Self-Supervised Learning Feed-Forward Nets

CSCI 601 471/671 NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Andrej Karpathy, Fei Fei Li, Chris Manning and many others]

HW₂ is released

- Did you see it?
- Due Tuesday noon, in 120 hours!

Recap: Contextual Representation of Meaning

- Language is complex, and *context* can completely change the meaning of a word in a sentence.
- Example:
 - I let the kids outside to *play*.
 - He had never acted in a more famous *play* before.
 - It wasn't a *play* the coach would approve of.
- Previous models (e.g., Word2Vec) only have one representation per word
 - They can't capture these ambiguities.
- Need a model which captures the different nuances of the meaning of words given the surrounding text.
- **Approach:** build representations that are **contextual** via **neural networks**.

Chapter Plan

- 1. Defining neural networks (feed-forward nets)
- 2. Neural nets: brief history
- 3. Word2Vec as a simple neural network
- 4. Training neural networks: analytical back-propagation
- 5. Backprop in practice

Chapter goal: Get really comfortable with thinking, designing and building neural networks — very powerful modeling tools.

Neural Network

- Neural Networks are functions!
 - Function class for approximating real-valued, discrete-valued and vector valued target functions.
 - NN: $X \to Y$ where $X = [0,1]^n$, or \mathbb{R}^n and $Y = [0,1]^d$, $\{0,1\}^d$
- Example: A **2-layer** neural network
 - The input, hidden and output variables are represented by nodes
 - The links are the weight parameters
 - Arrows denote direction of information flow through the network

 $f(\mathbf{x}) = W_2 g(W_1 \mathbf{x}) \qquad \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^d$

 $g(\mathbf{z}) = [\sigma(z_1), \dots, \sigma(z_h)]$ (nonlinearity) $\sigma(z_i) = \frac{1}{1+e^{-x}}$ (sigmoid function)

• $W_1 \in \mathbb{R}^{h \times n}$ and $W_2 \in \mathbb{R}^{d \times h}$ are the parameters that need to be learned.

Neural Network: Making it bigger

Add more layers, or wider layers!

A **2-layer** neural network

A **3-layer** neural network

- This is actually a particular class called "feed-forward" networks.
 - Cascade neurons together
 - Output from one layer is the input to the next
 - Each layer has its own sets of weights

• Inputs multiplied by initial set of weights

• Intermediate "predictions" computed at first hidden layer

- Intermediate predictions multiplied by second layer of weights
- Predictions are fed forward through the network

• Compute second set of intermediate predictions

• Multiply by final set of weights

- Aggregate all the computations in the output
 - e.g. probability of a particular class

• All the intermediate parameters are ought to be learned.

Why Add Non-linearity?

• Without non-linearity, the overall model amounts to a linear model.

$$f(\mathbf{x}) = W_2 g(W_1 \mathbf{x})$$

$$\tilde{f}(\mathbf{x}) = W_2 W_1 \mathbf{x} = W_3 \mathbf{x} \text{ (a linear function)}$$

$$drop g$$

- A linear function cannot approximate complex tasks.
- Non-linearity adds capacity to the model to approximate any continuous function to arbitrary accuracy given sufficiently many hidden units.
 - See <u>"universal approximation theorem"</u>

Cannot separate red and blue points with linear classifier

Activation/Nonlinearity Functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \mathsf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

10

Demo time!

• Link: <u>https://playground.tensorflow.org/</u>

Quiz Time

- Given a neural network and an input, how do you compute its predictions?
 - You start from the input. Calculate the output of each layer (starting from the first layer), until you get to the output.
 - 2. You start from the end and make your way to the first layer.

Quiz Time (2)

- What is needed to fully specify a neural network?
 - ^{1.} Architecture (which input goes through what function etc.)
 - ^{2.} Parameters of the function (the weights)
 - 3. Both

Quiz Time (3)

- What makes neural networks expressive functions?
 - 1. Activations (non-linearities)
 - 2. Depth (number of hidden layers)
 - ^{3.} Width (number of variables in each hidden layer)
 - 4. All the above

Chapter Plan

- 1. Feed-forward networks
- 2. Neural nets: origins and brief history
- 3. Word2Vec as a simple neural network
- 4. Training neural networks: analytical back-propagation
- 5. Backprop in practice

Artificial Neurons: An Inspiration from Nature

- A single node in your neural network
 - Accept information from multiple inputs
 - Transmit information to other neurons
- A neuron's function is inspired by its biological counterpart:
 - Apply some function on inputs signals
 - If output of function over threshold, neuron "fires"

Artificial Neurons: Not Quite Analogous to Nature

Biological neurons: complex connectivity

Neurons in an artificial neural network: organized based on a highly regular structure for computational efficiency

Very Brief History of Neural Networks

- 1. Single-layer neural networks (1943-1969)
- 2. Symbolic AI & knowledge engineering (1970-1985)
- 3. Multi-layer NNs and symbolic learning (1985-1995)
- 4. chirp chirp Statistical learning/probabilistic models (1995-2010)
- 5. Deep networks and self-supervised learning (2010-?)

A Neuron as a Mathematical Model of Computation

• McCulloch and Pitts (1943) showed how linear threshold units can be used to compute logical functions

An alternative model of computation (comparable to "Turing Machine")

Perceptron: Imitating Nature's Learning Process

- Rosenblatt (1959) developed the Perceptron Algorithm, an iterative, hillclimbing algorithm for learning the weights of a linear threshold unit.
 - A single neuron with a fixed input, it can incrementally change weights and learn to produce a fixed output using the Perceptron learning rule.
- Update weights by:

$$w_i = w_i + \eta(t - o)x_i$$

- where η is the "learning rate," *t* is the teacher output, and *o* is the network output.
- If output is correct do nothing.
- If output is higher than *t*, lower weights on active inputs
- If output is lower than t, increase weights on active inputs

Perceptron: Demise

- *Perceptons* (1969) by Minsky and Papert illuminated the limitations of the perceptron.
- It showed that:
 - Shallow (2-layer) networks are unable to learn or represent many classification functions (e.g. XOR)
 - Only the linearly separable functions are learnable.
- Also, there was an understanding that deeper networks were infeasible to train.
- Result: work on neural-networks dissipated during the 70's and early 80's!

Neural Net Resurgence (1986)

- Interest in NNs revived in the mid 1980's due to the rise of "connectionism."
- Backpropagation algorithm was [re-]introduced for training three-layer NN's.
 - Generalized the iterative "hill climbing" method to approximate networks with multiple layers, but no convergence guarantees.

[Learning representations by back-propagating errors, Rumelhart, Hinton & Williams 1986; for a broader context, see: <u>http://people.idsia.ch/~juergen/who-invented-backpropagation.html</u>]

Second NN Demise (1995-2010)

- Generic Back-Propagation did **not** generalize that well to training **deeper** networks.
 - Overfitting / underfitting remained an issue.
 - Computers were still quite slow
- Little theoretical justification for underlying methods.
- Machine learning research moved to graphical/probabilistic models and kernel methods.

Deep Learning Revolution (2010...)

- Improved methods developed for training deep neural works.
- Particular successes with:
 - Convolutional neural nets (CNNs) for vision (2012 AlexNet showed 16% error reduction on ImageNet).
 - Recurrent neural nets (RNNs) for machine translation and speech recognition.
 - Deep reinforcement learning for game playing (e.g., AlphaGo).
- Massive data and specialized hardware:
 - Large collections of [mostly] supervised (crowdsourced) training data has been critical.
 - Efficient processing of this big data using specialized hardware (Graphics Processing Units, GPUs) has been critical.

Deep Learning Revolution (2010...)

How it start

How it's going

Chapter Plan

- 1. Feed-forward networks
- 2. Neural nets: brief history
- 3. Word2Vec as a simple neural network
- 4. Training neural networks: analytical back-propagation
- 5. Backprop in practice

Chapter Plan

- 1. Feed-forward networks
- 2. Neural nets: brief history
- 3. Word2Vec as a simple neural network
- 4. Training neural networks: analytical back-propagation
- 5. Backprop in practice

Word2Vec as Neural Net

• Word2Vec is actually a very simple neural net!

Word2Vec (SkipGram): Recap

d

d

words

 $|V_w|$

- **Objective:** find embeddings such that the words that co-occur are close.
- Represent each word as a *d* dimensional vector.
- Represent each context as a *d* dimensional vector.

Word2Vec (SkipGram): Recap

- **Objective:** find embeddings such that the words that co-occur are close.
- Represent each word as a *d* dimensional vector.
- Represent each context as a *d* dimensional vector.

Probability that if you

randomly pick a word

nearby "ants", that it is "car"

Word2Vec as Neural Network

• Word2Vec is basically a very simple feed-forward neural network!

- Any algorithms for neural networks could also be applied to Word2Vec.
 - For example, we can use Backpropagation (forthcoming!) to train Word2Vec. (HW3!!)
- We can extend W₂V by modifying the architecture.
 - Contextual self-supervised representations: next chapter!

Chapter Plan

- 1. Feed-forward networks
- 2. Neural nets: brief history
- 3. Word2Vec as a simple neural network
- 4. Training neural networks: back-propagation
- 5. Backprop in practice

Derivatives

- First let's get the notation right:
- The arrow shows functional dependence of z on y,
 i.e. given y, we can calculate z.
 - For example: $z(y) = 2y^2$

Quiz time!

• If $z(x, y) = y^4 x^5$ what is the following derivative $\frac{\partial z}{\partial y}$?

1.
$$\frac{\partial z}{\partial y} = 4y^3 x^5$$

2. $\frac{\partial z}{\partial y} = 5y^4 x^4$
 $\frac{\partial z}{\partial y} = 2x^3 x^4$

3.
$$\frac{\partial z}{\partial y} = 20y^3x^4$$

4. None of the above

Gradient

• Given a function with 1 output and *n* inputs

$$f(\mathbf{x}) = f(x_1, x_2, \dots, x_n) \in \mathbb{R}$$

• Its gradient is a vector of partial derivatives with respect to each input

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \in \mathbb{R}^n$$

(always assume vectors are column vectors, i.e., they're in $\mathbb{R}^{n \times 1}$)

Quiz time!

- If $z(x, y) = y^4 x^5$ what is the following gradient ∇z ?
 - 1. $\nabla z(x,y) = 4y^3x^5$
 - 2. $\nabla z(x, y) = (5y^4x^4, 20y^3x^4)$
 - 3. $\nabla z(x, y) = (5y^4x^4, 4y^3x^5)$
 - 4. None of the above

Jacobian Matrix: Generalization of the Gradient

- Given a function with *m* outputs and *n* inputs
 - $\mathbf{f}(\mathbf{x}) = [f_1(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n)] \in \mathbb{R}^m$
- It's Jacobian is an **m** x **n** matrix of partial derivatives: $(\mathbf{J}_{\mathbf{f}}(\mathbf{x}))_{ij} = \frac{\partial f_i}{\partial x_i}$

$$\mathbf{J}_{\mathbf{f}}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n} \text{ or } \left(\mathbf{J}_{\mathbf{f}}(\mathbf{x}) \right)_{ij} = \frac{\partial f_i}{\partial x_j}$$

- When m=1 (scalar-valued function), Jacobian reduces to $\nabla^T \mathbf{f}(\mathbf{x})$ (gradient transpose).
- When m=n=1 (single-variable function), Jacobian reduces to the derivative of **f**.

Jacobian for Matrix Inputs

• Given a function with *m* outputs and *n*×*p* inputs

$$\mathbf{f}(\mathbf{X}) = [f_1(\mathbf{X}), \dots, f_m(\mathbf{X})] \in \mathbb{R}^m, \text{ where } \mathbf{X} = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix} \in \mathbb{R}^{n \times p}$$

• Jacobian is a $m \times n \times p$ **tensor** (i.e., matrix of matrices) of partial derivatives:

$$\left(\mathbf{J}_{\mathbf{f}}(\mathbf{X})\right)_{ijk} = \frac{\partial f_i}{\partial x_{jk}}$$

• The Jacobian math holds if you keep adding more dimensions to the input or output.

; [` u u? 5 w& G u% + H	`{*Ui`N?> ?'xJ@8 C \$\dC\$ixX 6 oKY:'U i v!F1_i	[# = R / J 4 3 Q d l \$ 8 g u l [F X 8 % k k i 8 V N) r _ Rt D + . /& Z N K e < L T i K e L T i		2Y7 Fq{y` V 8sr qe\$", G A-x J3/{. r rtN <fuwk 8<br="">r4r <<02* 8</fuwk>		
Wł	ny Use Matrix/T	ensor F	orm?	, , , , , , A 3%] a 0 - EQSM > 0 0 ge-; j uW r a>gAw 10	FW, u1u71 FW, l2u71 CK >]T_ q G 4]JU W 0 1%]		
Te Jt h)	I+0J R G[N8;v *S dpYi V c{	icq4 e/17 {Uta 3Q(' oOfv gofY	- Z 6 L s W T # 7 i z } } # R 8 V 1 R I	* 0 % 5 0 V 0 4 X 4 N V ' Z ' g { Z " - M {	* C L @ } x * C L @ } x \$ K U < e 9	Y 1Y ; e 5 < g + 0 nK C	
<mark>ہِ in</mark> e	essence, matrix form ((multi-varia	te calculus) i	is just an exte	ension of sin	gle-variable	/ 3 K
*7 Ca	CUIUS. , } 4 N G . t) H \$ v t % G 2 h A 6 : & Y olh. (i E [X D 6 Y D 9 # Z 2 / d # G & #	<pre><kiii 0="" 7="" <="" th="" w="" z="" {<=""><th>D T K G U O ",/ T #9 p X K 7 # y X H A 5 g X 1 Z 3 N N I C N</th><th>, { w = h + g A + h ^ 6 Z # * G j G] % , s f 7 e & 0 M v > g y 1 + j i R N M Z I > t</th><th>Q 0 0 x 7 B J = ^ i F 0 3 J 9 E h g r i 1 & t w L > \$ a E c</th><th></th><th></th></kiii></pre>	D T K G U O ",/ T #9 p X K 7 # y X H A 5 g X 1 Z 3 N N I C N	, { w = h + g A + h ^ 6 Z # * G j G] % , s f 7 e & 0 M v > g y 1 + j i R N M Z I > t	Q 0 0 x 7 B J = ^ i F 0 3 J 9 E h g r i 1 & t w L > \$ a E c		
^h Tw	(O reasons: @ ₩ & L n = T : & V ₩ p n { k	+ q / c y Z Y % , % 8				U LOY'Z f Ba) W P @ F / - a @ 9 = # , D K Y	≠ TU TU^F
0	Compact derivations	: with mate	rix form calc	ulations we c	an compute	a concise 🔄 🗄	5 0 % L
	statements.z T T R i T Y + - i B Y I m i B Y I 0 i B Y I 0 a I c c H	2 y 0 1 M z @ ' G = 2 o H \ r @ 7 \ H	3 d H Q 1 a) Q 9 Z I Y < L Z I a + u 3 Z 9 q f q : d W			f 0 i V u E a \ j f] 6 0 [(L x R F # % X ; " 6 o 4 3 0 + v < 1 . V E b 7 ! } R T Y !] 6 K a r 1 o 7 z v	N N
0	Implementing algorit	thms in mat	trix form is n	nuch faster.	IQ (u ^U F X c		/" Z, Ri 7{
	¹ O ⁴ GPUs are optimized	for VERY FAS	r matrix/tensor	operations.	nz aax {d WV- XB bC\	K 43 Z & (!8 h & * ! ; w3 g i r + 0	инк, 2%^0 х л
* 0 & o 3 ? e + v B P w) 6	,	D. R. 9; c. ; h.r.: N.N.r.	I A w D g P a m v Z w d \ ib + 1 Y r r S V o _ > @ h d i * T p f x i Y P l n B g P 8 h p # C	W U U V V U V V U V U V V U V V V V V V	IQ 1 3 p IQ 1 3 p IQ 1 3 p JF UI jF UI jF V V V C 1 C I V V C 1 C I V I V V C 1 C I V I V I V I V I V I V I V I V I V I	MA) e !/ e i MA) e !/ e i V' Z9" [u R ' V' Z9" [u R ' V' b" b R ' U X 3 }1 n R p 9 G c t g 0 (R p 9 G c] 0 (0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 (с п А А А А А А А А А А А А А А А А А А

Chain Rule

• Function composition:

$$z \circ y(x) = z(y(x)) = z(x)$$

If *z* is a function of *y*, and *y* is a function of *x*, then *z* is a function of *x*, as well.

Then:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$$

Chain Rule for Multivariable Functions

- Let $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^n$, $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$
- Composing them: $\mathbf{f} \circ \mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{g}(\mathbf{x})): \mathbb{R}^d \to \mathbb{R}^m$

The result looks similar to the single-variable setup:

$$\mathbf{J}_{\mathbf{f} \circ \mathbf{g}}(\mathbf{x}) = \mathbf{J}_{\mathbf{f}}(\mathbf{g}(\mathbf{x})) \ \mathbf{J}_{\mathbf{g}}(\mathbf{x})$$

Note, the above statement is a **matrix** multiplication! Function $\mathbf{f} \circ \mathbf{g}$ has *m* outputs and *d* inputs $\rightarrow m$ by *d* Jacobian

Quiz Time!

Let
$$x \in \mathbb{R}$$
, $y: \mathbb{R} \to \mathbb{R}^n$, $z: \mathbb{R}^n \to \mathbb{R}$

What is the Jacobean of $z \circ \mathbf{y}(x) = z(y_1(x), ..., y_n(x))$? 1. $\mathbf{J}_{z \circ \mathbf{y}}(x) = \mathbf{J}_z(\mathbf{y}(x)) \ \mathbf{J}_{\mathbf{y}}(x)$ 2. $\mathbf{J}_{z \circ \mathbf{y}}(x) = \left[\frac{\partial z}{\partial y_1}, ..., \frac{\partial z}{\partial y_n}\right] \left[\frac{\partial y_1}{\partial x}, ..., \frac{\partial y_n}{\partial x}\right]^{\mathrm{T}}$ 3. $\mathbf{J}_{z \circ \mathbf{y}}(x) = \sum_{i=1}^n \frac{\partial z}{\partial y_i} \ \frac{\partial y_i}{\partial x}$ 4. All the above!

We will stop here!

• Today: lots of background about neural networks!

• Next time: training a neural net!