
Backpropagation
CSCI 601 471/671

NLP: Self-Supervised Models
https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Andrej Karpathy and many others]

HW update

● HW1 grades are up!
○ Stats: Mean: 93.1 (std: ~5)
○ There was a mistake in grading Q4.6, but should be corrected now.

● Regrade requests can be submitted via Gradescope.
○ Please don’t spam us! 🙏

● HW3 is up!
○ Focus: training neural networks

Recap: Feel Forward Neural Networks

x0

x1

x2

xP

[Slide: HKUST]

Recap: Feel Forward Neural Networks

x0

x1

x2

xP W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

[Slide: HKUST]

Recap: Jacobian Matrix

● Generalization of gradients

● Given a function with m outputs and n inputs
𝐟 𝐱 = 𝑓! 𝑥!, 𝑥", … , 𝑥# , … , 𝑓$ 𝑥!, 𝑥", … , 𝑥# ∈ ℝ$

● It’s Jacobian is an m x n matrix
of partial derivatives:

𝑓! … 𝑓"

𝑥! 𝑥# … 𝑥$

𝐉𝐟 𝐱 =

𝜕𝑓*
𝜕𝑥*

⋯
𝜕𝑓*
𝜕𝑥+

⋮ ⋱ ⋮
𝜕𝑓,
𝜕𝑥*

⋯
𝜕𝑓,
𝜕𝑥+

∈ ℝ,×+

Recap: Chain Rule for Multivariable Functions

● Looks similar to the single-variable setup:

Note, the above statement is a matrix multiplication!
Function 𝐟 ∘ 𝐠 has m outputs and d inputs → m by d Jacobian

𝐟

𝐠

𝐱

𝐉𝐟∘𝐠 𝐱 = 𝐉𝐟 𝐠(𝐱) 𝐉𝐠 𝐱

Training Neural Networks: Setup

● We are given an architecture though its weights𝐖.
● We are given a loss function ℓ:ℝ×ℝ → (0, 1)

○ ℓ 𝑦∗, 𝑦 quantifies distance between an answer 𝑦∗ and prediction y = NN 𝐱;𝐖 — lower is better

● Also given a training data 𝐷 = {(𝐱% , 𝑦%∗)}
● Overall objective to optimize: ℒ 𝐷;𝐖 = ∑ 𝐱!,)!

∗ ∈+ ℓ(NN 𝐱%;𝐖 , 𝑦%∗)
W

ei
gh

ts
 to

 le
ar

n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥"

𝑥#

𝑥$

𝑥%

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

Training Neural Networks ~ Optimizing Parameters

● We can use gradient descent to
minimizes the loss.

● At each step, the weight vector is modified
in the direction that produces the steepest
descent along the error surface.

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥"

𝑥#

𝑥$

𝑥%

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

ℒ 𝐷;𝐖

𝐖
𝐖(")𝐖($)𝐖(%)𝐖(&)

Training Neural Networks ~ Optimizing Parameters

It all comes down to effectively computing ,ℒ
,.!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥"

𝑥#

𝑥$

𝑥%

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

ℒ 𝐷;𝐖

𝐖
𝐖(&) 𝐖(%) 𝐖($) 𝐖(")

For each sub-parameter 𝑊& ∈ 𝐖:

𝑊&
(()!) = 𝑊&

(() − 𝛼
𝜕ℒ
𝜕𝑊&

Training Neural Networks ~ Computing the Gradients

● How do you efficiently compute ,ℒ
,.!

for all parameters?

● It’s easy to learn the final layer – it’s just a linear unit.
● How about the weights in the earlier layers (i.e., before the final layer)?

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥"

𝑥#

𝑥$

𝑥%

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

Necessity of a Principled Algorithm for Gradient Computation

● Depth gives more representational capacity
to neural networks.

● However, training deep nets is not trivial.

● Even if we have analytical formula for each
gradient, they can be tedious and must be
repeated for each new architecture.

● The solution is “Backpropagation” algorithm!

Architecture of the BERT model with over 24 layers and millions
of parameters — we will study get to this model in a few weeks!

Key Intuitions Required for BP

1. Gradient Descent
○ Change the weights 𝐖 in the direction of

gradient to minimize the error function.

2. Chain Rule
○ Use the chain rule to calculate the weights of

the intermediate weights

3. Dynamic Programming (Memoization)
○ Memoize the weight updates to make the

updates faster.

ℒ 𝐷;𝐖

𝐖
𝐖(&) 𝐖(%) 𝐖($) 𝐖(")

𝑥"

𝑥#

𝑥$

𝑥%

● Given the following definition:

● Trainable parameters: 𝐖 = 𝐖/,𝐖!, … ,𝐖0 , 𝐮

A Generic Neural Network

𝐱 = 𝐡/ ∈ ℝ1$ (input)

𝐡%2! = 𝑓%(𝐖%𝐡%) ∈ ℝ1! (hidden layer 𝑖 , 0 ≤ 𝑖 ≤ 𝐿 − 1)

𝑦 = 𝐮3𝐡0 ∈ ℝ (output)

ℒ = ℓ(𝑦, 𝑦∗) ∈ ℝ (loss)

𝐱

+

𝐮&𝐡'

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖"𝐡"

𝑓)

𝐖'*"𝐡'*"

𝑓'*"

● Given some [initial] values for the parameters, we
can compute the forward pass, layer by layer.

● Forward pass is basically 𝐿 matrix multiplications, each
followed by an activation function.

● Matrix multiplication can be done efficiently with GPUs.
○ Therefore, forward pass is somewhat fast.

● Complexity of forward pass, linear of depth 𝑂 𝐿 .

A Generic Neural Network: Forward Step

𝐱

+

𝐮&𝐡'

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖"𝐡"

𝑓)

𝐖'*"𝐡'*"

𝑓'*"

A Generic Neural Network: Direct Gradients

We want the gradients of ℒ with respect to model parameters.

● ∇ℒ 𝐖,*" = 𝐉ℒ 𝐖,*"
&
= 𝐉ℓ y 𝐉. 𝐡' 𝐉𝐡' 𝐖'*"

&

● ∇ℒ 𝐖,*# = 𝐉ℒ 𝐖,*#
& = 𝐉ℓ y 𝐉. 𝐡' 𝐉𝐡' 𝐡'*" 𝐉𝐡'() 𝐖'*#

&

●…

● ∇ℒ 𝐖) = 𝐉ℒ 𝐖,*$
&
= 𝐉ℓ y 𝐉. 𝐡' 𝐉𝐡' 𝐡'*" …𝐉𝐡) 𝐖)

&

In total, how many matrix multiplications are done here?
(A) 𝑂 𝐿 (B) 𝑂 𝐿# (C) 𝑂 𝐿$ (C) 𝑂 exp(𝐿)

𝐱 = 𝐡) ∈ ℝ0* (input)

𝐡12" = 𝑓1(𝐖1𝐡1) ∈ ℝ0+

(0 ≤ 𝑖 ≤ 𝐿 − 1)

𝐱

+

𝐮&𝐡'

⋮ ⋮ ⋮

𝐖'*"𝐡'*"

𝑦

𝑓'*"
𝑦 = 𝐮&𝐡, ∈ ℝ (output)

ℒ = ℓ(𝑦, 𝑦∗) ∈ ℝ (loss)

𝐖 = 𝐖),𝐖", … ,𝐖, , 𝐮

4 matrix
multiplications

3 matrix
multiplications

𝐿 + 2matrix
multiplications

Can we do better
than this? 🤔

A Generic Neural Network: Gradients with Caching/Memoization

● Parameter gradients depend on the gradients of the earlier layers!
● So, when computing gradients at each layer, we don’t need to start from scratch!
● I can reuse gradients computed for higher layers for lower layers (i.e., memoization).

In total, how many matrix multiplications are done here when using caching/memoization?
(A) 𝑂 𝐿 (B) 𝑂 𝐿# (C) 𝑂 𝐿$ (C) 𝑂 exp(𝐿)

𝐱

+

𝐮&𝐡'

⋮ ⋮ ⋮

𝐖'*"𝐡'*"

𝑦

𝑓'*"

Let 𝛿1 denote Jacobian at the output of layer 𝑖:
𝛿1 = 𝐉ℓ y 𝐉. 𝐡' 𝐉𝐡' 𝐡'*" … 𝐉𝐡+ 𝐡1*"

𝛿1 = 𝛿12" 𝐉𝐡+ 𝐡1*"

∇ℒ 𝐖,*" = 𝐉ℓ y 𝐉. 𝐡' 𝐉𝐡' 𝐖'*"
&

∇ℒ 𝐖,*# = 𝐉ℓ y 𝐉. 𝐡' 𝐉𝐡' 𝐡'*" 𝐉𝐡'() 𝐖'*#
&

…

∇ℒ 𝐖) = 𝐉ℓ y 𝐉. 𝐡' 𝐉𝐡' 𝐡'*" …𝐉𝐡) 𝐖)
&

= 𝛿, 𝐉𝐡' 𝐖'*"
&

= 𝛿,*" 𝐉𝐡'() 𝐖'*#
&

= 𝛿" 𝐉𝐡) 𝐖)
&

A Generic Neural Network: Backward Step

● Backward step computes the gradients starting from the end to the
beginning, layer by layer.

● Start by computing local gradients: 𝐉𝐡3 𝐡()*

● Use then to compute upstream gradients 𝛿+, then 𝛿+)*, then 𝛿+),, ….

● Use these to compute global gradients: ∇ℒ 𝐖(

● Computational cost as a function of depth:
○ With memoization, gradient computation is a linear function of depth L

■ (same cost as the forward process!!)
○ Without memorization, gradients computation would grow quadratic with L

𝐱

+

𝐮&𝐡'

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖"𝐡"

𝑓)

𝐖'*"𝐡'*"

𝑓'*"

A Generic Neural Network: Back Propagation

Initialize network parameters with random values
Loop until convergence

Loop over training instances
i. Forward step:

Start from the input and compute all the layers till the end (loss ℒ)

ii. Backward step:
Compute local gradients, starting from the last layer
Compute upstream gradients 𝛿1 values, starting from the last layer
Use 𝛿1 values to compute global gradients ∇ℒ 𝐖1 at each layer

iii. Gradient update:

Update each parameter: 𝐖1
(52") ← 𝐖1

(5) − 𝛼 ∇ℒ 𝐖1

𝐱

+

𝐮&𝐡'

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖"𝐡"

𝑓)

𝐖'*"𝐡'*"

𝑓'*"
In practice, this step is done
over batches of instances!

Computation Graph: Example

● In reality, networks are not as regular as the previous example …

Back-Prop in General Computation Graph

● What if the network does not have a regular structure? Same idea!

● Sort the nodes in topological order (what depends on what)
● Forward-Propagation:

○ Visit nodes in topological sort order and
compute value of node given predecessors

● Backward-Propagation:
○ Compute local gradients
○ Visit nodes in reverse order and

compute global gradients using gradients of successors

…

…

Inputs

Single scalar output

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4

[Slide: Stanford CS231N]

Want:

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Chain rule:

Upstream
gradient

Local
gradient

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Chain rule:

Upstream
gradient

Local
gradient

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Chain rule:

Upstream
gradient

Local
gradient

Computation Graph: An Example

● Evaluated at: x = -2, y = 5, z = -4
● Start with local gradients!

[Slide: Stanford CS231N]

Chain rule:

Upstream
gradient

Local
gradient

A Generic Example

Figure from Andrej Karpathy

f

Lectu
re 4 -

36Figure from Andrej Karpathy

“local gradient”

Lectu
re 4 -

37

f

Figure from Andrej Karpathy

“local gradient”

“Upstream
gradient”

Lectu
re 4 -

38

f

Figure from Andrej Karpathy

“local gradient”

“Upstream
gradient”

Lectu
re 4 -

39

“Downstream
gradients”

f

Figure from Andrej Karpathy

“local gradient”

“Upstream
gradient”

Lectu
re 4 -

40

“Downstream
gradients”

f

Figure from Andrej Karpathy

“local gradient”

“Upstream
gradient”

Lectu
re 4 -

41

“Downstream
gradients”

f

Figure from Andrej Karpathy

Demo time!

● Link: https://playground.tensorflow.org/

42

https://playground.tensorflow.org/

Chapter Plan

1. Feed-forward networks
2. Neural nets: brief history
3. Word2Vec as a simple neural network
4. Training neural networks: back-propagation
5. Backprop in practice

Backprop in PyTorch

x = torch.tensor(-2.0, requires_grad=True)
y = torch.tensor(5.0, requires_grad=True)
z = torch.tensor(-4.0, requires_grad=True)

f = (x+y)*z # Define the computation graph

f.backward() # PyTorch’s internal backward gradient computation

print('Gradients after backpropagation:', x.grad, y.grad, z.grad)

Want:

PyTorch’s Implementation: Forward/Backward API

● PyTorch has implementation of forward/backward operations for various operators.
● Example: multiplication operator

PyTorch Operators PyTorch’s lower-level functions translate activities to
graphics processor via libraries like OpenGL

Example Activation Functions

Why Learn All These Details About Backprop?

● Modern deep learning frameworks compute gradients for you!

● But why take a class on compilers or systems when they are implemented for you?
○ Understanding what is going on under the hood is useful!

● Backpropagation doesn’t always work perfectly out of the box
○ Understanding why is crucial for debugging and improving models

48

Backprop in Practice

Activation Functions

● How do you choose what activation function to use?
● In general, it is problem-specific and might require trial-and-error.
● Here are some tips about popular action functions.

Activation Functions : Sigmoid

● Squashes numbers to range [0,1]
● Historically popular, interpretation as

“firing rate” of a neuron

● Key limitation: Saturated neurons “kill” the gradients
● Whenever |x| > 5, the gradients are basically zero.

sigmoid
gate

xIf all the gradients flowing back
will be zero and weights will
never change.

[dance figure: https://www.imaginary.org/gallery/maths-dance-moves]

https://www.imaginary.org/gallery/maths-dance-moves

Activation Functions : Tanh

● Symmetric around [-1, 1]
● Still saturates |x| > 3 and “kill” the gradients
● Zero-centered — good for stacking hidden layers

[dance figure: https://www.imaginary.org/gallery/maths-dance-moves]

[LeCun et al., 1991]

https://www.imaginary.org/gallery/maths-dance-moves

Activation Functions : ReLU

● Computationally efficient
● In practice, converges faster than

sigmoid/tanh in practice
● Does not saturate (in +region) — will die less!

[dance figure: https://www.imaginary.org/gallery/maths-dance-moves]

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

https://www.imaginary.org/gallery/maths-dance-moves

Activation Functions : Leaky ReLU

● Does not saturate — will not die.
● Computationally efficient
● In practice it converges faster than

sigmoid/tanh in practice

● Other parametrized variants:
○ Parametric Rectifier (PReLU):

○ Maxout:

● Provide more flexibility, though at the cost of more learnable parameters.
○ For example, Maxout doubles the number of parameters.

[dance figure: https://www.imaginary.org/gallery/maths-dance-moves]

[Goodfellow et al., 2013]

[He et al., 2015]

https://www.imaginary.org/gallery/maths-dance-moves

How do You Choose What Activation Function to Use?

● In general, it is problem-specific and might require trial-and-error.

● A useful recipe:
1. Generally, ReLU is a good activation to start with.
2. Time/compute permitting, you can try other activations to squeeze

out more performance.

Exploding/Vanishing Gradients

● Remember gradient computation at layer 𝐿 − 𝑘:

● This matrix multiplication could quickly approach
○ ∞, if the matrix elements are a large — exploding gradients.
○ 0, if the matrix elements are small — vanishing gradients.

● For those interested, convergences of matrix powers is determined
by its largest eigenvalue (out of scope for this class, extra credit).

● ∞/0 gradients would kill learning (no flow of information).

∇ℒ 𝐖+)/ = 𝐉ℓ y 𝐉1 𝐡2 𝐉𝐡7 𝐡2)* 𝐉𝐡789 𝐖2), … 𝐉𝐡:8;<9 𝐖+)/
3

𝐱

+

𝐮&𝐡'

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖"𝐡"

𝑓)

𝐖'*"𝐡'*"

𝑓'*"

O(k)-many matrix multiplication

Residual Connections/Blocks

● Create direct “information highways” between layers.

● Shown to diminish the effect of vanishing/exploding gradients
○ Early in the training, there are fewer layers to propagate through.
○ The network would restore the skipped layers, as it learns richer features.
○ It is also shown to make the

optimization objective smoother.
○ Fun fact: the paper introducing residual

layers (He et al. 2015) is the most cited
paper of century.

[Li et al. “Visualizing the Loss Landscape of Neural Nets”]

https://arxiv.org/abs/1512.03385

Weight Initialization

● Initializing all weights with a fixed constant (e.g., 0) is a very bad idea! (why?)

● If the neurons start with the same weights, then all the neurons will follow the same
gradient, and will always end up doing the same thing as one another.

x0

x1

x2

xP

Weight Initialization

● Better idea: initialize weights with random Gaussian noise.

● There are fancier initializations (Xavier, Kaiming, etc.) that we won’t get into.

[read more here: https://pytorch.org/docs/stable/nn.init.html]

x = torch.tensor.empty(3, 5)
nn.init.normal_(w)

https://pytorch.org/docs/stable/nn.init.html

Comments on Training

● No guarantee of convergence; neural networks form non-convex functions with
multiple local minima

● In practice, many large networks can be trained on large amounts of data for
realistic problems.

● May be hard to set learning rate and to select number of hidden units and layers.
● Many steps (tens of thousands) may be needed for adequate training. Large data

sets may require many hours of CPU
● Termination criteria: Number of epochs; Increased error on a validation set.
● To avoid local minima: several trials with different random initial weights with

majority or voting techniques

Over-training Prevention

● Running too many epochs and/or a NN with many hidden layers may lead to an
overfit network

● Keep a held-out validation set and evaluate accuracy after every epoch
● Early stopping: maintain weights for best performing network on the validation set

and return it when performance decreases significantly beyond that.
● To avoid losing training data to validation:

○ Use 10-fold cross-validation to determine the average number of epochs that optimizes validation
performance

○ Train on the full data set using this many epochs to produce the final results

66

Over-fitting prevention

● Too few hidden units prevent the system from adequately fitting the data and
learning the concept.

● Using too many hidden units leads to over-fitting.
● Similar cross-validation method can be used to determine an appropriate number

of hidden units. (general)
● Another approach to prevent over-fitting is weight-decay: all weights are multiplied

by some fraction in (0,1) after every epoch.
○ Encourages smaller weights and less complex hypothesis
○ Equivalently: change Error function to include a term for the sum of the squares of the weights in the

network. (general)

67

Dropout training

● In each forward pass, randomly set some neurons to zero
● Probability of dropping is a hyperparameter; 0.5 is common
● Dropout is implicitly a ensemble (average) of model that share parameters.

○ Each binary mask is one model
○ For example, an FC layer with 4096 units

has 24096 ~ 101233 possible masks!
○ Only ~ 1082 atoms in the universe ...

68
[Hinton et al, 2012; Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014]

Dropout During Test Time

● The issue for test time is that Dropout adds randomization.
○ Each dropout mask would lead to a slightly different outcome.

● In ideal world, we would like to “average out” the outcome across all the possible
random masks:

○ Not feasible.

● The alternative is to not apply dropout. Without dropout, the input
values to each neuron would be higher than what was seen during
the training (mismatch between train/test).

○ Example: Input to activation during:

■ training time: 𝐸 𝑎 = "
%
𝑤"𝑥" + 𝑤#𝑥# + "

%
0 + 0

+ "
%
0 + 𝑤#𝑥# + "

%
𝑤"𝑥" + 0 = "

#
𝑤"𝑥" + 𝑤#𝑥#

■ test time: 𝐸 𝑎 = 𝑤"𝑥" + 𝑤#𝑥#
● Solution: scale the values proportional to dropout probability.

○ Can be applied in either testing (scaling down) or training (scaling up).
69

a

x y

w1 w2

Dropout in Practice

Just call the PyTorch function!

It automatically
- activates the dropout for training.

- deactivatives it during evaluations and
scales the values according to its parameter.

70

dropout = nn.Dropout(p=0.2)
x = torch.randn(20, 16)
y = dropout(x)

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

training step
...
model.train()
...

evaluate model:
...
model.eval()
...

The Only Time You Want to Overfit: The First Tryout

● A model with buggy implementation (e.g., incorrect gradient calculations or
updates) cannot learn anything.

● Therefore, a good and easy sanity check is to see if you can overfit few examples.
○ This is really the first test you should do, before any hyperparameter tuning.

● Try to train to 100% training accuracy/performance on a small sample (<30) of
training data and monitor the training loss trends.

○ Does it down? If not, something must be wrong.
○ Try checking the learning rate or modifying the initialization.
○ If those don’t help, check the gradients.

■ If they’re NaN or Inf, might indicate exploding gradients.
■ If they’re zeros, might indicate vanishing gradients.

Demo Time!

● https://teachablemachine.withgoogle.com/

https://teachablemachine.withgoogle.com/

Chapter Summary

● Feed-forward network architecture
● Word2Vec is just a feedforward net!

○ And we can easily extend it!

● We learned Back-Prop, the most important algorithm in neural networks! 🎉
○ Recursively (and hence efficiently) apply the chain rule along computation graph

● Lots of empirical tricks for training neural networks:
○ First test: check if you can overfit.
○ Dropout
○ Be mindful of activations
○ Careful of exploding/vanishing gradients

