Self-Supervised Learning Word Representations

CSCI 601 471/671 NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Chris Manning, John Canny, Reda Bouadjenek, and many others]

HW1 is released!

- Due Tuesday.
- Has both theory (background on algebra, etc.) and programming (word similarity).
- A **baseline** for self-assessment.
 - Future homework may be more demanding.

"Can I use external libraries?" No, unless specified!

- Use the basic Python functions (no external libraries), unless explicitly specified.
- In almost all places, you're not expected to write more than 3-4 lines of code.

```
[ ] # a function that resturns the top `k` most similar words to `input_word`
def my_most_similar(input_word, k):
    words = embeddings.vocab.keys() # list of words covered by this word embedding
    input_word_emd = embeddings[input_word]
    ### START CODE HERE ###
    ### END CODE HERE ###
    return top_k_most_similar_words
    my_most_similar('cat', 10)
```

- "I can't install Gensim 3.x.y"
 - Current code is based on 3.6.o.
 - If you use other version, you might need to make minor changes to Gensim functions. Feel free to consult with Gensim documentation.
 - This is part of any programming experience.
 It's part of the job! Don't hate it, embrace it!

"My Colab Is Running Out of Memory"

Your session crashed after using all available RAM. If you are interested in access to high-RAM runtimes, you may want to check out <u>Colab Pro</u>.

X View runtime loas

- Option 1: get a more high-performing Colab: \$10 for a month
 - 0 ~ 2 x \$ of Starbucks chocolate mochas
 - o ~ \$ of Twitter verification
- Option 2: use smaller word embeddings:

```
# download the pre-computed embeddings
# embeddings = gensim.downloader.load('glove-twitter-50')
embeddings = gensim.downloader.load('word2vec-google-news-300')
```

- The output will be a bit different but that's okay!
- Note, the smaller vectors have smaller dimensionality.

"My Visualization Looks a Bit Different!"

- It's possible that you visualization will be different.
- In a reasonable output, semantically similar words should be closer.

"Is Typesetting Mandatory?" No, but ...

- But **10x strongly** recommended.
- It is a must-have skill if you're considering going to any research field.

"Is Typesetting Mandatory?"

● ● ● Ő Your Projects - Overleaf, Onlin∈ × +							
\leftarrow \rightarrow C \triangle ht		☆ ≂ :					
Överleaf			Help• Pro	ojects Account •			
New Project	Q Search projects						
All Projects	□ Title	Owner	Last Modified 🔻	Actions			
Your Projects	Luleå University of Technology lab report template	You	14 days ago	e e			
Shared with you	University ×						
Archived Projects	JASA_LaTex	You	a month ago	4 🕹 🛥			
V1 Projects	□ AIP Conference Proceedings template Conferences ×	You	a month ago	Ca 🕰 🕰			
TAGS/FOLDERS	Quantum Journal template Journals ×	You	2 months ago	e e			
+ New Folder	NUST MSc Thesis University × Thesis ×	You	2 months ago	en e			
🗅 Bibliographies	Focus Beamer Theme Presentations ×	You	2 months ago	en 🛛 🗠			
(9)	Canadian Journal of Economics template Journals ×	You	3 months ago	e e			
🗅 Books (20)	Turk J Elec Eng & Comp Sci Template Journals ×	You	3 months ago	Ca 🗛 📮			
Welcome to Overleaf v2!				_			

• Go back to Overleaf home and "copy" the homework template.

"Is Typesetting Mandatory?"

• Go back to Overleaf home and "copy" the homework template.

Chapter: Self-Supervised Meaning of "Words"

- 1. Human language and word meaning
- 2. Word2vec overview
- 3. Word2vec objective function gradients
- 4. Inspecting the resulting word vectors
- 5. Evaluating word vectors

• **Key learning today:** extracting self-supervised meanings representation for word and the (really surprising!) result that word meaning can be represented rather well by a (high-dimensional) vector of real numbers.

"Meaning" in Inside Computer's Brain

From perspective of **your computer a**, which of the followings is **sweeter**?

(1) "apple"

(3) None

```
>> import bitarray
>> ba = bitarray.bitarray()
>> ba.frombytes('apple'.encode('utf-8'))
bitarray('01100001011100000111010001101100101')
```

Representing "Meaning"

- There is inherent meaning attached to symbols in computers.
 - We need to design computational frameworks for **representing** "meaning".

Representing "Meaning"

There is inherent meaning attached to symbols in computers.
 We need to design computational frameworks for representing "meaning".

Difficulty of Representing "Meaning"

- One **symbol** can have different **meanings** often inferred from its **context**.
 - What is "apple"?
 - A company?
 - A fruit?

. . . .

New York City?

Two Schools of "Semantics"

- **Semantics** is concerned with the meanings of texts.
- There are two main approaches:

1. Propositional or formal semantics: A block of text is to converted into a formula in a logical language (i.e., symbols to representing meaning).

"man bites apples" → bites(man, apple)
bites(*,*) is a binary relation among its objects.

Two Schools of "Semantics"

- **Semantics** is concerned with the meanings of texts.
- There are two main approaches:

1. Propositional or formal semantics: A block of text is to converted into a formula in a logical language (i.e., symbols to representing meaning).

"man bites apples" → bites(man, apple)
bites(*,*) is a binary relation among its objects.

- 2. Vector representation: Texts are embedded into a high-dimensional space
- Sentences similar in meaning should be close to this embedding (e.g. use human judgments)

"man bites apples" \rightarrow (0.2, -0.3, 1.5,...) $\in \mathbb{R}^n$

Poll: which one is your favorite and why?

Two Schools of "Semantics": Pros and Cons

• Propositional or formal semantics:

"man bites apples" → bites(man, apple)

- O Pro: easy to understand
- o Con: Need to hand-written; difficult to scale up

• Vector representation:

"man bites apples" \rightarrow (0.2, -0.3, 1.5,...) $\in \mathbb{R}^n$

bites(*,*) is a binary relation among its objects.

- Con: not easy to make sense of.
- Pro: might be able to infer it algorithmically

Self-supervised learning!!

• In this class, we will mainly focus on the latter.

Representing Words via Vectors: Approach 1

• **Question:** What is the simplest way to represent a word (from a list of N words) with a vector?

Representing Words via Vectors: Approach 1

- **Question:** What is the simplest way to represent a word (from a list of N words) with a vector?
- Here is an idea:
 - Create N-dimensional vectors for each words
 - Except the corresponding element to 1, and zero the rest
- These are called "one-hot" vectors
- What are the limitations of one-hot vectors?

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0]

Limitations of One-hot Meaning Vectors

• Extremely long vectors:

- o # of words in vocabulary (e.g., 500,000+)
- Word vectors are not comparable: No meaningful comparison we can make between word vectors other than equality testing.
- Example: in web search, if a user searches for "motel", we would like to match documents containing "hotel".

motel = [00000000000000] hotel = [0000000000000]

• There is no natural notion of similarity for one-hot vectors!

Representing Words via Vectors: Approach 2

• Learn vector representation such that words similar in meaning are closer.

"motel"	\rightarrow	0.286	"hotel" →	0.413
		0.792		0.582
		-0.177		-0.007
		-0.107		0.247
		0.109		0.216
		-0.542		-0.718
		0.349		0.147
		0.271		0.051

- Note about terminology: word vectors are also called (word) embeddings or (neural) word representations They are a distributed representation.
- **Question:** what kind of algorithm can learn such representations?

Similar Meaning ~ Similar Contexts

• *Similar words* occur in *similar contexts*

"You shall know a word by the company it keeps" (John Rupert Firth 1957)

• **Distributional semantics:** foundation of many modern NLP models.

As an establishment providing accommodations hotel provide a variety of amenities ... A motel, an abbreviation for "motor hotel ", is a small-sized low-rise lodging ... One of the first hotel was opened in Exeter in 1768 ...

These context words will represent "hotel"

- Note, here we use a narrow definition for "context":
 - Context is the set of words that appear nearby (within a fixed-size window) a given word w.

Toward an Algorithms for Distributional Semantics

• Similar words occur in similar contexts

- o Use this principle to build algorithms for self-learning
- Specifically, embed words such that their embeddings are predictive of their contexts → Word2vec algorithm

- Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
 - 1. Collect a large corpus of sentences (e.g., Wikipedia)
 - 2. Every word in a fixed vocabulary is represented by a vector

- Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
- 1. Collect a large corpus of sentences (e.g., Wikipedia)
- 2. Every word in a fixed vocabulary is represented by a vector
- 3. For each position in the text, consider the "center" word **c** and context ("outside") words **o**

- Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
- 1. Collect a large corpus of sentences (e.g., Wikipedia)
- 2. Every word in a fixed vocabulary is represented by a vector
- 3. For each position in the text, consider the "center" word **c** and context ("outside") words **o**
- 4. Define a **context predictability measure**; i.e., **the probability** of **o** given **c** (or vice versa)

- Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
- 1. Collect a large corpus of sentences (e.g., Wikipedia)
- 2. Every word in a fixed vocabulary is represented by a vector
- 3. For each position in the text, consider the "center" word **c** and context ("outside") words **o**
- 4. Define a context predictability measure; i.e., the probability of o given c (or vice versa)

Word2Vec Representation via Maximum-Likelihood

- Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
- 1. Collect a large corpus of sentences (e.g., Wikipedia)
- 2. Every word in a fixed vocabulary is represented by a vector
- 3. For each position in the text, consider the "center" word **c** and "outside" context words **o**
- 4. Define a context predictability measure; i.e., the probability of o given c (or vice versa)
- 5. Keep adjusting the word vectors to maximize this probably

respond at PollEv.com/danielkhashabi994

Word2Vec Probabilities: Pop Quiz

What is the right expression for $P(w_{t+2} | w_t)$?

(A) P(problems | into) (B) P(cries | into)

(C) *P*(problems | cries)

(D) *P*(into | cries)

• **Question:** what is a simple way to define $P(w_{t+j}|w_t;\theta)$?

- **Question:** what is a simple way to define $P(w_{t+j}|w_t;\theta)$?
- Answer: We will use two vectors per word w:
 - o v_w when w is a **center** word
 - u_w when w is a **outside** (context) word
 - This creates a bit redundancy, but it will simplify the exposition/derivations.
 - We will average these after the optimization is done.

- **Question:** what is a simple way to define $P(w_{t+i}|w_t;\theta)$?
- **Answer:** We will use **two** vectors per word w:
 - $v_{\rm w}$ when w is a **center** word 0
 - u_w when w is a **outside** (context) word 0
- Choose a measure of similarity, for example, dot product:

 $P(o \mid c)$

into

banking

Then for a center word **c** and a context word **o**, dot product of their representation u_0 and v_c be higher if tend to co-occur.

- **Question:** what is a simple way to define $P(w_{t+j}|w_t;\theta)$?
- Then for a center word **c** and a context word **o** define a similarity metric between their embeddings.

$$P(o \mid c) = \frac{\exp(u_o^T v_c)}{\sum_{x \in V} \exp(u_x^T v_c)}$$
Notice the dot product!

• The learnable parameters of this model are $\theta = \{u_w, v_w, \forall x \in V\}$

Word2Vec Probabilities: An Example

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{x \in V} \exp(u_x^T v_c)} \qquad \qquad \text{If the representation of } o \text{ and } c \text{ are similar, } they tend to co-occur.}$$

$$P(w_{t-2} | w_t) = p(\text{problems}|\text{into}) = \frac{\exp(u_{\text{problems}}^T v_{\text{into}})}{\sum_{x \in V} \exp(u_x^T v_{\text{into}})}$$

Word2Vec Probabilities: Pop Quiz

What is the right expression for $P(w_{t+2} | w_t) = P(\text{cries}|\text{into})$?

Word2Vec Probabilities: SoftMax Function

• This is an example use of the softmax function $\mathbb{R}^n \to (0,1)^n$

softmax
$$(x_i) = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)}$$

- The SoftMax function maps arbitrary values x_i to a probability distribution p_i
 - "max" because amplifies probability of largest *x*i
 - "soft" because still assigns some probability to smaller *x*i
 - Frequently used in Deep Learning

(2) Exponentiation makes anything positive

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{\ell \in V} \exp(u_\ell^T v_c)}$$

(1) Dot product compares similarity of o and c. $u^T v = u. v = \sum_{i=1}^n u_i v_i$ Larger dot product = larger probability

3 Normalize over entire vocabulary to give probability distribution

Word2Vec Probabilities: Pop Quiz

What is the computational cost of computing P(o|c)?

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{x \in V} \exp(u_x^T v_c)}$$

Word2Vec Representation via Maximum-Likelihood

- For each position t = 1, ..., T predict context words within a window of fixed size **m**, given center word w_t .
- Data likelihood:

Likelihood =
$$L(\theta) = \prod_{\substack{t=1 \\ j \neq 0}}^{T} \prod_{\substack{m \leq j \leq m \\ j \neq 0}} P(w_{t+j} \mid w_t; \theta)$$

Goal: maximizing likelihood with respect to its parameters θ

Pop Quiz

• Define f(x) = -g(x). In order to maximize f(x), we can:

(A) maximize g(x)(B) minimize g(x)(C) minimize g(-x)(D) None of the above

respond at PollEv.com/danielkhashabi994

Word2Vec Representation via Maximum-Likelihood

• For each position t = 1, ..., T predict context words within a window of fixed size **m**, given center word w_t . Data likelihood:

• The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T}\log L(\theta) = -\frac{1}{T}\sum_{t=1}^{T}\sum_{\substack{-m \le j \le m \\ j \ne 0}}\log P(w_{t+j} \mid w_t; \theta)$$

<u>maximizing</u> likelihood \Leftrightarrow <u>maximizing</u> predictive accuracy \Leftrightarrow <u>minimizing</u> objective function

Training the Model via Minimizing the Loss

- To train a model, we gradually adjust parameters θ to minimize a loss $J(\theta)$
- Recall:
- o θ represents all the model parameters, in one long vector
- With d-dimensional vectors and
 V-many words, we have →
- every word has two vectors

• We optimize these parameters by walking down the gradient computed with respect to the word vectors (see the right figure).

Optimization Recap: Gradient Descent

- We have a cost function $J(\theta)$ we want to minimize
 - We can use Gradient Descent algorithm!
- Idea: for current value of θ , calculate gradient of $J(\theta)$, then take small step in direction of negative gradient. Repeat.

 Note: Our objectives may not be convex like this. But life turns out to be okay!

Optimization Recap: Gradient Descent (1): Intuition

- Imagine you're blindfolded
- Need to walk down a hill
- You can use your hands to find the directions that may be downhill

[slide: Andrej Karpathy]

Optimization Recap: Gradient Descent (2): Intuition

- In 1-dimension, the **derivative** of a function:
- Why step in direction of negative gradient?
 - Gradient quantifies how rapidly the function $L(\theta)$ varies when we change the argument θ_i by a tiny amount.

$$\frac{\partial L}{\partial \theta_j} = \lim_{h \to 0} \frac{L(\theta_j + h) - L(\theta_j)}{h}$$

Optimization Recap: Gradient Descent (3)

• Update equation (in matrix notation):

$$\alpha$$
 = step size or learning rate

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

• Update equation (for single parameter):

$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial}{\partial \theta_j^{old}} J(\theta)$$

- Iteratively subtract the gradient with respect to the model parameters (θ)
- i.e., we're moving in a direction opposite to the gradient of the loss $L(\theta)$
- I.e., we're moving towards smaller loss $L(\theta)$
- Algorithm:

```
while True:
    theta_grad = evaluate_gradient(J,corpus,theta)
    theta = theta - alpha * theta_grad
```

Optimization Recap: Gradient Descent (4)

• Update equation (in matrix notation): $heta^{new}= heta^{old}-lpha
abla_ heta J(heta)$

[demo credit: ICMS YouTube channel]

Optimization Recap: Gradient Descent (5): Setting the Step Size

• What is a good value for step size α ?

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

- It may take trial-and-errors to find the sweet spot.
- Another trick is to define a "schedule" for gradually reducing the learning rate starting from a large number.
 - o More on this in the homework! \bigcirc

Computing the Gradients for Word2Vec

• Minimize the objective function (log-likelihood):

• Derivatives of "center" vectors:

Derivatives of "outside" vectors:

$$\frac{\partial}{\partial v_c} J(\theta) = ?$$
$$\frac{\partial}{\partial u_c} J(\theta) = ?$$

We will derive the gradients with respect to the "center" vectors. Similar calculations for "outside" vectors (homework!!)

Today's Recap

- The fundamental question: how to represent and learn "meaning" of symbols.
- **Semantics:** formal/propositional semantics vs. distributional semantics.
- We learned about the core of Word2Vev (SkipGram algorithm).
 - HW1 is basically using the resulting vectors from Word2Vec.
- Learning word embeddings via Gradient Descent: next time!