
Self-Supervised Learning
Word Representations

CSCI 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Chris Manning, John Canny, Reda Bouadjenek, and many others]

HW Poll

● How was it?

● A note about solutions:
○ We will not release solutions.
○ But we will be as clear as we can in our grading.
○ If there are any lingering questions about homework solutions, come discuss during

office hours.

Recap

● Inherently, there is no meaning to symbols:

● Lots of literature on mapping symbols to their "meaning”
(e.g., formal semantics)

● Focus of this class: distributional semantics —learning some
meaning by regurgitating language use.

○ Simplest form: learning word representations via Word2Vec

”apple” ≈ 0110000101110000011100000110110001100101

Recap: Word2Vec Probabilities

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

𝑃 𝑤!"# 𝑤!)

𝑃 𝑤!"$ 𝑤!) 𝑃 𝑤!%$ 𝑤!)

𝑃 𝑤!%# 𝑤!)

𝑃 𝑤!"# 𝑤!) = 𝑝 problems|into =
exp 𝑢$%&'()*+, 𝑣-./&
∑0∈2 exp 𝑢0,𝑣-./&

𝑃 𝑜 𝑐) =
exp 𝑢3,𝑣4

∑0∈2 exp 𝑢0,𝑣4

If 𝑜 and 𝑐 tend to co-
occur, they should

have similar
representation.

Recap: Word2Vec Objective Function

● Minimize the objective function (log-likelihood) via Gradient Descent.

● Derivatives of “center” vectors:

● Derivatives of “outside” vectors:

𝐽 𝜃 = −
1
𝑇'
!"#

$

'
%&'('&
()*

log 𝑃 𝑤!+(𝑤!; 𝜃)

text length window size

𝜕
𝜕𝑣,

𝐽 𝜃 = ?

𝜕
𝜕𝑢,

𝐽 𝜃 = ?

We will derive the gradients with respect to
the ”center” vectors. Similar calculations

for “outside” vectors (homework!!)

Chapter: Self-Supervised Meaning of “Words”: Continued

1. Human language and word meaning
2. Word2vec overview

3. Word2vec objective function and gradients

4. Inspecting the resulting word vectors

5. Extrinsic evaluation of word vectors

Computing the Gradients for Word2Vec

● Minimize the objective function (log-likelihood):

𝐽 𝜃 = −
1
𝑇
'
!"#

$

'
%&'('&
()*

log 𝑃 𝑤!+(𝑤!; 𝜃)

text length window size

𝜕
𝜕𝑣,

𝐽 𝜃 = −
1
𝑇'
!"#

$

'
%&'('&
()*

𝜕
𝜕𝑣,

log 𝑃 𝑤!+(𝑤!; 𝜃) (distributive property)

?

Computing the Gradients for Word2Vec (2)

𝜕
𝜕𝑣,

log 𝑃 𝑐 𝑜; 𝜃) =
𝜕
𝜕𝑣,

log
exp 𝑢-$𝑣,

∑.∈0 exp 𝑢.$𝑣,

=
𝜕
𝜕𝑣,

log exp 𝑢-$𝑣, − log'
.∈0

exp 𝑢.$𝑣,

=
𝜕
𝜕𝑣,

log exp 𝑢-$𝑣, −
𝜕
𝜕𝑣,

log'
.∈0

exp 𝑢.$𝑣, (distributive property)

𝜕
𝜕𝑣!

log exp 𝑢"#𝑣! =
𝜕
𝜕𝑣!

𝑢"#𝑣! = 𝑢"

bankinginto

𝑃 𝑜 𝑐)

𝑣! 𝑢"

Computing the Gradients for Word2Vec (3)

𝜕
𝜕𝑣,

log 𝑃 𝑐 𝑜; 𝜃) =
𝜕
𝜕𝑣,

log
exp 𝑢-$𝑣,

∑.∈0 exp 𝑢.$𝑣,

=
𝜕
𝜕𝑣,

log exp 𝑢-$𝑣, − log'
.∈0

exp 𝑢.$𝑣,

=
𝜕
𝜕𝑣,

log exp 𝑢-$𝑣, −
𝜕
𝜕𝑣,

log'
.∈0

exp 𝑢.$𝑣, (distributive property)

?

bankinginto

𝑃 𝑜 𝑐)

𝑣! 𝑢"

Computing the Gradients for Word2Vec (4)

𝜕
𝜕𝑣,

log'
.∈0

exp 𝑢.$𝑣, =
1

∑.∈0 exp 𝑢.$𝑣,
×

𝜕
𝜕𝑣,

'
.∈0

exp 𝑢.$𝑣, 1
1.
log 𝑓(𝑥) = #

2(.)
12
1.

=
1

∑$∈& exp 𝑢$#𝑣!
×3

$∈&
𝑢$ exp 𝑢$#𝑣!

𝜕
𝜕𝑥
exp 𝑓(𝑥) =

𝜕𝑓
𝜕𝑥

× exp 𝑓(𝑥)

=3
$∈&

𝑢$ × 𝑃 𝑥 𝑐; 𝜃)

bankinginto

𝑃 𝑜 𝑐)

𝑣! 𝑢"

Computing the Gradients for Word2Vec (5)

● Putting things together:

Intuition: This gradient incentivizes representation of 𝑜 to be more similar to the avg
representation of words co-occurring with 𝑐.

1
15'

log 𝑃 𝑐 𝑜) = 𝑢- − ∑.∈0 𝑢. × 𝑃 𝑥 𝑐)

the current
representation of 𝑜

The expected (weighted avg) representation
of the words that tend to co-occur with 𝑐.

bankinginto

𝑃 𝑜 𝑐)

𝑣! 𝑢"

Pop Quiz

● What is the computational complexity of the followings?
(assume that 𝑃 𝑜 𝑐) is pre-computed we just need to look it up)

(
()&

log 𝑃 𝑐 𝑜) = 𝑢" − ∑$∈& 𝑢$ × 𝑃 𝑥 𝑐)

(A) O(d)
(B) O(|V|)
(C) O(|V|+d)
(D) O(|V|.d)

𝜕
𝜕𝑣!

𝐽 𝜃 = −
1
𝑇
3
*+,

#

3
-./0/.
012

𝜕
𝜕𝑣!

log 𝑃 𝑤*30 𝑤*; 𝜃)

(A) O(T)
(B) O(T.m)
(C) O(T.m.|V|)
(D) O(T.m.|V|.d)

Stochastic Gradient Descent

● Challenge: 𝐽 𝜃 is a function of all windows in the corpus (potentially billions!)
○ So computing ∇4𝐽 𝜃 is very expensive to compute
• You would wait a very long time before making a single update!

• Very bad idea!

• Solution: Stochastic gradient descent (SGD)
• Repeatedly sample windows and instances, and update after each one

• This resolves the complexity of ∑!"#$ ∑%&'('&
()*

but what about +
+,$

log 𝑃 𝑐 𝑜)?

𝜕
𝜕𝑣!

𝐽 𝜃 = −
1
𝑇
3
*+,

#

3
-./0/.
012

𝜕
𝜕𝑣!

log 𝑃 𝑐 𝑜)

Skip-gram with Negative Sampling

● Let’s see where the complexity is:

log𝑃 𝑜 𝑐) = log
exp 𝑢-$𝑣.

∑/∈1 exp 𝑢/$𝑣.
= log exp 𝑢-$𝑣. − log2

/∈1
exp 𝑢/$𝑣.

The expensive
computation: O(|V|.d)

Skip-gram with Negative Sampling

● Let’s see where the complexity is:

● Idea: rather than enumerating over all vocabulary, let’s sample!

○ Maximize the prob that outside word co-occurs w/ the center
○ Minimize the prob of noise/random words far from the center (negatives)

log𝑃 𝑜 𝑐) = log
exp 𝑢-$𝑣.

∑/∈1 exp 𝑢/$𝑣.
= log exp 𝑢-$𝑣. − log2

/∈1
exp 𝑢/$𝑣.

The expensive
computation: O(|V|.d)

𝐽23 𝜃 = − log𝜎 𝑢-$𝑣. −2
4∈{6 78&9:;7}

log 𝜎 −𝑢/$𝑣.

Skip-gram with Negative Sampling (2)

● Have to be careful with sampling negative examples
○ Challenge: uniform sampling will sample a lot of stop-words that are very popular.

● Mikolov et al. proposed to sample: 𝑝 𝑤= = 6>(@%)&/(
∑) >(@))&/(

○ Assigns more prob to less frequent words. No theory backing, but works!

● Idea: rather than enumerating over all vocabulary, let’s sample!

○ Maximize the prob that outside word co-occurs w/ the center
○ Minimize the prob of noise/random words far from the center (negatives)

𝐽23 𝜃 = − log𝜎 𝑢-$𝑣. −2
4∈{6 78&9:;7}

log 𝜎 −𝑢/$𝑣.

Chapter: Self-Supervised Meaning of “Words”: Continued

1. Human language and word meaning
2. Word2vec overview

3. Word2vec objective function and gradients

4. Inspecting the resulting word vectors

5. Extrinsic evaluation of word vectors

Word2Vec maximizes objective function by
putting similar words nearby in space

19

t-SNE of Word Embeddings

Left: Number Region Right: Jobs Region

Word2Vec maximizes objective function by
putting similar words nearby in space

[“Deep Learning, NLP, and Representations” by Chris Olah]

Also try: https://projector.tensorflow.org/

https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://projector.tensorflow.org/

Composition

vec(“woman”)−vec(“man”) ≃ vec(“aunt”)−vec(“uncle”)

vec(“woman”)−vec(“man”) ≃ vec(“queen”)−vec(“king”)

[Linguistic Regularities in Continuous Space Word Representations. Mikolov et al. 2013]

This can be interpreted as “France is to Paris as Italy is to Rome”.

Composition

[Linguistic Regularities in Continuous Space Word Representations. Mikolov et al. 2013]

This can be interpreted as “France is to Paris as Italy is to Rome”.

● Evaluate word vectors by how well their cosine distance after addition captures
intuitive analogical relations.

a:b :: c:?

Evaluating Word Vectors: Word Analogies

Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Mismatch Between Cosine and Dot Product

● Observation: there a mismatch between
Word2Vec objective and cosine distance!

1. Why use cosine distance instead of dot product?
○ Term frequencies affect the embedding norms.
○ Without normalization, frequent terms would

seem more similar.

2. Why not change W2V objective to not use cos?
○ ¯_(ツ)_/¯
○ It’s possible that the resulting vectors would conflate

semantic similarity and frequency.

𝑃 𝑜 𝑐) =
exp 𝑢3,𝑣4

∑0∈2 exp 𝑢0,𝑣4

distance x, y = cos 𝑣5, 𝑣6 =
𝑣5,𝑣6
𝑣6 𝑣5

[Measuring Word Significance using Distributed Representations of Words]

frequency

no
rm

Word2Vec: Variants

● What we just saw is the Skip-Gram model.
○ Predict context (“outside”) words (position independent) given center

● There is also a CBOW (continuous-bag-of-words) variant.
○ Predict center word from (bag of) context words

● Additional efficiency:
○ The current gradient computation w/ softmax function is expensive.
○ Alternative: Negative Sampling

Sum and
projection

W-2

W-1

w2

w0

w1

Input

Output

Projection

W-2

W-1

w2

w0

w1

Input

Output
Skip-Gram

Continuous Bag of Words
(CBOW)

Word Embeddings: Big Picture

● There are a variety of approaches:

● Gradient-based algorithms:
○ Skip-gram/CBOW (Mikolov et al.), GloVe (Pennington et al.)
○ NNLM, HLBL, RNN (Bengio et al; Collobert & Weston; Huang et al; Minh & Hinton)

● Count-based:
○ LSA, HAL, COALS, Hellinger-PCA (Lund & Burges; Rohde et al; Lebret & Collobert;

Deerwester et al)
○ Brown clustering (Brown et al.)

Scales with corpus size
Better representations Captures
complex patterns

Fast-ish training
Sub-par representations

Brown Clusters

● Creates a binary tree for all words in a dictionary
● Algorithm sketch:

1. Initialize with isolated nodes (words)
2. Iteratively merge subtrees, so as to maximize

some probabilistic notion of co-occurrence.
3. Continue until everything connected

● Resulting word representation are
sequence of 0’s and 1’s connecting
a word to the tree root

● Note:
○ Result is hard cluster
○ Runs in O(|V|^3)

[Class-Based n-gram Models of Natural Language, Brown et al. 1992]

Latent Semantic Analysis

● Alg sketch:
1. Create word-document co-occurrence

matrix: each value is the number of
appearances of that term in that doc.

2. Use SVD (or a similar matrix decomposition alg)
to create low-dimensional representation for words

Chapter: Self-Supervised Meaning of “Words”: Continued

1. Human language and word meaning
2. Word2vec overview

3. Word2vec objective function and gradients

4. Inspecting the resulting word vectors

5. Extrinsic evaluation of word vectors

Extrinsic Evaluation of Word Vectors: Classification Recap

● Supervised learning: we have a training dataset consisting of samples

𝐷 = 𝐱! , 𝑦! !"#$

● 𝐱= are inputs, e.g., words, sentences, documents, etc.
● 𝑦= are labels (one of 𝐶 classes) we try to predict, for example:

○ Sentiment labels (+/–), named entity types, buy/sell decisions,
word senses, etc.

Classification Intuition

● Training data:𝐷 = 𝐱7, 𝑦7 789:

● Linear separators:
○ Visualization of input vectors in 2D space
○ Linear decision boundary (hyperplane) for two classes:

𝑓(𝐱) = 𝒘. 𝐱

● Model: multiclass classification, each 𝑦7 ∈ {0,… , 𝐶}
○ Softmax classifier
○ Acts like a combination of multiple linear classifiers

Classification with Softmax Classifier (Logistic Regression)

1. Compute the score assigned to each class:
𝑓,(𝐱) = 𝒘,. 𝐱 ∀𝑐 ∈ 𝐶 and parameters: 𝑾 = 𝒘#, … . , 𝒘6

7 ∈ ℝ6×9

2. Pass them through the Softmax to get probabilities:

Putting it together:

Note: during inference we can just pick the class with the highest score H𝑦 = argmax,∈6𝒘,. 𝐱

𝜎 𝒛 : =
exp 𝑧;

∑< exp 𝑧<
, 𝒛 = [𝑧#, … . , 𝑧6]

𝑝 𝑥 𝑾 =
exp 𝒘𝒄. 𝐱

∑𝒄* exp 𝒘𝒄* . 𝐱
, 𝑾 = 𝒘#, … . , 𝒘D

E

Classification with Softmax Classifier (Logistic Regression)

● Training: for a collection of training example
(𝐱7, 𝑦7) optimize the parameters 𝑾 = [𝒘9, … . , 𝒘;] to

○ maximize the probability of the correct class 𝑦:,
○ minimize the negative log probability of that class 𝑦::

● Objective for full dataset𝐷 = 𝐱7, 𝑦7 789: :

● Minimization via gradient descent:
○ Programming assignment for HW2!
○ Word embeddings for sentiment classification

𝐽 𝑾 =
1
𝑁
'
:

− log
exp 𝒘=5 . 𝐱:
∑, exp 𝒘,. 𝐱:

− log
exp 𝒘6' . 𝐱7
∑! exp 𝒘! . 𝐱7

∇𝑾𝐽 𝑾 =
∇𝒘8
⋮

∇𝒘9
∈ ℝ6×9

Aside: Setting the Step Size in Gradient Descent

● What is a good value for step size 𝛼?

○ If 𝛼 = too small, it may be too slow
○ If 𝛼 = too large, it may oscillate

● It may take trial-and-errors to find the sweet spot.
● Another trick is to define a “schedule” for gradually reducing the learning rate

starting from a large number.
○ More on this in the homework! J

[figure from: https://www.jeremyjordan.me/nn-learning-rate/]

https://www.jeremyjordan.me/nn-learning-rate/

Lexical and Compositional Semantics
Limitations of Word Embeddings: Lack of Compositionality

● Lexical Semantics: focuses on the meaning of individual words.

● Compositional Semantics: meaning depends on the words, and on how they are
combined.

Lexical and Compositional Semantics
Limitations of Word Embeddings: Lack of Compositionality

● Lexical Semantics: focuses on the meaning of individual words.

● Compositional Semantics: meaning depends on the words, and on how they are
combined.

○ From HW:

Limitations of Word Embeddings: No Word Senses

● Most words have lots of meanings!
○ Especially common words
○ Or those that existed for a long time

● Example: “bear”

● Do word vectors capture word senses?

• A mammal (🐻)
• Something difficult (the oven is a bear to clean)
• To accept (couldn’t bear the pain)
• To have features (bears a likeness of her mom)
• To contain (old-bearing shale)
• To hold in mind or emotions (bear malice)
• …

Today’s Recap

● W2V training and broader family of word embeddings

● Building classifiers with word embeddings

● Next time: moving beyond words by modeling sequences.

