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HW1 is released!

● Due Tuesday. 
● Has both theory (background on algebra, etc.) and programming (word similarity). 
● A baseline for self-assessment. 

○ Future homework may be more demanding. 



“Can I use external libraries?” No, unless specified! 

● Use the basic Python functions (no external libraries), unless explicitly specified. 
● In almost all places, you’re not expected to write more than  3-4 lines of code. 



“I can’t install Gensim 3.x.y”

● Current code is based on 3.6.0. 
● If you use other version, you might need to make minor 

changes to Gensim functions. Feel free to consult with Gensim
documentation.  

○ This is part of any programming experience. 
It's part of the job! Don't hate it, embrace it! 🤗



“My Colab Is Running Out of Memory” 

● Option 1: get a more high-performing Colab: $10 for a month 

○ ~ 2 x $ of Starbucks chocolate mochas 
○ ~ $ of Twitter verification 

● Option 2: use smaller word embeddings:  

○ The output will be a bit different but that’s okay! 
○ Note, the smaller vectors have smaller dimensionality. 

# download the pre-computed embeddings 
# embeddings = gensim.downloader.load('glove-twitter-50')
embeddings = gensim.downloader.load('word2vec-google-news-300')



“My Visualization Looks a Bit Different!"

● It’s possible that you visualization will be different. 
● In a reasonable output, semantically similar words should be closer. 



“Is Typesetting Mandatory?” No, but … 

● But 10x strongly recommended. 
● It is a must-have skill if you’re considering going to any research field.



“Is Typesetting Mandatory?"

● Go back to Overleaf home and ”copy” the homework template. 



“Is Typesetting Mandatory?"

● Go back to Overleaf home and ”copy” the homework template. 



Chapter: Self-Supervised Meaning of “Words”

1. Human language and word meaning
2. Word2vec overview 

3. Word2vec objective function gradients 

4. Inspecting the resulting word vectors 

5. Evaluating word vectors 

● Key learning today: extracting self-supervised meanings representation for word 
and the (really surprising!) result that word meaning can be represented rather well by a
(high-dimensional) vector of real numbers. 



“Meaning” in Inside Computer’s Brain 

From perspective of your computer 🤖, which of the followings is sweeter? 

(1)  ”apple” 
(2)  0110000101110000011100000110110001100101 
(3)  None 

>> import bitarray
>> ba = bitarray.bitarray()
>> ba.frombytes('apple'.encode('utf-8'))
bitarray('0110000101110000011100000110110001100101')



Representing “Meaning” 

● There is inherent meaning attached to symbols in computers. 
○ We need to design computational frameworks for representing “meaning”. 

“apple” ßà🍎



Representing “Meaning” 

● There is inherent meaning attached to symbols in computers. 
○ We need to design computational frameworks for representing “meaning”. 

● But what is “meaning”? 
○ “Meaning” according to Webster dictionary: 

“apple” ßà🍎

The idea that a person wants to express 
by using words, signs, etc.

There are intentions
behind these 

symbols

Symbols are the 
vehicle of 

expression`



Difficulty of Representing “Meaning” 

● One symbol can have different meanings — often inferred 
from its context. 

○ What is “apple”? 
■ A company? 
■ A fruit? 
■ New York City? 
■ …. 



Two Schools of “Semantics”

● Semantics is concerned with the meanings of texts. 
● There are two main approaches: 

1. Propositional or formal semantics: A block of text is to converted into a formula in a 
logical language (i.e., symbols to representing meaning). 

“man bites apples”  è bites(man, apple)

bites(*,*) is a binary relation among its objects. 



Two Schools of “Semantics”

● Semantics is concerned with the meanings of texts. 
● There are two main approaches: 

1. Propositional or formal semantics: A block of text is to converted into a formula in a 
logical language (i.e., symbols to representing meaning). 

2. Vector representation: Texts are embedded into a high-dimensional space
○ Sentences similar in meaning should be close to this embedding (e.g. use human judgments)

“man bites apples”  è bites(man, apple)

bites(*,*) is a binary relation among its objects. 

“man bites apples” è (0.2, -0.3, 1.5,…) Î ℝn

Poll: which one is your favorite and why? 



Two Schools of “Semantics”: Pros and Cons

● Propositional or formal semantics: 

○ Pro: easy to understand
○ Con: Need to hand-written; difficult to scale up

● Vector representation:
○ Con: not easy to make sense of. 
○ Pro: might be able to infer it algorithmically

● In this class, we will mainly focus on the latter. 

“man bites apples”  è bites(man, apple)

bites(*,*) is a binary relation among its objects. 

“man bites apples” è (0.2, -0.3, 1.5,…) Î ℝn

Self-supervised learning!! 



Representing Words via Vectors: Approach 1 

● Question: What is the simplest way to represent a word (from a list of N 
words) with a vector? 



Representing Words via Vectors: Approach 1 

● Question: What is the simplest way to represent a word (from a list of N 
words) with a vector? 

● Here is an idea: 
○ Create N-dimensional vectors for 

each words
○ Except the corresponding element to 1,

and zero the rest 

● These are called “one-hot” vectors

● What are the limitations of one-hot vectors? 

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] 

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]



Limitations of One-hot Meaning Vectors

● Extremely long vectors: 
○ # of words in vocabulary (e.g., 500,000+)

● Word vectors are not comparable: No meaningful comparison we can make 
between word vectors other than equality testing.

● Example: in web search, if a user searches
for “motel”, we would like to match 

documents containing “hotel”.
○ There is no natural notion of similarity for one-hot vectors!

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] 

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]



Representing Words via Vectors: Approach 2

● Learn vector representation such that words similar in meaning are closer. 

● Note about terminology: word vectors are also called (word) embeddings or
(neural) word representations They are a distributed representation. 

● Question: what kind of algorithm can learn such representations? 

“motel” à

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271

0.413
0.582
−0.007
0.247
0.216
−0.718
0.147
0.051

“hotel” à



Similar Meaning ~ Similar Contexts 

● Similar words occur in similar contexts 

● Distributional semantics: foundation of many modern NLP models. 

● Note, here we use a narrow definition for “context”:
○ Context is the set of words that appear nearby (within a fixed-size window) a given word w. 

“You shall know a word by the company it keeps” (John Rupert Firth 1957)

These context words will represent "hotel”

As an establishment providing accommodations      provide a variety of amenities ...
A motel, an abbreviation for "motor       ", is a small-sized low-rise lodging ...

One of the first       was opened in Exeter in 1768 ...

hotel
hotel
hotel



Toward an Algorithms for Distributional Semantics 

● Similar words occur in similar contexts
○ Use this principle to build algorithms for self-learning

● Specifically, embed words such that their embeddings are predictive of their 
contexts à Word2vec algorithm

…crisesbankingintoturningproblems… as

outside context words center word outside context words 
in window of size 2 at position t in window of size 2

[Distributed Representations of Words and Phrases and their Compositionality. Mikolov et al.  2013]



Word2Vec: Overview

● Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
1. Collect a large corpus of sentences (e.g., Wikipedia)
2. Every word in a fixed vocabulary is represented by a vector
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3. For each position in the text, consider the “center” word c and context (“outside”) words o
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The pairs of center word/context word are called “skip-grams.” 
Typical distances are 3-5 word positions. 



Word2Vec: Overview

● Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
1. Collect a large corpus of sentences (e.g., Wikipedia)
2. Every word in a fixed vocabulary is represented by a vector
3. For each position in the text, consider the “center” word c and context (“outside”) words o
4. Define a context predictability measure; i.e., the probability of o given c (or vice versa)
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Word2Vec Representation via Maximum-Likelihood 

● Word2vec [Mikolov et al. 2013] is a framework for learning word vectors
1. Collect a large corpus of sentences (e.g., Wikipedia)
2. Every word in a fixed vocabulary is represented by a vector
3. For each position in the text, consider the “center” word c and “outside” context words o
4. Define a context predictability measure; i.e., the probability of o given c (or vice versa)
5. Keep adjusting the word vectors to maximize this probably 

[Distributed Representations of Words and Phrases and their Compositionality. Mikolov et al.  2013]

𝑃 𝑤!"# 𝑤!)
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Word2Vec Probabilities: Pop Quiz 

…crisesbankingintoturningproblems… as

outside context words center word outside context words 
in window of size 2 at position t in window of size 2

𝑃 𝑤!"# 𝑤!)
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What is the right expression for 𝑃 𝑤!"# 𝑤!) ?

(A) 𝑃 problems | into (B) 𝑃 cries | into

(C) 𝑃 problems | cries (D) 𝑃 into | cries



Word2Vec Probabilities

● Question: what is a simple way to define 𝑃 𝑤!"#|𝑤!; 𝜃 ?



Word2Vec Probabilities

● Question: what is a simple way to define 𝑃 𝑤!"#|𝑤!; 𝜃 ?
● Answer: We will use two vectors per word w:

○ 𝑣! when w is a center word
○ 𝑢! when w is a outside (context) word
○ This creates a bit redundancy, but it will simplify the exposition/derivations.
○ We will average these after the optimization is done. 

bankinginto
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Word2Vec Probabilities

● Question: what is a simple way to define 𝑃 𝑤!"#|𝑤!; 𝜃 ?
● Answer: We will use two vectors per word w:

○ 𝑣! when w is a center word
○ 𝑢! when w is a outside (context) word

● Choose a measure of similarity, for example, dot product: 

● Then for a center word c and a context word o, dot product of their representation 
𝑢$ and 𝑣% be higher if tend to co-occur. 

bankinginto

𝑃 𝑜 𝑐)

𝑣" 𝑢#



Word2Vec Probabilities

● Question: what is a simple way to define 𝑃 𝑤!"#|𝑤!; 𝜃 ?
● Then for a center word c and a context word o define a similarity metric between 

their embeddings. 

● The learnable parameters of this model are 𝜃 = {𝑢& , 𝑣& , ∀𝑥 ∈ 𝑉}

𝑃 𝑜 𝑐) =
exp 𝑢$%𝑣&

∑'∈) exp 𝑢'%𝑣&

Notice the dot product! 



Word2Vec Probabilities: An Example

…crisesbankingintoturningproblems… as

outside context words center word outside context words 
in window of size 2 at position t in window of size 2

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

𝑃 𝑤!*# 𝑤!) = 𝑝 problems|into =
exp 𝑢+,-./012% 𝑣345-
∑'∈) exp 𝑢'%𝑣345-

𝑃 𝑜 𝑐) =
exp 𝑢$%𝑣&

∑'∈) exp 𝑢'%𝑣&

If the representation of 
𝑜 and 𝑐 are similar, 

they tend to co-occur. 



Word2Vec Probabilities: Pop Quiz 

…crisesbankingintoturningproblems… as

outside context words center word outside context words 
in window of size 2 at position t in window of size 2
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𝑃 𝑤!%# 𝑤!)

What is the right expression for 𝑃 𝑤!"# 𝑤!) = 𝑃 cries|into ?

(A) 
"#$ %$%&'(

) &&*+,
∑-∈/ "#$ %-)&&*+,

(B) 
"#$ %&*+,

) &$%&'0
∑-∈/ "#$ %-)&$%&'0

(C) 
"#$ %$%&'0

) &&*+,
∑-∈/ "#$ %-)&&*+, (D) 

"#$ %1%,23'40
) &&*+,

∑-∈/ "#$ %-)&$%&'0

𝑃 𝑜 𝑐) =
exp 𝑢$%𝑣&

∑'∈) exp 𝑢'%𝑣&



Word2Vec Probabilities: SoftMax Function 

● This is an example use of the softmax functionℝ𝑛 → (0,1)𝑛

● The SoftMax function maps arbitrary values 𝑥i to a probability distribution 𝑝i
○ “max” because amplifies probability of largest 𝑥i
○ “soft” because still assigns some probability to smaller 𝑥i
○ Frequently used in Deep Learning

𝑃 𝑜 𝑐 = 𝑜 𝑐exp(𝑢𝑇𝑣 )
∑/ ∈𝑉 / 𝑐exp(𝑢𝑇𝑣 )

i=1𝑢𝑇𝑣 = 𝑢. 𝑣 = ∑𝑛 𝑢i𝑣i
Larger dot product = larger probability

③Normalize over entire
vocabulary  to give probability 
distribution

②Exponentiation makes anything positive ①Dot product compares similarity of o and c.



Word2Vec Probabilities: Pop Quiz 

…crisesbankingintoturningproblems… as

outside context words center word outside context words 
in window of size 2 at position t in window of size 2

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

What is the computational cost  of computing 𝑃 𝑜 𝑐)?

(A) constant             (B)  O(|V|)                 (C) O(|V|+d)                 (D) O(|V|xd)     

𝑃 𝑜 𝑐) =
exp 𝑢$%𝑣&

∑'∈) exp 𝑢'%𝑣&



Word2Vec Representation via Maximum-Likelihood 

● For each position 𝑡 = 1,… , 𝑇 predict context words within a window
of fixed size m, given center word 𝑤𝑡.

● Data likelihood:

Goal: maximizing likelihood with respect to its parameters 𝜃



Pop Quiz 

● Define 𝑓 𝑥 = −𝑔 𝑥 . In order to maximize 𝑓 𝑥 , we can: 

(A) maximize 𝑔 𝑥
(B) minimize 𝑔 𝑥
(C) minimize 𝑔 −𝑥
(D) None of the above 



Word2Vec Representation via Maximum-Likelihood 

● For each position 𝑡 = 1,… , 𝑇 predict context words within a window of fixed size m, 
given center word 𝑤𝑡. Data likelihood:

● The objective function 𝐽 𝜃 is the (average) negative log likelihood:

maximizing likelihood ⟺maximizing predictive accuracy ⟺ minimizing objective function



Training the Model via Minimizing the Loss

● To train a model, we gradually adjust parameters 𝜃 to minimize a loss  𝐽 𝜃
● Recall: 

○ 𝜃 represents all the model 
parameters, in one long vector

○ With d-dimensional vectors and 
V-many words, we have à

○ every word has 
two vectors

● We optimize these parameters by walking down the gradient computed 
with respect to the word vectors (see the right figure). 



Optimization Recap: Gradient Descent

● We have a cost function 𝐽 𝜃 we want to minimize
○ We can use Gradient Descent algorithm!

● Idea: for current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in 
direction of negative gradient. Repeat.

● Note: Our objectives may not be 
convex like this. But life turns out to be okay! 



Optimization Recap: Gradient Descent (1): Intuition

● Imagine you’re blindfolded 
● Need to walk down a hill 
● You can use your hands 

to find the directions 
that may be downhill

[slide: Andrej Karpathy]



Optimization Recap: Gradient Descent (2): Intuition

● In 1-dimension, the derivative of a function:

● Why step in direction of negative gradient? 
○ Gradient quantifies how rapidly the 

function 𝐿(𝜃) varies when we change 
the argument 𝜃# by a tiny amount.

𝜕𝐿
𝜕𝜃:

= lim
;→=

𝐿 𝜃: + ℎ − 𝐿(𝜃:)
ℎ



Optimization Recap: Gradient Descent (3)

● Update equation (in matrix notation):

● Update equation (for single parameter):

● Algorithm:

𝛼 = step size or learning rate

• Iteratively subtract the gradient with respect to the model parameters (𝜃) 
• i.e., we’re moving in a direction opposite to the gradient of  the loss 𝐿(𝜃)
• I.e., we’re moving towards smaller loss 𝐿(𝜃)



Optimization Recap: Gradient Descent (4)

● Update equation (in matrix notation):

[demo credit: ICMS  YouTube channel]



Optimization Recap: Gradient Descent (5): Setting the Step Size 

● What is a good value for step size 𝛼? 

○ If 𝛼 = too small, it may be too slow 
○ If 𝛼 = too large, it may oscillate

● It may take trial-and-errors to find the sweet spot. 
● Another trick is to define a “schedule” for gradually reducing the learning rate 

starting from a large number. 
○ More on this in the homework! J

[figure from: https://www.jeremyjordan.me/nn-learning-rate/]

https://www.jeremyjordan.me/nn-learning-rate/


Computing the Gradients for Word2Vec 

● Minimize the objective function (log-likelihood): 

● Derivatives of “center” vectors: 

● Derivatives of “outside” vectors: 

𝐽 𝜃 = −
1
𝑇5
()*

+

5
,-./.-
/01

log 𝑃 𝑤(2/ 𝑤(; 𝜃)

text length window size

𝜕
𝜕𝑣3

𝐽 𝜃 = ?

𝜕
𝜕𝑢3

𝐽 𝜃 = ?

We will derive the gradients with respect to 
the ”center” vectors. Similar calculations 

for “outside” vectors (homework!!) 



Today’s Recap 

● The fundamental question: how to represent and learn “meaning” of symbols. 

● Semantics: formal/propositional semantics vs. distributional semantics. 

● We learned about the core of Word2Vev (SkipGram algorithm). 
○ HW1 is basically using the resulting vectors from Word2Vec. 

● Learning word embeddings via Gradient Descent: next time! 


