
Transformer Language Models

CSCI 601-771 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/fa2025/

After Transformer …

Yang et al. Harnessing the Power of

LLMs in Practice: A Survey on

ChatGPT and Beyond, 2023

8

Impact of Transformers

▪ A building block for a variety of LMs

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-3, Gemini

❖ Other name: causal or auto-regressive language model

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, ModernBERT.

❖ Captures bidirectional context. Wait, how do we pretrain them?

❖ Examples: Transformer, T5, Meena

❖ What’s the best way to pretrain them?

33

How consistent are the architectures
used in existing LLMs?

34

Another View of Architectural Variations

Low consensus
(except pre-norm)

Most try to follow
previous successful
choices.

[Slide credit: Tatsu Hashimoto]

35

When should we do
normalization?

36

Quiz: Pre-norm vs Post-norm

▪ Which is the original implementation?

▪ Which one is your favorite?

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝑥

𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 ,

37

Pre-norm vs Post-norm

▪ Pre-norm (right) is set up so that LayerNorm
does not disrupt the residual stream (in gray).

▪ In theory, both should work fine.

▪ In practice, however, Pre-norm is
preferred over Post-norm.

[On Layer Normalization in the Transformer Architecture, 2020]

38

Pre-norm vs Post-norm — Explanation?

▪ Stability, larger LRs for large networks and no need for warm up.

[Left and right from: On Layer Normalization in the Transformer Architecture, 2020]

[middle from: Transformers without Tears: Improving the Normalization of Self-Attention, 2019]

Gradient spikes

Gradient attenuation

[Slide credit: Tatsu Hashimoto]

Bonus

No need for warm-up stage

55

Serial vs Parallel layers

56

Serial vs Parallel Layer

▪ Normal transformer blocks are serial – they compute attention, then the MLP

o Can they be parallelized? GPT-J introduced a simple change to do so!

▪ The standard “serial” formulation:

𝑦 = 𝑥 + 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥

▪ The parallel formulation:
𝑦 = 𝑥 + 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥)) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥))

o Note, LayerNorm can be shared, and matrix multiplies can be fused

▪ From PaLM paper: “The parallel formulation results in roughly 15% faster training
speed at large scales … Ablation experiments showed a small quality degradation at
8B scale but no quality degradation at 62B scale”

Notable models:
GPTJ, PaLM, GPT-NeoX

[PaLM: Scaling Language Modeling with Pathways, 2022]

https://arxiv.org/pdf/2204.02311
https://arxiv.org/pdf/2204.02311

57

Recap

▪ Pre-vs-post norm:

o Everyone does pre-norm (except OPT350M).

▪ LayerNorm vs RMSnorm:

o RMSnorm has clear compute wins, sometimes even performance.

▪ Gating:

o GLUs seem generally better, though differences are small

▪ Serial vs parallel layers:

o No extremely serious ablations; but parallel layers have a compute win.

121

Architecture Hyperparams

There are a ton of question regarding architecture hyperparameters:

▪ How much bigger should the feedforward size be compared to hidden size?

▪ How many heads? Should # of heads always divide hidden size?

▪ Should we make our model wide or deep?

122

The Surprising Consensus #1:
FFN Dimension Ratio

▪ Feedforward – model dimension ratio:

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2
𝑾1 ∈ ℝ𝑑×𝑑ff ,
𝑾2 ∈ ℝ𝑑ff×𝑑

▪ There are two dimensions that are relevant – the feedforward dim (𝑑ff) and model
dim (𝑑). What should their relationship be?

𝑑ff = 4𝑑

▪ This is almost always true. There’s just a few exceptions.

[Slide credit: Tatsu Hashimoto]

123

Why this range of multipliers?

▪ Empirically, there’s a basin between 1-10 where this hyperparameter is near-optimal.

Scaling Laws for Neural Language Models, 2020

[Slide credit: Tatsu Hashimoto]

https://arxiv.org/pdf/2001.08361

140

Summary of LLM architectures

▪ There are many architectural variations.

▪ Major differences? Position embeddings, activations, tokenization

▪ This is an evolving field; a lot of empirical analysis is going into identifying best practices.

[Picture credit: Tatsu Hashimoto]

141

Pre-training data

142

The pre-training data size and sources

▪ They vary
quite a bit!

▪ They used to be
in billions of tokens;
now they’re north
of trillions.

143

Where do we begin to collect data?

▪ Where do I find a very large dataset?

o Crawling web is non-trivial (unless you’re OpenAI or Google with ton of resources).

o But if you have to do it, be aware that websites have their own permissions
regarding which parts of their content, if any, can be crawled. (next slide)

o The alternative is to look for websites that have done the crawling for you.

147

CommonCrawl

▪ A non-profit organization that release a new crawl of the internet every month.

o So far, there have been ~100 crawls from 2008-2024.

o In 2016, a crawl took 10-12 days on 100 machines. They used Apache Nutch.

o This is not a complete of the internet. Crawls have some overlap but try to diversify.

• Common Crawl follows links from previously crawled pages.

o Also note, it respects robots.txt

▪ CC is a common sources of pre-training data.

o WARC: The raw HTTP responses, including
full web pages.

o WAT: The metadata summary from WARC files.

o WET: The extracted plaintext from WARC files,
stripping out HTML and other non-textual content.

https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html

https://blog.commoncrawl.org/blog/common-crawl-move-to-nutch
https://blog.commoncrawl.org/blog/common-crawl-move-to-nutch
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html

150

CC is messy. Is that a concern?

Besides quantity, the choice of dataset is also critical

[Slide credit: Samet Samik]

152

C4: A cleaned up pre-training dataset

▪ C4: Colossal Clean Crawled Corpus

o The course is CommonCrawl.

o English language only

o 750GB after ton of filtering

▪ Notice that the unfiltered data is quite large.

o Common Crawl is mostly not useful natural language

153

C4: The Data

Slide adapted from Colin Raffel

Remove any:
• References to Javascript
• Pages with ”{“ (no code), “Lorem ipsum”

text (dummy text), “terms of use”, etc.
• Pages with ”bad words”.

Retain:
• Sentences with terminal

punctuation marks
• Pages with at least 5 sentences,

sentences with at least 3 words

https://www.lipsum.com/
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en

154

Pre-training Data: Experiment

▪ Takeaway:

o Clean and compact data is better than large, but noisy data.

o Pre-training on in-domain data helps.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

155

Does it matter that my
data has ton of repetitions?

156

Pre-training Data Duplicates

▪ There is a non-negligible number of duplicates in any pre-training data.

Deduplicating Training Data Mitigates Privacy Risks in Language Models, 2022

157

Pre-training Data Duplicates

▪ There is a non-negligible number of duplicates in any pre-training data.

▪ Maybe we should not spend our training budget re-learning things we have already seen.

Deduplicating Training Data Makes Language Models Better, 2020

159

Deduplicating Data Improves LMs

▪ Another evidence from Gopher paper: Performance of 1.4B parameter models (lower
is better) trained on OpenWebText, C4, and versions of MassiveWeb with
progressively more pre-processing stages added.

▪ Applying a quality filter and de-duplication stages significantly improves quality.

Scaling Language Models: Methods, Analysis & Insights from Training Gopher, 2022

https://arxiv.org/pdf/2112.11446

160

How can I do my own
deduplication?

161

How do you scale data deduplication?

▪ Pre-training is huge. Naively deduplicating the data is going to take forever!!

▪ How do you deduplicate it? Here are a few options:

o Naively hashing each document (a good baseline)

o SuffixArray

o MinHash

o BloomFilters

o Embedding-based dedup

170

Comparison between dedup algorithms

▪ Single methods: BF better than any other method standalone.

▪ Combination: The competitive approaches are last row (exact -> MH -> SA) and BF-
only. The former leads to more compact data.

Li et al. DataComp-LM: In search of the next generation of training sets for language models, 2024

Individual
technique

Combined
techniques

https://arxiv.org/pdf/2406.11794
https://arxiv.org/pdf/2406.11794
https://arxiv.org/pdf/2406.11794

172

Deduplication: Recap

▪ Does it matter that my data has ton of repetitions? Yes, one should do careful dedup.

▪ How can I do my own deduplication?

o Scaling it up requires advanced data structures.

o So far, there is no clear winner between these algorithms. A “kitchen sink” approach
that mixes dedup algorithms is generally best, but it’s an empirical exercise.

o BF is generally preferred since it’s cheaper/faster.

Bonus

173

Should I worry about old data
in my pre-training?

Bonus

174

Prevalence of stale data: RedPejamas

▪ Breakdown of old versions of Wikipedia in RedPejamas

o It is based on dumps from C4, CC and a recent Wikipedia dump.

▪ The bars blow show the breakdown of older versions of Wikipedia in RedPajamas.

o There is a ton of old Wikipedia versions in RedPejamas!

▪ The solid trend is the perplexity of a pre-trained model on temporal instances of Wikipedia.

o The significant stale training data in has skewed PPL toward older versions of Wikpedia.

Dated Data: Tracing Knowledge Cutoffs in Large Language Models, 2024

Bonus

https://arxiv.org/abs/2403.12958

175

Should I worry about skew of
the data mixtures in my pre-training?

Bonus

176

Data mixtures (and the long tail)

▪ Your dataset mixture will determine the versatility of the resulting model.

▪ Data in the world is always skewed. For example,

o English has a lot more language than other domains.

o Reddit is a lot larger than science papers.

Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets, 2024
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, 2023

Bonus

https://arxiv.org/abs/2410.04579
https://arxiv.org/abs/2305.10429

177

Data mixtures (and the long tail)

▪ Your dataset mixture will determine the versatility of the resulting model.

▪ Data in the world is always skewed. For example,

o English has a lot more language than other domains.

o Reddit is a lot larger than science papers.

▪ A uniform ”weight” of data during pre-training is not good since overrepresented
domains would dominate (e.g., your model would be a better at English than Azeri).

▪ Overamplifying underrepresented domains also runs risk of overfitting.

▪ So, there is a lot of research on finding a good balance.

Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets, 2024
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, 2023

Bonus

https://arxiv.org/abs/2410.04579
https://arxiv.org/abs/2305.10429

179

Few notable data pipelines

180

LLaMA 1’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Starts with the massive crawled data by CommonCrawl.

The WET format that contains textual information.
WARC is raw, WAT is metadata, WET is text+some metadata.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

181

LLaMA 1’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Shard WET content into shards of 5GB each (one CC snapshot can have 30TB).

Then you normalize paragraphs (lowercasing, numbers as placeholders, etc),
compute per-paragraph hashes and then duplicate them.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

182

LLaMA 1’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Perform language identification and decide whether to keep or discard languages.

The order of when you do this in the pipeline can impact the language discrimination quality.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

183

LLaMA 1’s Data Pipeline

CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data, 2019

Do further quality filtering: Train a simple LM (n-gram) on target languages using Wikipedia,

then compute per-paragraph perplexity on the rest of the data:
• Very high PPL: Very different than Wiki and likely low-quality → Drop

• Very low PPL: Very similar or near duplicates to Wiki → Drop

184

DataDecomp-LM filtering pipeline

DataComp-LM: In search of the next generation of training sets for language models, 2024

Bonus

185

Few cleaned-up pre-training datasets

Dataset Example
models

Tokens Source License Lang

C4
(Raffel et al. 2020)

T5 165B CC ODC-BY English

The Pile
(Gao el al. 2020)

GPT-J, Pythia 300B 22 datasets including CC,
books, code, news

Varies by dataset subset English

RedPejamas
(Weber et al. 2024)

Llama 1 1.2T CC, C4, Github, Arxiv, Books,
Wikipedia, StackExchange

Varies by dataset subset English

RefinedWeb
(Penedo et al. 2023)

Falcon 600B CC ODC-BY 1.0 English

Dolma
(Soldaini et al. 2024)

OLMo 3T CC, C4, Gutenberg, Github,
Wikipedia, Wikibooks

ImpACT MR English

DataComp-LM
(Li et al. 2024)

SmolLM2,
DCLM

240T CC ? English

Bonus

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2411.12372
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2406.11794

186

The Pile

▪ Pile-CC: From Common Crawl; uses justText to extract useful text.

▪ PubMed Central: 5M NIH funded papers and public.

▪ arXiv: preprint for research papers since 1991 (uses latex).

▪ Gutenberg PG-19: Online books (before 2019) with copyright clearance.

▪ Books3 is a a collection of ~200K books. Has been subject of lawsuits.

▪ StackExachange: Q&A format is close to real applications.

▪ Github: Content is not just the code.

o Note, GH archive has regular snapshots of Github (commits, forks, etc.)

Slide inspiration: Percy LiangThe Pile: An 800GB Dataset of Diverse Text for Language Modeling, 2020

Bonus

https://github.com/miso-belica/jusText
https://github.com/google-deepmind/pg19
https://github.com/google-deepmind/pg19
https://github.com/google-deepmind/pg19
https://huggingface.co/datasets/defunct-datasets/the_pile_books3
https://www.wired.com/story/battle-over-books3/
https://www.gharchive.org/
https://arxiv.org/abs/2101.00027

187

Summary: preparing pre-training data

▪ Data does not fall from the sky. You have to work to get it!

▪ Finding large data: CommonCrawl has a ton of crawled dumps, but not the only one.

▪ Cleaning data can save tons of compute and even give you gains.

▪ Repetitions are often a waste of compute and deteriorate model quality.

▪ Scaling deduplication requires advanced data structures.

▪ Old data old data may skew your model predictions, but it depends on your application.

▪ Data mixtures are quite important, though depend on your downstream application.

188

The actual pre-training

193

How should we select the
right hyperparams?

194

Q: What would you do?

▪ Zuckerberg gave you a $500M budget for training Llama-10.

▪ You set aside $10M for finding the best architecture at smaller scale, assuming that
your ultimate model will be much larger.

▪ This way, you pick your parameters with rigorous experiments at small scale:

o Optimal training params: Learning rate, warmup, weight decay, etc.

o Architecture configs by scaling (each x50) the optimal values at small scale.

▪ Q: What you like (or don’t) about this recipe?

▪ Optimal depth/width, lr, batch size, weight decay, init, and residual scaling are
not scale-invariant.

195

IsoPlots: Tradeoffs at a smaller scale

▪ The performance of your model depends on a complex
combination of many factors.

▪ Goal: find the best combinations, for a fixed compute.

▪ Approach:

1. Fix a compute budget FLOP

2. Train a few models and vary their size

3. Fit a parabola and find the minimum

IsoPlots (Isocontours)

196

IsoPlots: Tradeoffs at a smaller scale

▪ The performance of your model depends on a complex
combination of many factors.

▪ Goal: find the best combinations, for a fixed compute.

▪ Approach:

1. Fix a compute budget FLOP

2. Train a few models and vary their size

3. Fit a parabola and find the minimum

4. Repeat 1-3 for various FLOP budgets

IsoPlots (Isocontours)

197

IsoPlots: Tradeoffs at a smaller scale

▪ The performance of your model depends on a complex
combination of many factors.

▪ Goal: find the best combinations, for a fixed compute.

▪ Approach:

1. Fix a compute budget FLOP

2. Train a few models and vary their size

3. Fit a parabola and find the minimum

4. Repeat 1-3 for various FLOP budgets

▪ It’s good to change various parameter (e.g., training
data, size, or other hyperparams) and see how it’s
quality (loss) changes.

IsoPlots (Isocontours)

198

Predictive models for parameters

▪ Overall, IsoPlots show how loss depends on three axes:
model size (parameters N), dataset size (tokens D), and
compute budget C.

▪ They’re a tool for reasoning about how to spend your
training budget efficiently.

▪ But it also allows one to see track effective hyperparams
(LR, batch size, etc.) changes with N, C, or D.

▪ Lesson:

o Don't overtune your hyperparameters at small scales
and expect to use them at large

o Instead develop predictive metrics based on
parameters:

IsoPlots (Isocontours)

199

How should I
train the model?

200

Batching Data

▪ Previously we talked about the importance of
batching data

▪ GPUs are faster at Tensor operations and
hence, we want to do batch processing

▪ The lager batch of data, the faster they get
processed.

▪ Alas, the speedup is often sub-linear (e.g., 2x
larger batch leads to less than 2x speedup).

▪ If you can afford larger batch (larger GPU),
it’s generally worth it.

Model: 13B LLaMA on A100 GPU

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

201

Another side of batching: gradient quality

▪ It’s also about quality of your estimated gradients.

▪ Small batch sizes will result in noisy gradients estimates.

o Therefore, the model may not be able to converge to the optimal performances.

▪ A large batch size while giving very accurate gradient estimations will tend to make
less use of each training token

o Slower convergence and potentially wasting compute.

202

Batch sizes: some known statistics

An Empirical Model of Large-Batch Training, 2018

LLaMA: Open and Efficient Foundation Language Models, 2023

The Llama 3 Herd of Models, 2024

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model, 2024

https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/2302.13971
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434

207

Dropout and other regularization

▪ Do we need regularization during pretraining?

▪ Arguments against:

o There is a lot of data (trillions of tokens), more than parameters.

o SGD only does a single pass on a corpus (hard to memorize)

▪ This is all quite reasonable…. but what do people do in practice?

[Slide credit: Tatsu Hashimoto]

208

Dropout and weight decay in practice

Many older models used
dropout during pretraining

Newer models (except
Qwen) rely only on weight
decay

* Most of the times papers just don’t discuss dropout. On open models, this closely

matches not doing dropout. This may not be true of closed models.
[Slide credit: Tatsu Hashimoto]

Bonus

212

Monitoring the convergence

▪ In practice, your model’s loss should continue
to go down with more training on more data.

▪ So, the real bottlenecks are:

o (1) compute

o (2) data

▪ Sometimes training diverges (spikes in the
loss), at which point practitioners usually
restart training from an earlier checkpoint.

213

Monitoring the convergence with end tasks

▪ Some works have also monitored end task performance during pre-training.

▪ Use likelihood of the correct answer rather than accuracy

o (you don't even need to consider the incorrect answers)

▪ Very similar to the "cloze mmlu" trend where you use the probability of the full
answer instead of A, B, C, D.

o Not discrete metrics (e.g., Accuracy)

Understanding Emergent Abilities of Language Models from the Loss Perspective

https://arxiv.org/pdf/2403.15796

214

Monitoring the convergence with end tasks

▪ These two typically correlate,
but not always.

Understanding Emergent Abilities of Language Models from the Loss Perspective

https://arxiv.org/pdf/2403.15796

216

Recap of training LLMs

▪ IsoPlots: for a fixed compute, which combination of parameters give you the best
bang for the buck.

▪ Careful batching makes your training go brrr!

▪ Memory usage can be tricky since there are various moving parts.

o More on distributed training later on.

▪ Dropout is less common but you still ‘regularize’ LMs via large-scale training.

	Slide 1: Transformer Language Models
	Slide 3: After Transformer …
	Slide 4
	Slide 8: Impact of Transformers
	Slide 33
	Slide 34: Another View of Architectural Variations
	Slide 35
	Slide 36: Quiz: Pre-norm vs Post-norm
	Slide 37: Pre-norm vs Post-norm
	Slide 38: Pre-norm vs Post-norm — Explanation?
	Slide 55
	Slide 56: Serial vs Parallel Layer
	Slide 57: Recap
	Slide 121: Architecture Hyperparams
	Slide 122: The Surprising Consensus #1: FFN Dimension Ratio
	Slide 123: Why this range of multipliers?
	Slide 140: Summary of LLM architectures
	Slide 141
	Slide 142: The pre-training data size and sources
	Slide 143: Where do we begin to collect data?
	Slide 147: CommonCrawl
	Slide 150
	Slide 151
	Slide 152: C4: A cleaned up pre-training dataset
	Slide 153: C4: The Data
	Slide 154: Pre-training Data: Experiment
	Slide 155
	Slide 156: Pre-training Data Duplicates
	Slide 157: Pre-training Data Duplicates
	Slide 159: Deduplicating Data Improves LMs
	Slide 160
	Slide 161: How do you scale data deduplication?
	Slide 170: Comparison between dedup algorithms
	Slide 172: Deduplication: Recap
	Slide 173
	Slide 174: Prevalence of stale data: RedPejamas
	Slide 175
	Slide 176: Data mixtures (and the long tail)
	Slide 177: Data mixtures (and the long tail)
	Slide 179
	Slide 180: LLaMA 1’s Data Pipeline
	Slide 181: LLaMA 1’s Data Pipeline
	Slide 182: LLaMA 1’s Data Pipeline
	Slide 183: LLaMA 1’s Data Pipeline
	Slide 184: DataDecomp-LM filtering pipeline
	Slide 185: Few cleaned-up pre-training datasets
	Slide 186: The Pile
	Slide 187: Summary: preparing pre-training data
	Slide 188
	Slide 193
	Slide 194: Q: What would you do?
	Slide 195: IsoPlots: Tradeoffs at a smaller scale
	Slide 196: IsoPlots: Tradeoffs at a smaller scale
	Slide 197: IsoPlots: Tradeoffs at a smaller scale
	Slide 198: Predictive models for parameters
	Slide 199
	Slide 200: Batching Data
	Slide 201: Another side of batching: gradient quality
	Slide 202: Batch sizes: some known statistics
	Slide 207: Dropout and other regularization
	Slide 208: Dropout and weight decay in practice
	Slide 212: Monitoring the convergence
	Slide 213: Monitoring the convergence with end tasks
	Slide 214: Monitoring the convergence with end tasks
	Slide 216: Recap of training LLMs

