
Training Neural Nets
CSCI 601 471/671 

NLP: Self-Supervised Models
https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Andrej Karpathy and many others ]



Logistics

● Extra credit: 
○ HW grades are out of 100%. 
○ Gradescope might show >100 because of extra credits. 

● Midterm date: Tuesday March 7
○ In class, on paper 
○ Purpose: your understanding of ideas presented in the first half of the semester
○ Based on: the lectures and weekly homework assignments 
○ Scope: until the end of “Transformers” 



Recap: Training Neural Networks ~ Optimizing Parameters 

● We can use gradient descent to 
minimizes the loss. 

● At each step, the weight vector is modified 
in the direction that produces the steepest 
descent along the error surface.
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Recap: Back Propagation for Generic Neural Network:

Initialize network parameters with random values 
Loop until convergence 

Loop over training instances 
i. Forward step: 

Start from the input and compute all the layers till the end (loss ℒ)

ii. Backward step: 
Compute local gradients, starting from the last layer
Compute upstream gradients 𝛿% values, starting from the last layer
Use 𝛿% values to compute global gradients ∇ℒ 𝐖% at each layer

iii. Gradient update: 

Update each parameter:   𝐖%
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In practice, this step is done 
over batches of instances! 



Recap: Backprop in General Computation Graph

● What if the network does not have a regular structure? Same idea! 

● Sort the nodes in topological order (what depends on what)
● Forward-Propagation: 

○ Visit nodes in topological sort order and 
compute value of node given predecessors

● Backward-Propagation: 
○ Compute local gradients 
○ Visit nodes in reverse order and 

compute global gradients using  gradients of successors

…

…

Inputs

Single scalar output



Recap: Backprop in PyTorch

x = torch.tensor(-2.0, requires_grad=True)
y = torch.tensor(5.0, requires_grad=True)
z = torch.tensor(-4.0, requires_grad=True)

f = (x+y)*z # Define the computation graph

f.backward() # PyTorch’s internal backward gradient computation

print('Gradients after backpropagation:', x.grad, y.grad, z.grad)

Want:



Recap: Activation Function Pros/Cons 

Sigmoid   Tanh ReLU

● A useful recipe: 
1. Generally, ReLU is a good activation to start with. 
2. Time/compute permitting, you can try other activations to squeeze out 

more performance. 



Exploding/Vanishing Gradients 

● If many numbers |x| > 1 get 
multiplied, the result will become 
too big. 

● NaN gradients --> no learning! 

● If many numbers |x| < 1 get 
multiplied, the result will become 
too small. 

● Zero gradients -> no learning! 



Exploding/Vanishing Gradients 

● Remember gradient computation at layer 𝐿 − 𝑘: 

● This matrix multiplication could quickly approach
○ ∞, if the matrix elements are a large — exploding gradients. 
○ 0, if the matrix  elements are small — vanishing gradients.
○ ∞/0 gradients would kill learning (no flow of information).

● For those interested, convergences of matrix powers is determined 
by its largest eigenvalue (HW, extra credit). 
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O(k)-many matrix multiplication 



Residual Connections/Blocks

● Create direct “information highways” between layers. 

● Shown to diminish vanishing/exploding gradients
● Early in the training, there are fewer layers to propagate through. 

○ The network would  restore the skipped layers, as it learns richer features. 
○ It is also shown to make the

optimization objective smoother. 

[Fun fact: the paper (He et al. 2015) 
introducing residual layers is the most 
cited paper of century!!]

[Li et al. “Visualizing the Loss Landscape of Neural Nets”]

https://arxiv.org/abs/1512.03385


Normalization: Layer, Batch, … 

● Normalization of values standardizes the ranges of values 
● Prevents value disparities 
● Stabilizes and speeds up training 

[Ba et al. “Layer Normalization”]

See PyTorch documentations: https://pytorch.org/docs/stable/nn.html#normalization-layers

https://arxiv.org/pdf/1607.06450.pdf
https://pytorch.org/docs/stable/nn.html


Batching

● GPUs are fast with 
Tensor operations 

● Rather than visiting 
instances in sequentially , 
batch them together 
for faster training and 
inference. 



Weight Initialization

● Initializing all weights with a fixed constant (e.g., 0’s) is a very bad idea! (why?)

● If the neurons start with the same weights, then all the neurons will follow the same 
gradient, and will always end up doing the same thing as one another.

● Effective initialization is one that breaks such ”symmetries” in the weight space. 
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Weight Initialization

● Better idea: initialize weights with random Gaussian noise. 

● There are fancier initializations (Xavier, Kaiming, etc.) that we won’t get into. 

[read more here: https://pytorch.org/docs/stable/nn.init.html] 

x = torch.tensor.empty(3, 5)
nn.init.normal_(w)

https://pytorch.org/docs/stable/nn.init.html


Over-training Prevention 

● Running too many epochs and/or a NN with many hidden layers may lead to an 
overfit network

● Keep a held-out validation set and evaluate accuracy after every epoch
● Early stopping: maintain weights for best performing network on the validation set 

and return it when performance decreases significantly beyond that.
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Dropout Training

● In each forward pass, randomly set some neurons to zero 
● Probability of dropping is a hyperparameter; 0.5 is common
● Dropout is implicitly an ensemble (average) of model that share parameters. 

○ Each binary mask is one model
○ For example, a layer with 4096 units 

has 24096 ~ 101233 possible masks!
○ Only ~ 1082 atoms in the universe ...
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[Hinton et al, 2012; Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014]



Dropout During Test Time

● The issue for the test time: 
○ Dropout adds randomization. L
○ Each dropout mask would lead to a slightly different outcome. 

● In ideal world, we would like to “average out” the outcome across all the 
possible random masks:

○ Not feasible. 
○ Remember the example: a layer with 4096 units has 24096 ~ 101233 possible masks!
○ Only ~ 1082 atoms in the universe ...
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Dropout During Test Time (2)

● The alternative is to not apply dropout. 
● Without dropout, the input values to each neuron would be higher than what was 

seen during the training (mismatch between train/test).
● Example: imagine we apply dropout (p=0.5) to the following model:

○ Training time: 𝐸 𝑎 = /
2 𝑤/𝑥/ + 𝑤0𝑥0 + /

2 0 + 0

+ /2 0 + 𝑤0𝑥0 + /2 𝑤/𝑥/ + 0 = /
0 𝑤/𝑥/ + 𝑤0𝑥0

○ Test time: 𝐸 𝑎 = 𝑤/𝑥/ + 𝑤0𝑥0

● Solution: scale the values proportional to dropout probability. 
○ Can be applied in either testing (scaling down) or training (scaling up). 
○ A very common interview question! J
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Dropout in Practice 

Just call the PyTorch function!

It automatically 
- activates the dropout for training.

- deactivatives it during evaluations and 
scales the values according to its parameter.
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dropout = nn.Dropout(p=0.2)
x = torch.randn(20, 16)
y = dropout(x)

See PyTorch documentations https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

# training step 
... 
model.train() 
...

# evaluate model: 
...
model.eval() 
...

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html


The Only Time You Want to Overfit: The First Tryout 

● A model with buggy implementation (e.g., incorrect gradient calculations or 
updates) cannot learn anything. 

● Therefore, a good and easy sanity check is to see if you can overfit few examples. 
○ This is really the first test you should do, before any hyperparameter tuning. 

● Try to train to 100% training accuracy/performance on a small sample (<30) of 
training data and monitor the training loss trends. 

○ Does it down? If not, something must be wrong. 
○ Try checking the learning rate or modifying the initialization. 
○ If those don’t help, check the gradients. 

■ If they’re NaN or Inf, might indicate exploding gradients.
■ If they’re zeros, might indicate vanishing gradients.



Additional Comments on Training

● No guarantee of convergence; neural networks form non-convex functions 
with multiple local minima

● In practice, many large networks can be trained on large data.

● Many steps (tens of thousands) may be needed for adequate training. 

● May be tricky to set learning rate or number of hidden units/layers.

● To avoid local minima: several trials with different random initial weights 
with majority or voting techniques



Intuition about Neural Net Representations 



Intuition about Neural Net Representations 

[Zeiler & Fergus 2013; Yosinski et al. 2015] 

https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/abs/1506.06579


Neural Networks: Summary

● Feed-forward network architecture 
● Word2Vec is just a feedforward net! 

○ And we can easily extend it! 

● We learned Backprop, the most important algorithm in neural networks! 🎉
○ Recursively (and hence efficiently) apply the chain rule  along computation graph

● Lots of empirical tricks for training neural networks:
○ First test: check if you can overfit. 
○ Dropout 
○ Be mindful of activations 
○ Careful of exploding/vanishing gradients 


