
Self-Supervised Learning
Feed-Forward Nets

CSCI 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Andrej Karpathy, Fei Fei Li, Chris Manning and many others]

HW2 is released

● Did you see it?
● Due Tuesday noon, in 120 hours!

Recap: Contextual Representation of Meaning

● Language is complex, and context can completely change the meaning of a word in
a sentence.

● Example:
○ I let the kids outside to play.
○ He had never acted in a more famous play before.
○ It wasn’t a play the coach would approve of.

● Previous models (e.g., Word2Vec) only have one representation per word
○ They can’t capture these ambiguities.

● Need a model which captures the different nuances of the meaning of words given
the surrounding text.

● Approach: build representations that are contextual via neural networks.

3

Chapter Plan

1. Defining neural networks (feed-forward nets)
2. Neural nets: brief history
3. Word2Vec as a simple neural network
4. Training neural networks: analytical back-propagation
5. Backprop in practice

Chapter goal: Get really comfortable with thinking, designing and building neural
networks — very powerful modeling tools.

Neural Network

● Neural Networks are functions!
○ Function class for approximating real-valued, discrete-valued and vector valued target functions.
○ NN:𝑿 → 𝒀 where 𝑿 = 0,1 !, or ℝ! and 𝒀 = 0,1 " , 0,1 "

• Example: A 2-layer neural network
• The input, hidden and output variables are represented by nodes
• The links are the weight parameters
• Arrows denote direction of information flow through the network

• 𝑊# ∈ ℝ$×! and 𝑊& ∈ ℝ"×$ are the parameters that need to be learned.

𝑓 𝐱 = 𝑊& 𝑔(𝑊#𝐱) 𝐱 ∈ ℝ!, 𝐲 ∈ ℝ"

𝑔 𝐳 = 𝜎 𝑧# , … , 𝜎 𝑧$ (nonlinearity) 𝜎 𝑧' = #
#()!"

(sigmoid function)

Neural Network: Making it bigger

Add more layers, or wider layers!

A 2-layer neural network A 3-layer neural network

Feed-forward Networks

● This is actually a particular class called “feed-forward” networks.
○ Cascade neurons together
○ Output from one layer is the input to the next
○ Each layer has its own sets of weights

x0

x1

x2

xP

[Slides: HKUST]

Feed-forward networks

• Inputs multiplied by initial set of weights

x0

x1

x2

xP

[Slide: HKUST]

Feed-forward networks

x0

x1

x2

xP

• Intermediate “predictions” computed at first hidden layer

[Slide: HKUST]

Feed-forward networks

x0

x1

x2

xP

• Intermediate predictions multiplied by second layer of weights
• Predictions are fed forward through the network

[Slide: HKUST]

Feed-forward networks

x0

x1

x2

xP

• Compute second set of intermediate predictions

[Slide: HKUST]

Feed-forward networks

x0

x1

x2

xP

• Multiply by final set of weights

[Slide: HKUST]

Feed-forward networks

x0

x1

x2

xP

• Aggregate all the computations in the output
• e.g. probability of a particular class

[Slide: HKUST]

Feed-forward networks

x0

x1

x2

xP

• All the intermediate parameters are ought to be learned.

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

[Slide: HKUST]

Why Add Non-linearity?

• Without non-linearity, the overall model amounts to a linear model.

• A linear function cannot approximate complex tasks.

• Non-linearity adds capacity to the model to approximate
any continuous function to arbitrary accuracy
given sufficiently many hidden units.
• See “universal approximation theorem”

𝑓 𝐱 = 𝑊& 𝑔(𝑊#𝐱) 7𝑓 𝐱 = 𝑊&𝑊#𝐱 = 𝑊*𝐱 (a linear function)

drop 𝑔

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Activation/Nonlinearity Functions

F
e
i
-
F
e
i
L
i
&
J
u
s
t
i
n
J
o
h
n
s
o
n
&
S
e

A
p
r
i
l
1
9
,
2
0
1
8

Lectur
e 6 - 16[Slide: Andrej Karpathy]

Demo time!

● Link: https://playground.tensorflow.org/

17

https://playground.tensorflow.org/

Quiz Time

● Given a neural network and an input, how do
you compute its predictions?

1. You start from the input. Calculate the output of each layer
(starting from the first layer), until you get to the output.

2. You start from the end and make your way to the first
layer.

Quiz Time (2)

● What is needed to fully specify a neural
network?

1. Architecture (which input goes through what function etc.)
2. Parameters of the function (the weights)
3. Both

Quiz Time (3)

● What makes neural networks expressive
functions?

1. Activations (non-linearities)
2. Depth (number of hidden layers)
3. Width (number of variables in each hidden layer)
4. All the above

Chapter Plan

1. Feed-forward networks
2. Neural nets: origins and brief history
3. Word2Vec as a simple neural network
4. Training neural networks: analytical back-propagation
5. Backprop in practice

Artificial Neurons: An Inspiration from Nature

● A single node in your neural network
○ Accept information from multiple inputs
○ Transmit information to other neurons

● A neuron’s function is inspired by its biological counterpart:
○ Apply some function on inputs signals
○ If output of function over threshold, neuron “fires”

Artificial Neurons: Not Quite Analogous to Nature

Biological neurons:
complex connectivity

Neurons in an artificial neural network:
organized based on a highly regular
structure for computational efficiency

Very Brief History of Neural Networks

1. Single-layer neural networks (1943-1969)
2. Symbolic AI & knowledge engineering (1970-1985)
3. Multi-layer NNs and symbolic learning (1985-1995)
4. chirp chirp …. Statistical learning/probabilistic models (1995-2010)
5. Deep networks and self-supervised learning (2010-?)

24

A Neuron as a Mathematical Model of Computation

● McCulloch and Pitts (1943) showed how linear threshold units can be used to
compute logical functions

● An alternative model of computation (comparable to “Turing Machine”)

25
[A Logical Calculus of Ideas Immanent in Nervous Activity, McCulloch and Pitts 1943]

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

Perceptron: Imitating Nature’s Learning Process

● Rosenblatt (1959) developed the Perceptron Algorithm, an iterative, hill-
climbing algorithm for learning the weights of a linear threshold unit.

○ A single neuron with a fixed input, it can incrementally change weights and
learn to produce a fixed output using the Perceptron learning rule.

● Update weights by:

○ where η is the “learning rate,” t is the teacher output, and o is the network output.

○ If output is correct do nothing.
○ If output is higher than t, lower weights on active inputs
○ If output is lower than t, increase weights on active inputs

26

iii xotww)(-+= h

[The perceptron: a probabilistic model for information storage and organization in the brain, Rosenblatt 1959]

https://www.ling.upenn.edu/courses/Fall_2007/cogs501/Rosenblatt1958.pdf

Perceptron: Demise

● Perceptons (1969) by Minsky and Papert illuminated
the limitations of the perceptron.

● It showed that:
○ Shallow (2-layer) networks are unable to learn or represent many

classification functions (e.g. XOR)
○ Only the linearly separable functions are learnable.

● Also, there was an understanding that deeper networks were infeasible to train.

● Result: work on neural-networks dissipated during the 70’s and early 80’s!

27
[slide: Ray Mooney]

Neural Net Resurgence (1986)

● Interest in NNs revived in the mid 1980’s due to the rise of “connectionism.”
● Backpropagation algorithm was [re-]introduced for training three-layer NN’s.

○ Generalized the iterative “hill climbing” method to approximate networks with multiple layers,
but no convergence guarantees.

28

what became possible
to train via BP in 1980’s

[Learning representations by back-propagating errors, Rumelhart, Hinton & Williams 1986;
for a broader context, see: http://people.idsia.ch/~juergen/who-invented-backpropagation.html]

what was possible
to train in 1970’s

https://www.nature.com/articles/323533a0.pdf
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Second NN Demise (1995-2010)

● Generic Back-Propagation did not generalize that well to training deeper networks.
○ Overfitting / underfitting remained an issue.
○ Computers were still quite slow

● Little theoretical justification for underlying methods.
● Machine learning research moved to graphical/probabilistic models and kernel

methods.

29
[slide: Ray Mooney]

Deep Learning Revolution (2010…)

● Improved methods developed for training deep neural works.

● Particular successes with:
○ Convolutional neural nets (CNNs) for vision (2012 AlexNet showed 16% error reduction on ImageNet).
○ Recurrent neural nets (RNNs) for machine translation and speech recognition.
○ Deep reinforcement learning for game playing (e.g., AlphaGo).

● Massive data and specialized hardware:
○ Large collections of [mostly] supervised (crowdsourced) training data has been critical.
○ Efficient processing of this big data using specialized hardware (Graphics Processing Units, GPUs)

has been critical.

30
[slide: Ray Mooney]

Deep Learning Revolution (2010…)

31
[slide: Ray Mooney]

How it start How it’s going

Chapter Plan

1. Feed-forward networks
2. Neural nets: brief history
3. Word2Vec as a simple neural network
4. Training neural networks: analytical back-propagation
5. Backprop in practice

Chapter Plan

1. Feed-forward networks
2. Neural nets: brief history
3. Word2Vec as a simple neural network
4. Training neural networks: analytical back-propagation
5. Backprop in practice

Word2Vec as Neural Net

● Word2Vec is actually a very simple neural net!

Word2Vec (SkipGram): Recap

● Objective: find embeddings such that the words that co-occur are close.
● Represent each word as a d dimensional vector.
● Represent each context as a d dimensional vector.

…crisesbankingintoturningproblems… as

outside context words center word outside context words
in window of size 2 at position t in window of size 2

𝑃 𝑜 𝑐) =
exp 𝑢!"𝑣#

∑$∈& exp 𝑢$"𝑣#

Word2Vec (SkipGram): Recap

● Objective: find embeddings such that the words that co-occur are close.
● Represent each word as a d dimensional vector.
● Represent each context as a d dimensional vector.

𝑃 𝑜 𝑐) =
exp 𝑢!"𝑣#

∑$∈& exp 𝑢$"𝑣#

carant

SkipGram in Matrix Form

CBOW also has a similar form.

A one-hot vector
for “ants”

Embedding
for “ants”

Dot product of the “ant”
emb w/ emb of other words

Prob assigned to each word
appearing in the context

Word2Vec as Neural Network

● Word2Vec is basically a very simple
feed-forward neural network!

● Any algorithms for neural networks could also be applied to Word2Vec.
○ For example, we can use Backpropagation (forthcoming!) to train Word2Vec. (HW3!!)

● We can extend W2V by modifying the architecture.
○ Contextual self-supervised representations: next chapter!

[figure: https://lilianweng.github.io/posts/2017-10-15-word-embedding/]

https://lilianweng.github.io/posts/2017-10-15-word-embedding/

Chapter Plan

1. Feed-forward networks
2. Neural nets: brief history
3. Word2Vec as a simple neural network
4. Training neural networks: back-propagation
5. Backprop in practice

Algebra Refresher🍹

Derivatives

● First let’s get the notation right:

● The arrow shows functional dependence of 𝑧 on 𝑦,
i.e. given 𝑦, we can calculate 𝑧.

○ For example: 𝑧(𝑦) = 2𝑦!

● The derivative of 𝑧, with respect to 𝑦: '(
')

𝑧

𝑦
𝜕𝑧
𝜕𝑦

Quiz time!

● If 𝑧(𝑥, 𝑦) = 𝑦!𝑥" what is the following derivative #$
#%

?

1.
'(
')
= 4𝑦*𝑥+

2.
'(
')
= 5𝑦,𝑥,

3.
'(
')
= 20𝑦*𝑥,

4. None of the above

𝑧

𝑦 𝑥

Gradient

● Given a function with 1 output and 𝑛 inputs

● Its gradient is a vector of partial derivatives with respect to each input

𝑓

𝑥' 𝑥(… 𝑥)𝑓 𝐱 = 𝑓 𝑥', 𝑥(, … , 𝑥) ∈ ℝ

∇𝑓 𝐱 =

#*
#+=
#*
#+>
⋮
#*
#+?

∈ ℝ)
(always assume vectors are

column vectors, i.e., they’re in ℝ!×#)

Quiz time!

● If 𝑧(𝑥, 𝑦) = 𝑦!𝑥" what is the following gradient ∇𝑧?
1. ∇𝑧(𝑥, 𝑦) = 4𝑦*𝑥+

2. ∇𝑧(𝑥, 𝑦) = (5𝑦,𝑥,, 20𝑦*𝑥,)
3. ∇𝑧(𝑥, 𝑦) = (5𝑦,𝑥,, 4𝑦*𝑥+)
4. None of the above

𝑧

𝑦 𝑥

Jacobian Matrix: Generalization of the Gradient

● Given a function with m outputs and n inputs

● It’s Jacobian is an m x n matrix of partial derivatives: 𝐉𝐟 𝐱 "# =
$%!
$&"

● When m=1 (scalar-valued function), Jacobian reduces to ∇'𝐟 𝐱 (gradient transpose).
● When m=n=1 (single-variable function), Jacobian reduces to the derivative of 𝐟.

𝑓- … 𝑓.

𝑥- 𝑥/ … 𝑥0𝐟 𝐱 = 𝑓- 𝑥-, 𝑥/, … , 𝑥0 , … , 𝑓. 𝑥-, 𝑥/, … , 𝑥0 ∈ ℝ.

𝐉𝐟 𝐱 =

#$+
#%+

⋯ #$+
#%,

⋮ ⋱ ⋮
#$-
#%+

⋯ #$-
#%,

∈ ℝ&×(or 𝐉𝐟 𝐱)* =
#$.
#%/

Jacobian for Matrix Inputs

● Given a function with𝒎 outputs and 𝒏×𝒑 inputs

● Jacobian is a m×𝑛×𝑝 tensor (i.e., matrix of matrices) of partial derivatives:

𝐉𝐟 𝐗 "#(=
𝜕𝑓"
𝜕𝑥#(

● The Jacobian math holds if you keep adding more dimensions to the input or output.

𝐟 𝐗 = 𝑓- 𝐗 ,… , 𝑓. 𝐗 ∈ ℝ., where 𝐗 =
𝑥-- ⋯ 𝑥-1
⋮ ⋱ ⋮
𝑥0- ⋯ 𝑥01

∈ ℝ0×1

Why Use Matrix/Tensor Form?

Chain Rule

● Function composition:

𝑧 ∘ 𝑦 𝑥 = 𝑧 𝑦 𝑥 = 𝑧 𝑥

Then:

𝑧

𝑦

𝑥If 𝑧 is a function of 𝑦, and
𝑦 is a function of 𝑥, then
𝑧 is a function of 𝑥, as well.

!"
!#
= !"

!$
!$
!#

Chain Rule for Multivariable Functions

● Let 𝐱 ∈ ℝ;, 𝐠: ℝ; → ℝ), 𝐟: ℝ) → ℝ<

● Composing them: 𝐟 ∘ 𝐠 𝐱 = 𝐟 𝐠 𝐱 :ℝ; → ℝ<

The result looks similar to the single-variable setup:

Note, the above statement is a matrix multiplication!
Function 𝐟 ∘ 𝐠 has m outputs and d inputs → m by d Jacobian

𝐟

𝐠

𝐱

𝐉𝐟∘𝐠 𝐱 = 𝐉𝐟 𝐠(𝐱) 𝐉𝐠 𝐱

Quiz Time!

Let 𝑥 ∈ ℝ, 𝐲:ℝ → ℝ), 𝐳: ℝ) → ℝ

What is the Jacobean of 𝑧 ∘ 𝐲 𝑥 = 𝑧(𝑦' 𝑥 ,… , 𝑦) 𝑥)?
1. 𝐉$∘𝐲 𝑥 = 𝐉$ 𝐲(𝑥) 𝐉𝐲 𝑥

2. 𝐉$∘𝐲 𝑥 = #$
#%=

, … , #$#%?
#%=
#+ , … ,

#%?
#+

@

3. 𝐉$∘𝐲 𝑥 = ∑AB') #$
#%@

#%@
#+

4. All the above!

𝑧

𝑦'

𝑥

𝑦(𝑦)…

We will stop here!

● Today: lots of background about neural networks!

● Next time: training a neural net!

