
Self-Supervised Learning
Word Representations

CSCI 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Chris Manning, John Canny, Reda Bouadjenek, and many others]

HW1 is released!

● Due Tuesday.
● Has both theory (background on algebra, etc.) and programming (word similarity).
● A baseline for self-assessment.

○ Future homework may be more demanding.

“Can I use external libraries?” No, unless specified!

● Use the basic Python functions (no external libraries), unless explicitly specified.
● In almost all places, you’re not expected to write more than 3-4 lines of code.

“I can’t install Gensim 3.x.y”

● Current code is based on 3.6.0.
● If you use other version, you might need to make minor

changes to Gensim functions. Feel free to consult with Gensim
documentation.

○ This is part of any programming experience.
It's part of the job! Don't hate it, embrace it! 🤗

“My Colab Is Running Out of Memory”

● Option 1: get a more high-performing Colab: $10 for a month

○ ~ 2 x $ of Starbucks chocolate mochas
○ ~ $ of Twitter verification

● Option 2: use smaller word embeddings:

○ The output will be a bit different but that’s okay!
○ Note, the smaller vectors have smaller dimensionality.

download the pre-computed embeddings
embeddings = gensim.downloader.load('glove-twitter-50')
embeddings = gensim.downloader.load('word2vec-google-news-300')

“My Visualization Looks a Bit Different!"

● It’s possible that you visualization will be different.
● In a reasonable output, semantically similar words should be closer.

“Is Typesetting Mandatory?” No, but …

● But 10x strongly recommended.
● It is a must-have skill if you’re considering going to any research field.

“Is Typesetting Mandatory?"

● Go back to Overleaf home and ”copy” the homework template.

“Is Typesetting Mandatory?"

● Go back to Overleaf home and ”copy” the homework template.

Chapter: Self-Supervised Meaning of “Words”

1. Human language and word meaning
2. Word2vec overview

3. Word2vec objective function gradients

4. Inspecting the resulting word vectors

5. Evaluating word vectors

● Key learning today: extracting self-supervised meanings representation for word
and the (really surprising!) result that word meaning can be represented rather well by a
(high-dimensional) vector of real numbers.

“Meaning” in Inside Computer’s Brain

From perspective of your computer 🤖, which of the followings is sweeter?

(1) ”apple”
(2) 0110000101110000011100000110110001100101
(3) None

>> import bitarray
>> ba = bitarray.bitarray()
>> ba.frombytes('apple'.encode('utf-8'))
bitarray('0110000101110000011100000110110001100101')

Representing “Meaning”

● There is inherent meaning attached to symbols in computers.
○ We need to design computational frameworks for representing “meaning”.

“apple” ßà🍎

Representing “Meaning”

● There is inherent meaning attached to symbols in computers.
○ We need to design computational frameworks for representing “meaning”.

● But what is “meaning”?
○ “Meaning” according to Webster dictionary:

“apple” ßà🍎

The idea that a person wants to express
by using words, signs, etc.

There are intentions
behind these

symbols

Symbols are the
vehicle of

expression`

Difficulty of Representing “Meaning”

● One symbol can have different meanings — often inferred
from its context.

○ What is “apple”?
■ A company?
■ A fruit?
■ New York City?
■ ….

Two Schools of “Semantics”

● Semantics is concerned with the meanings of texts.
● There are two main approaches:

1. Propositional or formal semantics: A block of text is to converted into a formula in a
logical language (i.e., symbols to representing meaning).

“man bites apples” è bites(man, apple)

bites(*,*) is a binary relation among its objects.

Two Schools of “Semantics”

● Semantics is concerned with the meanings of texts.
● There are two main approaches:

1. Propositional or formal semantics: A block of text is to converted into a formula in a
logical language (i.e., symbols to representing meaning).

2. Vector representation: Texts are embedded into a high-dimensional space
○ Sentences similar in meaning should be close to this embedding (e.g. use human judgments)

“man bites apples” è bites(man, apple)

bites(*,*) is a binary relation among its objects.

“man bites apples” è (0.2, -0.3, 1.5,…) Î ℝn

Poll: which one is your favorite and why?

Two Schools of “Semantics”: Pros and Cons

● Propositional or formal semantics:

○ Pro: easy to understand
○ Con: Need to hand-written; difficult to scale up

● Vector representation:
○ Con: not easy to make sense of.
○ Pro: might be able to infer it algorithmically

● In this class, we will mainly focus on the latter.

“man bites apples” è bites(man, apple)

bites(*,*) is a binary relation among its objects.

“man bites apples” è (0.2, -0.3, 1.5,…) Î ℝn

Self-supervised learning!!

Representing Words via Vectors: Approach 1

● Question: What is the simplest way to represent a word (from a list of N
words) with a vector?

Representing Words via Vectors: Approach 1

● Question: What is the simplest way to represent a word (from a list of N
words) with a vector?

● Here is an idea:
○ Create N-dimensional vectors for

each words
○ Except the corresponding element to 1,

and zero the rest

● These are called “one-hot” vectors

● What are the limitations of one-hot vectors?

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Limitations of One-hot Meaning Vectors

● Extremely long vectors:
○ # of words in vocabulary (e.g., 500,000+)

● Word vectors are not comparable: No meaningful comparison we can make
between word vectors other than equality testing.

● Example: in web search, if a user searches
for “motel”, we would like to match

documents containing “hotel”.
○ There is no natural notion of similarity for one-hot vectors!

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Representing Words via Vectors: Approach 2

● Learn vector representation such that words similar in meaning are closer.

● Note about terminology: word vectors are also called (word) embeddings or
(neural) word representations They are a distributed representation.

● Question: what kind of algorithm can learn such representations?

“motel” à

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271

0.413
0.582
−0.007
0.247
0.216
−0.718
0.147
0.051

“hotel” à

Similar Meaning ~ Similar Contexts

● Similar words occur in similar contexts

● Distributional semantics: foundation of many modern NLP models.

● Note, here we use a narrow definition for “context”:
○ Context is the set of words that appear nearby (within a fixed-size window) a given word w.

“You shall know a word by the company it keeps” (John Rupert Firth 1957)

These context words will represent "hotel”

As an establishment providing accommodations provide a variety of amenities ...
A motel, an abbreviation for "motor ", is a small-sized low-rise lodging ...

One of the first was opened in Exeter in 1768 ...

hotel
hotel
hotel

Toward an Algorithms for Distributional Semantics

● Similar words occur in similar contexts
○ Use this principle to build algorithms for self-learning

● Specifically, embed words such that their embeddings are predictive of their
contexts à Word2vec algorithm

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

[Distributed Representations of Words and Phrases and their Compositionality. Mikolov et al. 2013]

Word2Vec: Overview

● Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
1. Collect a large corpus of sentences (e.g., Wikipedia)
2. Every word in a fixed vocabulary is represented by a vector

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

[Distributed Representations of Words and Phrases and their Compositionality. Mikolov et al. 2013]

Word2Vec: Overview

● Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
1. Collect a large corpus of sentences (e.g., Wikipedia)
2. Every word in a fixed vocabulary is represented by a vector
3. For each position in the text, consider the “center” word c and context (“outside”) words o

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

[Distributed Representations of Words and Phrases and their Compositionality. Mikolov et al. 2013]

The pairs of center word/context word are called “skip-grams.”
Typical distances are 3-5 word positions.

Word2Vec: Overview

● Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
1. Collect a large corpus of sentences (e.g., Wikipedia)
2. Every word in a fixed vocabulary is represented by a vector
3. For each position in the text, consider the “center” word c and context (“outside”) words o
4. Define a context predictability measure; i.e., the probability of o given c (or vice versa)

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

[Distributed Representations of Words and Phrases and their Compositionality. Mikolov et al. 2013]

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

Word2Vec: Overview

● Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
1. Collect a large corpus of sentences (e.g., Wikipedia)
2. Every word in a fixed vocabulary is represented by a vector
3. For each position in the text, consider the “center” word c and context (“outside”) words o
4. Define a context predictability measure; i.e., the probability of o given c (or vice versa)

[Distributed Representations of Words and Phrases and their Compositionality. Mikolov et al. 2013]

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

Word2Vec Representation via Maximum-Likelihood

● Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
1. Collect a large corpus of sentences (e.g., Wikipedia)
2. Every word in a fixed vocabulary is represented by a vector
3. For each position in the text, consider the “center” word c and “outside” context words o
4. Define a context predictability measure; i.e., the probability of o given c (or vice versa)
5. Keep adjusting the word vectors to maximize this probably

[Distributed Representations of Words and Phrases and their Compositionality. Mikolov et al. 2013]

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

Word2Vec Probabilities: Pop Quiz

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

What is the right expression for 𝑃 𝑤!"# 𝑤!) ?

(A) 𝑃 problems | into (B) 𝑃 cries | into

(C) 𝑃 problems | cries (D) 𝑃 into | cries

Word2Vec Probabilities

● Question: what is a simple way to define 𝑃 𝑤!"#|𝑤!; 𝜃 ?

Word2Vec Probabilities

● Question: what is a simple way to define 𝑃 𝑤!"#|𝑤!; 𝜃 ?
● Answer: We will use two vectors per word w:

○ 𝑣! when w is a center word
○ 𝑢! when w is a outside (context) word
○ This creates a bit redundancy, but it will simplify the exposition/derivations.
○ We will average these after the optimization is done.

bankinginto

𝑃 𝑜 𝑐)

𝑣" 𝑢#

Word2Vec Probabilities

● Question: what is a simple way to define 𝑃 𝑤!"#|𝑤!; 𝜃 ?
● Answer: We will use two vectors per word w:

○ 𝑣! when w is a center word
○ 𝑢! when w is a outside (context) word

● Choose a measure of similarity, for example, dot product:

● Then for a center word c and a context word o, dot product of their representation
𝑢$ and 𝑣% be higher if tend to co-occur.

bankinginto

𝑃 𝑜 𝑐)

𝑣" 𝑢#

Word2Vec Probabilities

● Question: what is a simple way to define 𝑃 𝑤!"#|𝑤!; 𝜃 ?
● Then for a center word c and a context word o define a similarity metric between

their embeddings.

● The learnable parameters of this model are 𝜃 = {𝑢& , 𝑣& , ∀𝑥 ∈ 𝑉}

𝑃 𝑜 𝑐) =
exp 𝑢$%𝑣&

∑'∈) exp 𝑢'%𝑣&

Notice the dot product!

Word2Vec Probabilities: An Example

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

𝑃 𝑤!*# 𝑤!) = 𝑝 problems|into =
exp 𝑢+,-./012% 𝑣345-
∑'∈) exp 𝑢'%𝑣345-

𝑃 𝑜 𝑐) =
exp 𝑢$%𝑣&

∑'∈) exp 𝑢'%𝑣&

If the representation of
𝑜 and 𝑐 are similar,

they tend to co-occur.

Word2Vec Probabilities: Pop Quiz

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

What is the right expression for 𝑃 𝑤!"# 𝑤!) = 𝑃 cries|into ?

(A)
"#$ %$%&'(

) &&*+,
∑-∈/ "#$ %-)&&*+,

(B)
"#$ %&*+,

) &$%&'0
∑-∈/ "#$ %-)&$%&'0

(C)
"#$ %$%&'0

) &&*+,
∑-∈/ "#$ %-)&&*+, (D)

"#$ %1%,23'40
) &&*+,

∑-∈/ "#$ %-)&$%&'0

𝑃 𝑜 𝑐) =
exp 𝑢$%𝑣&

∑'∈) exp 𝑢'%𝑣&

Word2Vec Probabilities: SoftMax Function

● This is an example use of the softmax functionℝ𝑛 → (0,1)𝑛

● The SoftMax function maps arbitrary values 𝑥i to a probability distribution 𝑝i
○ “max” because amplifies probability of largest 𝑥i
○ “soft” because still assigns some probability to smaller 𝑥i
○ Frequently used in Deep Learning

𝑃 𝑜 𝑐 = 𝑜 𝑐exp(𝑢𝑇𝑣)
∑/ ∈𝑉 / 𝑐exp(𝑢𝑇𝑣)

i=1𝑢𝑇𝑣 = 𝑢. 𝑣 = ∑𝑛 𝑢i𝑣i
Larger dot product = larger probability

③Normalize over entire
vocabulary to give probability
distribution

②Exponentiation makes anything positive ①Dot product compares similarity of o and c.

Word2Vec Probabilities: Pop Quiz

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

What is the computational cost of computing 𝑃 𝑜 𝑐)?

(A) constant (B) O(|V|) (C) O(|V|+d) (D) O(|V|xd)

𝑃 𝑜 𝑐) =
exp 𝑢$%𝑣&

∑'∈) exp 𝑢'%𝑣&

Word2Vec Representation via Maximum-Likelihood

● For each position 𝑡 = 1,… , 𝑇 predict context words within a window
of fixed size m, given center word 𝑤𝑡.

● Data likelihood:

Goal: maximizing likelihood with respect to its parameters 𝜃

Pop Quiz

● Define 𝑓 𝑥 = −𝑔 𝑥 . In order to maximize 𝑓 𝑥 , we can:

(A) maximize 𝑔 𝑥
(B) minimize 𝑔 𝑥
(C) minimize 𝑔 −𝑥
(D) None of the above

Word2Vec Representation via Maximum-Likelihood

● For each position 𝑡 = 1,… , 𝑇 predict context words within a window of fixed size m,
given center word 𝑤𝑡. Data likelihood:

● The objective function 𝐽 𝜃 is the (average) negative log likelihood:

maximizing likelihood ⟺maximizing predictive accuracy ⟺ minimizing objective function

Training the Model via Minimizing the Loss

● To train a model, we gradually adjust parameters 𝜃 to minimize a loss 𝐽 𝜃
● Recall:

○ 𝜃 represents all the model
parameters, in one long vector

○ With d-dimensional vectors and
V-many words, we have à

○ every word has
two vectors

● We optimize these parameters by walking down the gradient computed
with respect to the word vectors (see the right figure).

Optimization Recap: Gradient Descent

● We have a cost function 𝐽 𝜃 we want to minimize
○ We can use Gradient Descent algorithm!

● Idea: for current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in
direction of negative gradient. Repeat.

● Note: Our objectives may not be
convex like this. But life turns out to be okay!

Optimization Recap: Gradient Descent (1): Intuition

● Imagine you’re blindfolded
● Need to walk down a hill
● You can use your hands

to find the directions
that may be downhill

[slide: Andrej Karpathy]

Optimization Recap: Gradient Descent (2): Intuition

● In 1-dimension, the derivative of a function:

● Why step in direction of negative gradient?
○ Gradient quantifies how rapidly the

function 𝐿(𝜃) varies when we change
the argument 𝜃# by a tiny amount.

𝜕𝐿
𝜕𝜃:

= lim
;→=

𝐿 𝜃: + ℎ − 𝐿(𝜃:)
ℎ

Optimization Recap: Gradient Descent (3)

● Update equation (in matrix notation):

● Update equation (for single parameter):

● Algorithm:

𝛼 = step size or learning rate

• Iteratively subtract the gradient with respect to the model parameters (𝜃)
• i.e., we’re moving in a direction opposite to the gradient of the loss 𝐿(𝜃)
• I.e., we’re moving towards smaller loss 𝐿(𝜃)

Optimization Recap: Gradient Descent (4)

● Update equation (in matrix notation):

[demo credit: ICMS YouTube channel]

Optimization Recap: Gradient Descent (5): Setting the Step Size

● What is a good value for step size 𝛼?

○ If 𝛼 = too small, it may be too slow
○ If 𝛼 = too large, it may oscillate

● It may take trial-and-errors to find the sweet spot.
● Another trick is to define a “schedule” for gradually reducing the learning rate

starting from a large number.
○ More on this in the homework! J

[figure from: https://www.jeremyjordan.me/nn-learning-rate/]

https://www.jeremyjordan.me/nn-learning-rate/

Computing the Gradients for Word2Vec

● Minimize the objective function (log-likelihood):

● Derivatives of “center” vectors:

● Derivatives of “outside” vectors:

𝐽 𝜃 = −
1
𝑇5
()*

+

5
,-./.-
/01

log 𝑃 𝑤(2/ 𝑤(; 𝜃)

text length window size

𝜕
𝜕𝑣3

𝐽 𝜃 = ?

𝜕
𝜕𝑢3

𝐽 𝜃 = ?

We will derive the gradients with respect to
the ”center” vectors. Similar calculations

for “outside” vectors (homework!!)

Today’s Recap

● The fundamental question: how to represent and learn “meaning” of symbols.

● Semantics: formal/propositional semantics vs. distributional semantics.

● We learned about the core of Word2Vev (SkipGram algorithm).
○ HW1 is basically using the resulting vectors from Word2Vec.

● Learning word embeddings via Gradient Descent: next time!

