
Transformer Language Models

CSCI 601-771 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/fa2025/



After Transformer …



Yang et al. Harnessing the Power of 

LLMs in Practice: A Survey on 

ChatGPT and Beyond, 2023
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Impact of Transformers 

▪ A building block for a variety of LMs 

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-3, Gemini 

❖ Other name: causal or auto-regressive language model 

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, ModernBERT.

❖ Captures bidirectional context. Wait, how do we pretrain them?

❖ Examples: Transformer, T5, Meena

❖ What’s the best way to pretrain them?
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How consistent are the architectures 
used in existing LLMs? 
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Another View of Architectural Variations 

Low consensus
(except pre-norm)

Most try to follow 
previous successful 
choices. 

[Slide credit: Tatsu Hashimoto] 
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When should we do 
normalization? 
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Quiz: Pre-norm vs Post-norm 

▪ Which is the original implementation? 

▪ Which one is your favorite? 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝑥

𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 ,
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Pre-norm vs Post-norm 

▪ Pre-norm (right) is set up so that LayerNorm
does not disrupt the residual stream (in gray). 

▪ In theory, both should work fine. 

▪ In practice, however, Pre-norm is 
preferred over Post-norm. 

[On Layer Normalization in the Transformer Architecture, 2020]
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Pre-norm vs Post-norm — Explanation? 

▪ Stability, larger LRs for large networks and no need for warm up. 

[Left and right from: On Layer Normalization in the Transformer Architecture, 2020]

[middle from: Transformers without Tears: Improving the Normalization of Self-Attention, 2019] 

Gradient spikes

Gradient attenuation

[Slide credit: Tatsu Hashimoto] 

Bonus

No need for warm-up stage
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Serial vs Parallel layers
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Serial vs Parallel Layer 

▪ Normal transformer blocks are serial – they compute attention, then the MLP

o Can they be parallelized? GPT-J introduced a simple change to do so! 

▪ The standard “serial” formulation: 

𝑦 = 𝑥 + 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥

▪ The parallel formulation:
𝑦 = 𝑥 + 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥)) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥))

o Note, LayerNorm can be shared, and matrix multiplies can be fused

▪ From PaLM paper: “The parallel formulation results in roughly 15% faster training 
speed at large scales … Ablation experiments showed a small quality degradation at 
8B scale but no quality degradation at 62B scale”

Notable models: 
GPTJ, PaLM, GPT-NeoX

[PaLM: Scaling Language Modeling with Pathways, 2022]

https://arxiv.org/pdf/2204.02311
https://arxiv.org/pdf/2204.02311
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Recap

▪ Pre-vs-post norm: 

o Everyone does pre-norm (except OPT350M).

▪ LayerNorm vs RMSnorm:

o RMSnorm has clear compute wins, sometimes even performance.

▪ Gating: 

o GLUs seem generally better, though differences are small

▪ Serial vs parallel layers:

o No extremely serious ablations; but parallel layers have a compute win.
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Architecture Hyperparams

There are a ton of question regarding architecture hyperparameters: 

▪ How much bigger should the feedforward size be compared to hidden size?

▪ How many heads? Should # of heads always divide hidden size?

▪ Should we make our model wide or deep? 
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The Surprising Consensus #1: 
FFN Dimension Ratio 

▪ Feedforward – model dimension ratio:

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2
𝑾1 ∈ ℝ𝑑×𝑑ff ,
𝑾2 ∈ ℝ𝑑ff×𝑑

▪ There are two dimensions that are relevant – the feedforward dim (𝑑ff) and model 
dim (𝑑). What should their relationship be?

𝑑ff = 4𝑑

▪ This is almost always true. There’s just a few exceptions.

[Slide credit: Tatsu Hashimoto] 
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Why this range of multipliers? 

▪ Empirically, there’s a basin between 1-10 where this hyperparameter is near-optimal.

Scaling Laws for Neural Language Models, 2020

[Slide credit: Tatsu Hashimoto] 

https://arxiv.org/pdf/2001.08361


140

Summary of LLM architectures 

▪ There are many architectural variations. 

▪ Major differences? Position embeddings, activations, tokenization

▪ This is an evolving field; a lot of empirical analysis is going into identifying best practices. 

[Picture credit: Tatsu Hashimoto] 
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Pre-training data
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The pre-training data size and sources

▪ They vary 
quite a bit! 

▪ They used to be 
in billions of tokens;
now they’re north 
of trillions. 
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Where do we begin to collect data? 

▪ Where do I find a very large dataset? 

o Crawling web is non-trivial (unless you’re OpenAI or Google with ton of resources).

o But if you have to do it, be aware that websites have their own permissions 
regarding which parts of their content, if any, can be crawled. (next slide)

o The alternative is to look for websites that have done the crawling for you. 
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CommonCrawl

▪ A non-profit organization that release a new crawl of the internet every month.

o So far, there have been ~100 crawls from 2008-2024.

o In 2016, a crawl took 10-12 days on 100 machines. They used Apache Nutch. 

o This is not a complete of the internet. Crawls have some overlap but try to diversify.

• Common Crawl follows links from previously crawled pages.

o Also note, it respects robots.txt

▪ CC is a common sources of pre-training data. 

o WARC: The raw HTTP responses, including 
full web pages.

o WAT: The metadata summary from WARC files.

o WET: The extracted plaintext from WARC files, 
stripping out HTML and other non-textual content.

https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html

https://blog.commoncrawl.org/blog/common-crawl-move-to-nutch
https://blog.commoncrawl.org/blog/common-crawl-move-to-nutch
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
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CC is messy. Is that a concern? 



Besides quantity, the choice of dataset is also critical

[Slide credit: Samet Samik] 
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C4: A cleaned up pre-training dataset

▪ C4: Colossal Clean Crawled Corpus 

o The course is CommonCrawl. 

o English language only 

o 750GB after ton of filtering

▪ Notice that the unfiltered data is quite large. 

o Common Crawl is mostly not useful natural language
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C4: The Data

Slide adapted from Colin Raffel

Remove any: 
• References to Javascript
• Pages with ”{“ (no code), “Lorem ipsum” 

text (dummy text), “terms of use”, etc.  
• Pages with ”bad words”. 

Retain: 
• Sentences with terminal 

punctuation marks 
• Pages with at least 5 sentences, 

sentences with at least 3 words 

https://www.lipsum.com/
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en
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Pre-training Data: Experiment 

▪ Takeaway: 

o Clean and compact data is better than large, but noisy data. 

o Pre-training on in-domain data helps. 

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020
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Does it matter that my 
data has ton of repetitions? 
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Pre-training Data Duplicates 

▪ There is a non-negligible number of  duplicates in any pre-training data. 

Deduplicating Training Data Mitigates Privacy Risks in Language Models, 2022
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Pre-training Data Duplicates 

▪ There is a non-negligible number of duplicates in any pre-training data. 

▪ Maybe we should not spend our training budget re-learning things we have already seen. 

Deduplicating Training Data Makes Language Models Better, 2020
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Deduplicating Data Improves LMs

▪ Another evidence from Gopher paper: Performance of 1.4B parameter models (lower 
is better) trained on OpenWebText, C4, and versions of MassiveWeb with 
progressively more pre-processing stages added. 

▪ Applying a quality filter and de-duplication stages significantly improves quality.

Scaling Language Models: Methods, Analysis & Insights from Training Gopher, 2022

https://arxiv.org/pdf/2112.11446
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How can I do my own 
deduplication? 
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How do you scale data deduplication? 

▪ Pre-training is huge. Naively deduplicating the data is going to take forever!! 

▪ How do you deduplicate it? Here are a few options: 

o Naively hashing each document (a good baseline) 

o SuffixArray

o MinHash

o BloomFilters

o Embedding-based dedup
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Comparison between dedup algorithms

▪ Single methods: BF better than any other method standalone. 

▪ Combination: The competitive approaches are last row (exact -> MH -> SA) and BF-
only. The former leads to more compact data. 

Li et al. DataComp-LM: In search of the next generation of training sets for language models, 2024

Individual 
technique

Combined 
techniques

https://arxiv.org/pdf/2406.11794
https://arxiv.org/pdf/2406.11794
https://arxiv.org/pdf/2406.11794
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Deduplication: Recap 

▪ Does it matter that my data has ton of repetitions? Yes, one should do careful dedup.

▪ How can I do my own deduplication? 

o Scaling it up requires advanced data structures. 

o So far, there is no clear winner between these algorithms. A “kitchen sink” approach 
that mixes dedup algorithms is generally best, but it’s an empirical exercise. 

o BF is generally preferred since it’s cheaper/faster. 

Bonus
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Should I worry about old data 
in my pre-training? 

Bonus
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Prevalence of stale data: RedPejamas

▪ Breakdown of old versions of Wikipedia in RedPejamas

o It is based on dumps from C4, CC and a recent Wikipedia dump. 

▪ The bars blow show the breakdown of older versions of Wikipedia in RedPajamas. 

o There is a ton of old Wikipedia versions in RedPejamas! 

▪ The solid trend is the perplexity of a pre-trained model on temporal instances of Wikipedia. 

o The significant stale training data in has skewed PPL toward older versions of Wikpedia. 

Dated Data: Tracing Knowledge Cutoffs in Large Language Models, 2024

Bonus

https://arxiv.org/abs/2403.12958
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Should I worry about skew of 
the data mixtures in my pre-training? 

Bonus
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Data mixtures (and the long tail)

▪ Your dataset mixture will determine the versatility of the resulting model. 

▪ Data in the world is always skewed. For example, 

o English has a lot more language than other domains. 

o Reddit is a lot larger than science papers.

Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets, 2024
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, 2023

Bonus

https://arxiv.org/abs/2410.04579
https://arxiv.org/abs/2305.10429
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Data mixtures (and the long tail)

▪ Your dataset mixture will determine the versatility of the resulting model. 

▪ Data in the world is always skewed. For example, 

o English has a lot more language than other domains. 

o Reddit is a lot larger than science papers.

▪ A uniform ”weight” of data during pre-training is not good since overrepresented 
domains would dominate (e.g., your model would be a better at English than Azeri).

▪ Overamplifying underrepresented domains also runs risk of overfitting. 

▪ So, there is a lot of research on finding a good balance.

Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets, 2024
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, 2023

Bonus

https://arxiv.org/abs/2410.04579
https://arxiv.org/abs/2305.10429
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Few notable data pipelines
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LLaMA 1’s Data Pipeline 

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Starts with the massive crawled data by CommonCrawl. 

The WET format that contains textual information. 
WARC is raw, WAT is metadata, WET is text+some metadata.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19
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LLaMA 1’s Data Pipeline 

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Shard WET content into shards of 5GB each (one CC snapshot can have 30TB). 

Then you normalize paragraphs (lowercasing, numbers as placeholders, etc), 
compute per-paragraph hashes and then duplicate them.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19
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LLaMA 1’s Data Pipeline 

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Perform language identification and decide whether to keep or discard languages.

The order of when you do this in the pipeline can impact the language discrimination quality. 

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19
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LLaMA 1’s Data Pipeline 

CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data, 2019

Do further quality filtering: Train a simple LM (n-gram) on target languages using Wikipedia, 

then compute per-paragraph perplexity on the rest of the data: 
• Very high PPL: Very different than Wiki and likely low-quality → Drop 

• Very low PPL: Very similar or near duplicates to Wiki → Drop 
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DataDecomp-LM filtering pipeline

DataComp-LM: In search of the next generation of training sets for language models, 2024

Bonus
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Few cleaned-up pre-training datasets

Dataset Example 
models

Tokens Source License Lang

C4 
(Raffel et al. 2020)

T5 165B CC ODC-BY English

The Pile 
(Gao el al. 2020)

GPT-J, Pythia 300B 22 datasets including CC, 
books, code, news

Varies by dataset subset English

RedPejamas
(Weber et al. 2024)

Llama 1 1.2T CC, C4, Github, Arxiv, Books, 
Wikipedia, StackExchange

Varies by dataset subset English

RefinedWeb
(Penedo et al. 2023)

Falcon 600B CC ODC-BY 1.0 English

Dolma
(Soldaini et al. 2024)

OLMo 3T CC, C4, Gutenberg, Github, 
Wikipedia, Wikibooks

ImpACT MR English

DataComp-LM
(Li et al. 2024)

SmolLM2, 
DCLM 

240T CC ? English

Bonus

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2411.12372
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2406.11794


186

The Pile 

▪ Pile-CC: From Common Crawl; uses justText to extract useful text.

▪ PubMed Central: 5M NIH funded papers and public. 

▪ arXiv: preprint for research papers since 1991 (uses latex).

▪ Gutenberg PG-19: Online books (before 2019) with copyright clearance.  

▪ Books3 is a a collection of ~200K books. Has been subject of lawsuits.

▪ StackExachange: Q&A format is close to real applications.

▪ Github: Content is not just the code. 

o Note, GH archive has regular snapshots of Github (commits, forks, etc.)

Slide inspiration: Percy LiangThe Pile: An 800GB Dataset of Diverse Text for Language Modeling, 2020

Bonus

https://github.com/miso-belica/jusText
https://github.com/google-deepmind/pg19
https://github.com/google-deepmind/pg19
https://github.com/google-deepmind/pg19
https://huggingface.co/datasets/defunct-datasets/the_pile_books3
https://www.wired.com/story/battle-over-books3/
https://www.gharchive.org/
https://arxiv.org/abs/2101.00027
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Summary: preparing pre-training data

▪ Data does not fall from the sky. You have to work to get it! 

▪ Finding large data: CommonCrawl has a ton of crawled dumps, but not the only one. 

▪ Cleaning data can save tons of compute and even give you gains.

▪ Repetitions are often a waste of compute and deteriorate model quality. 

▪ Scaling deduplication requires advanced data structures. 

▪ Old data old data may skew your model predictions, but it depends on your application.

▪ Data mixtures are quite important, though depend on your downstream application. 
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The actual pre-training 
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How should we select the 
right hyperparams? 
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Q: What would you do? 

▪ Zuckerberg gave you a $500M budget for training Llama-10. 

▪ You set aside $10M for finding the best architecture at smaller scale, assuming that 
your ultimate model will be much larger. 

▪ This way, you pick your parameters with rigorous experiments at small scale: 

o Optimal training params: Learning rate, warmup, weight decay, etc. 

o Architecture configs by scaling (each x50) the optimal values at small scale. 

▪ Q: What you like (or don’t) about this recipe? 

▪ Optimal depth/width, lr, batch size, weight decay, init, and residual scaling are 
not scale-invariant.
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IsoPlots: Tradeoffs at a smaller scale

▪ The performance of your model depends on a complex 
combination of many factors. 

▪ Goal: find the best combinations, for a fixed compute. 

▪ Approach: 

1. Fix a compute budget FLOP 

2. Train a few models and vary their size 

3. Fit a parabola and find the minimum 

IsoPlots (Isocontours)
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IsoPlots: Tradeoffs at a smaller scale

▪ The performance of your model depends on a complex 
combination of many factors. 

▪ Goal: find the best combinations, for a fixed compute. 

▪ Approach: 

1. Fix a compute budget FLOP 

2. Train a few models and vary their size 

3. Fit a parabola and find the minimum 

4. Repeat 1-3 for various FLOP budgets  

IsoPlots (Isocontours)
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IsoPlots: Tradeoffs at a smaller scale

▪ The performance of your model depends on a complex 
combination of many factors. 

▪ Goal: find the best combinations, for a fixed compute. 

▪ Approach: 

1. Fix a compute budget FLOP 

2. Train a few models and vary their size 

3. Fit a parabola and find the minimum 

4. Repeat 1-3 for various FLOP budgets  

▪ It’s good to change various parameter (e.g., training 
data, size, or other hyperparams) and see how it’s 
quality (loss) changes.  

IsoPlots (Isocontours)
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Predictive models for parameters 

▪ Overall, IsoPlots show how loss depends on three axes: 
model size (parameters N), dataset size (tokens D), and 
compute budget C. 

▪ They’re a tool for reasoning about how to spend your 
training budget efficiently.

▪ But it also allows one to see track effective hyperparams
(LR, batch size, etc.) changes with N, C, or D. 

▪ Lesson: 

o Don't overtune your hyperparameters at small scales 
and expect to use them at large

o Instead develop predictive metrics based on 
parameters: 

IsoPlots (Isocontours)
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How should I 
train the model? 
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Batching Data

▪ Previously we talked about the importance of 
batching data 

▪ GPUs are faster at Tensor operations and 
hence, we want to do batch processing 

▪ The lager batch of data, the faster they get 
processed. 

▪ Alas, the speedup is often sub-linear (e.g., 2x 
larger batch leads to less than 2x speedup). 

▪ If you can afford larger batch (larger GPU), 
it’s generally worth it. 

Model: 13B LLaMA on A100 GPU

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023
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Another side of batching: gradient quality

▪ It’s also about quality of your estimated gradients. 

▪ Small batch sizes will result in noisy gradients estimates. 

o Therefore, the model may not be able to converge to the optimal performances.

▪ A large batch size while giving very accurate gradient estimations will tend to make 
less use of each training token

o Slower convergence and potentially wasting compute.
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Batch sizes: some known statistics 

An Empirical Model of Large-Batch Training, 2018

LLaMA: Open and Efficient Foundation Language Models, 2023

The Llama 3 Herd of Models, 2024

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model, 2024

https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/2302.13971
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
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Dropout and other regularization

▪ Do we need regularization during pretraining?

▪ Arguments against:

o There is a lot of data (trillions of tokens), more than parameters.

o SGD only does a single pass on a corpus (hard to memorize)

▪ This is all quite reasonable…. but what do people do in practice?

[Slide credit: Tatsu Hashimoto] 
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Dropout and weight decay in practice

Many older models used 
dropout during pretraining

Newer models (except 
Qwen) rely only on weight 
decay

* Most of the times papers just don’t discuss dropout. On open models, this closely 

matches not doing dropout. This may not be true of closed models.
[Slide credit: Tatsu Hashimoto] 

Bonus
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Monitoring the convergence

▪ In practice, your model’s loss should continue 
to go down with more training on more data. 

▪ So, the real bottlenecks are: 

o (1) compute

o (2) data

▪ Sometimes training diverges (spikes in the 
loss), at which point practitioners usually 
restart training from an earlier checkpoint. 
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Monitoring the convergence with end tasks

▪ Some works have also monitored end task performance during pre-training. 

▪ Use likelihood of the correct answer rather than accuracy 

o (you don't even need to consider the incorrect answers)

▪ Very similar to the "cloze mmlu" trend where you use the probability of the full 
answer instead of A, B, C, D. 

o Not discrete metrics (e.g., Accuracy) 

Understanding Emergent Abilities of Language Models from the Loss Perspective

https://arxiv.org/pdf/2403.15796
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Monitoring the convergence with end tasks

▪ These two typically correlate, 
but not always. 

Understanding Emergent Abilities of Language Models from the Loss Perspective

https://arxiv.org/pdf/2403.15796
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Recap of training LLMs

▪ IsoPlots: for a fixed compute, which combination of parameters give you the best 
bang for the buck. 

▪ Careful batching makes your training go brrr! 

▪ Memory usage can be tricky since there are various moving parts. 

o More on distributed training later on. 

▪ Dropout is less common but you still ‘regularize’ LMs via large-scale training. 
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