikipedia 3B 3B 17.20 17.60
kNN-LM (Khandelwal et al., 2020) Wikipedia 3B 3B 16.06 16.12
Megatron (Shoeybi et al., 2019) - - - - 10.81
Baseline transformer (ours) - - - 21.53 22.96
kNN-LM (ours) Wikipedia 4B 4B 18.52 19.54
RETRO Wikipedia 4B 0.06B 18.46 18.97
RETRO C4 174B 29B 12.87 10.23
RETRO MassiveText (1%) 18B 0.8B 18.92 20.33
TR 3 MassiveText (10%) 1798 4B ..13.5 14.95
MassiveText (100%) 1792B 28B 3.21 3.92

' RETRO

%

Significant improvements by retrieving from 1.8 trillion tokens

[ e |

&7 Jors H
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ol

Retrieval-Augmented LM

to retrieve? to use retrieval? to retrieve?
- Chunks - Input layer - Once
- Tokens - Intermediate layers - Every n tokens (n>1)
- Others - Output layer - Every token

117
[Slides: Akari Asai, Sewon Min, Zexuan Zhong, Dangi Chen]



=

How do you train
these models? N



End-to-end Training

= There are various ideas in the literature for how to train these models efficiently and
in an end-to-end fashion.

Frozen/Trainable Trainable
Test Context ~ \\
. =" Jobs cofounded
Jobs is the
[ CEO of _ 1 =’. I Apple in his B &
Retriever parents' garage | White-box LM

/ #param‘ <108

50
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Main takeaways

e How do we enable LMs to utilize external knowledge?
e Retrieval-augmented language models

e A retriever is a function, f(input, memory) — score

e What we did not discuss:
e Attribution: Tracing decisions to the source knowledge
How to modify the knowledge
Conflicting knowledge
Editing knowledge
More efficient scaling

120



Practical tips for building IR systems

Try the easiest approach.
For example, you can fire up an Elastic Search IR with a single line of command:

And here is how you query.

121



Practical tips for building IR systems

Try the easiest approach.
For example, you can fire up an Elastic Search IR with a single line of command:

And here is how you query.

122



Always try the easiest test

= Sample sentences from indexed corpus and see if the IR engine is able to retrieve
them.

o (may be useful to define a few retrieval metrics here)
= If it's robust, try queries that are perturbations of the indexed content.

oy
. |

123



Retrieval-Augmented Generation Limitations

However, RAG has several limitations:

Extra complexity
o It needs to define what to store in the database.

Lacks contextual understanding.
o Summarization / Complex Reading Comprehension

Stateless.
o It does not hold memory of what is previously retrieved.

&9 JouNs H
L

124



=

How were retrieval engines
designed before NNs? N



Classic Information Retrieval

t = token

d = document (movie review)

term_frequency(t,d) = number of times t occurs in d
document_frequency(t) = # documents t occurs in

N = number of documents

inverse document_frequency(t) = N / document frequency(t)
tf-idf(t,d) = tf(t,d) x inverse_document_frequency(t)

= A vector for d is produced by stacking tf-idf(t,d) in an order determined by the toke vocab IDs

= BM25 adds two parameters: k, a knob that adjust the balance between term frequency and
IDF, and b, which controls the importance of document length normalization [kamphuis et al. (2020)]

= We can represent a question and each document in the external databases like this, and use
vector similarity measurements to find the most similar documents for a given question

53 JoHNS HOPEINSG

=¥, e [Slide credit: Ana Marasovic] 126


https://link.springer.com/content/pdf/10.1007/978-3-030-45442-5_4.pdf

Inverted Index

t = token
d = document (movie review)

[ term_frequency(t,d) = number of times t occurs in d

document_frequency(t) = # documents t occurs in

N = number of documents

inverse document_frequency(t) = N / document frequency(t)
tf-idf(t,d) = tf(t,d) x inverse_document_frequency(t)

We need to efficiently find documents that contain words in the question
The basic search problem in IR is thus to find all documents that contain a term

The data structure for this task is the inverted index, which we use for making this
search efficient, and also conveniently storing useful information like the document
frequency and the count of each term in each document

OHMNS HOPKINS
127

[Slide credit: Ana Marasovic]



Inverted Index (cont.) i how many documents

this term appears

-

= An inverted index, given a query term, gives a list of how {1} — 3[1]
documents that contain the term is {1} — 3[1]
= |t consists of two parts: love {2} — 1[1]—=3[l]
L nurse {2} — 1[1] —4[1]
o Dictionary
_ sorry {1} — 2[1]
© Postings sweet {3} — 1[2]—2[1]—3[1]
= Dictionary is a list of terms (designed to be efficiently ' N
accessed), each pointing to a postings list for the term. Document ID The count of the
o The dictionary can also store the document frequency for each term term in this
document

= A postings list is the list of document IDs associated with each term

o It can also contain information like the term frequency or even the exact positions of
terms in the document

gy JoHNs H Figure: [Jurafsky and Martin] 128
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Why could this classic IR be limited?

= tf-idf/BM25 algorithms work only if there is exact overlap of words between the
question and document

= What if a question contains a lot of synonyms of tokens in a relevant document?

= Vocabulary mismatch problem: The user posing a query (or asking a question)
needs to guess exactly what words the writer of the answer might have used

o Instead of (sparse) word-count vectors, using (dense) embeddings
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Figure: [Jurafsky and Martin]

Two ways to dense retrieval

z = BERT(q; [SEP];d) [CLS]
v score(q,d) = softmax(U(z))

Problem?

Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-

resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a

relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring

) (b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
r1r"1 1™ query and document as the score. This is less compute-expensive, but not as accurate. 130 130
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zq - BERTQ (q) ECLS] Figure: [Jurafsky and Martin]

Two ways to dense ret ;' ... o

score(q,d) =z,-24

I
sta) . _ sa.d
z = BERT(q; [SEP];d) [CLS] [DPR; Karpukhin etal., 2020]
TF=— smre(q,d} = ngtmax(U(z}) D/OQK
zCLE ZCLIS_

—ll | ——

Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-

resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a

relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring

. (b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
[Zir? 1™ query and document as the score. This is less compute-expensive, but not as accurate. 131 131
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Another way to the second approach — ColBERT

[Khattab et al., 2021]

N
m
score(g,d) = ) miax Eq, - Eg
i=1 "

BERT output vectors
rescaled to unit length

Essentially, for each token
in g, ColBERT finds the
most contextually similar
token in d, & then sums up
these similarities
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s(q,d)

Document
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Training dense retrievals

= Train the model to maximize the score for positive documents and minimize the score
for negative ones:

Inner Product Similarity

\_ ~ L(g.p".p1sp3s--sP0)
[OO000000] llIOOOOOOO| . N
— _log exp(sim(g,p™))
Encoder Encoder exp(sim(g, p*)) + X, exp(sim(q. p;))
T Contrastive learning
q : e ’{_,,I Positive _’Pc:-siﬁ'.-c
Query Text chunks SN - e
b MNegativae Megative
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No “"Free Lunch” in Long Context

= No single approach is universally optimal for long context learn
= There is always a tradeoff between performance and cost.

= It makes long context learning a challenging problem.

&7 JOHNS HOPKINS
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