Training Neural Nets

CSCI 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Andrej Karpathy and many others]
Logistics

● Extra credit:
 ○ HW grades are out of 100%.
 ○ Gradescope might show >100 because of extra credits.

● Midterm date: Tuesday March 7
 ○ In class, on paper
 ○ Purpose: your understanding of ideas presented in the first half of the semester
 ○ Based on: the lectures and weekly homework assignments
 ○ Scope: until the end of “Transformers”
Recap: Training Neural Networks ~ Optimizing Parameters

- We can use gradient descent to minimizes the loss.
- At each step, the weight vector is modified in the direction that produces the steepest descent along the error surface.

\[
\begin{align*}
\mathbf{x} &= (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \\
y &\in \mathbb{R}
\end{align*}
\]
Recap: Back Propagation for Generic Neural Network:

Initialize network parameters with random values
Loop until convergence
 Loop over training instances
 i. **Forward step:**
 Start from the input and compute all the layers till the end (loss \mathcal{L})
 ii. **Backward step:**
 Compute *local gradients*, starting from the last layer
 Compute *upstream gradients* δ_i values, starting from the last layer
 Use δ_i values to compute global gradients $\nabla_{\mathcal{L}}(W_i)$ at each layer
 iii. **Gradient update:**
 Update each parameter: $W_i^{(t+1)} \leftarrow W_i^{(t)} - \alpha \nabla_{\mathcal{L}}(W_i)$

In practice, this step is done over *batches* of instances!
Recap: Backprop in General Computation Graph

- What if the network does not have a regular structure? Same idea!
- Sort the nodes in topological order (what depends on what)
- Forward-Propagation:
 - Visit nodes in topological sort order and compute value of node given predecessors
- Backward-Propagation:
 - Compute local gradients
 - Visit nodes in reverse order and compute global gradients using gradients of successors
Recap: Backprop in PyTorch

\[f(x, y, z) = (x + y)z \]

Want: \[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \]

```python
x = torch.tensor(-2.0, requires_grad=True)
y = torch.tensor(5.0, requires_grad=True)
z = torch.tensor(-4.0, requires_grad=True)

f = (x+y)*z  # Define the computation graph

f.backward()  # PyTorch's internal backward gradient computation

print('Gradients after backpropagation:', x.grad, y.grad, z.grad)
```
Recap: Activation Function Pros/Cons

- A useful recipe:
 1. Generally, ReLU is a good activation to start with.
 2. Time/compute permitting, you can try other activations to squeeze out more performance.
Exploding/Vanishing Gradients

- If many numbers $|x| > 1$ get multiplied, the result will become too big.
- NaN gradients --> no learning!
- If many numbers $|x| < 1$ get multiplied, the result will become too small.
- Zero gradients --> no learning!

![Gradient flow graph](image)
Exploding/Vanishing Gradients

- Remember gradient computation at layer $L - k$:

$$\nabla_L(W_{L-k}) = \left(J_\ell(y) J_y(h_L) J_{h_L}(h_{L-1}) J_{h_{L-1}}(W_{L-2}) \ldots J_{h_{L-k+1}}(W_{L-k}) \right)^T$$

- This matrix multiplication could quickly approach
 - ∞, if the matrix elements are a large — exploding gradients.
 - 0, if the matrix elements are small — vanishing gradients.
 - $\infty/0$ gradients would kill learning (no flow of information).

- For those interested, convergences of matrix powers is determined by its largest eigenvalue (HW, extra credit).
Residual Connections/Blocks

- Create direct “information highways” between layers.
- Shown to **diminish vanishing/exploding** gradients
- Early in the training, there are fewer layers to propagate through.
 - The network would restore the skipped layers, as it learns richer features.
 - It is also shown to make the optimization objective smoother.

[Fun fact: the paper (He et al. 2015) introducing residual layers is the most cited paper of century!!]
Normalization: Layer, Batch, ...

- Normalization of values standardizes the ranges of values
- Prevents value disparities
- Stabilizes and speeds up training

\[
y = \frac{x - \mathbb{E}[x]}{\sqrt{\text{Var}[x] + \epsilon}} \times \gamma + \beta
\]
Batching

- GPUs are **fast with Tensor operations**

- Rather than visiting instances in sequentially, batch them together for **faster** training and inference.
Weight Initialization

- Initializing all weights with a fixed constant (e.g., 0’s) is a very bad idea! (why?)

- If the neurons start with the same weights, then all the neurons will follow the same gradient, and will always end up doing the same thing as one another.

- Effective initialization is one that breaks such “symmetries” in the weight space.
Weight Initialization

- Better idea: initialize weights with random Gaussian noise.

```python
x = torch.tensor.empty(3, 5)
nn.init.normal_(w)
```

- There are fancier initializations (Xavier, Kaiming, etc.) that we won’t get into.

[read more here: https://pytorch.org/docs/stable/nn.init.html]
Over-training Prevention

- Running too many epochs and/or a NN with many hidden layers may lead to an overfit network
- Keep a held-out validation set and evaluate accuracy after every epoch
- Early stopping: maintain weights for best performing network on the validation set and return it when performance decreases significantly beyond that.
Dropout Training

- In each forward pass, randomly set some neurons to zero
- Probability of dropping is a hyperparameter; 0.5 is common
- Dropout is implicitly an ensemble (average) of model that share parameters.
 - Each binary mask is one model
 - For example, a layer with 4096 units has $2^{4096} \approx 10^{1233}$ possible masks!
 - Only $\approx 10^{82}$ atoms in the universe ...

Dropout During Test Time

- The issue for the **test** time:
 - Dropout **adds randomization. 😞**
 - Each dropout mask would lead to a slightly different outcome.
- In ideal world, we would like to “average out” the outcome across all the possible random masks:
 - Not feasible.
 - Remember the example: a layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks!
 - Only $\sim 10^{82}$ atoms in the universe ...
Dropout During Test Time (2)

- The alternative is to **not apply dropout**.
- Without dropout, the input values to each neuron would be higher than what was seen during the training (**mismatch between train/test**).
- **Example:** imagine we apply dropout (p=0.5) to the following model:
 - Training time: \(E[a] = \frac{1}{4} (w_1 x_1 + w_2 x_2) + \frac{1}{4} (0 + 0) + \frac{1}{4} (0 + w_2 x_2) + \frac{1}{4} (w_1 x_1 + 0) = \frac{1}{2} (w_1 x_1 + w_2 x_2) \)
 - Test time: \(E[a] = w_1 x_1 + w_2 x_2 \)
- **Solution:** scale the values proportional to dropout probability.
 - Can be applied in either testing (scaling down) or training (scaling up).
 - A very common interview question! 😊
Dropout in Practice

Just call the PyTorch function!

It automatically
- activates the dropout for training.
- deactivates it during evaluations and scales the values according to its parameter.

```
dropout = nn.Dropout(p=0.2)
x = torch.randn(20, 16)
y = dropout(x)
```

```
# training step
...
model.train()
...
```

```
# evaluate model:
...
model.eval()
...
```

The Only Time You Want to Overfit: The First Tryout

- A model with buggy implementation (e.g., incorrect gradient calculations or updates) cannot learn anything.
- Therefore, a good and easy sanity check is to see if you can overfit few examples.
 - This is really the first test you should do, before any hyperparameter tuning.
- Try to train to 100% training accuracy/performance on a small sample (<30) of training data and monitor the training loss trends.
 - Does it down? If not, something must be wrong.
 - Try checking the learning rate or modifying the initialization.
 - If those don’t help, check the gradients.
 - If they’re NaN orInf, might indicate exploding gradients.
 - If they’re zeros, might indicate vanishing gradients.
Additional Comments on Training

- No guarantee of convergence; neural networks form non-convex functions with multiple local minima.

- In practice, many large networks can be trained on large data.

- Many steps (tens of thousands) may be needed for adequate training.

- May be tricky to set learning rate or number of hidden units/layers.

- To avoid local minima: several trials with different random initial weights with majority or voting techniques.
Intuition about Neural Net Representations
Intuition about Neural Net Representations

[Zeiler & Fergus 2013; Yosinski et al. 2015]
Neural Networks: Summary

- Feed-forward network architecture
- Word2Vec is just a feedforward net!
 - And we can easily extend it!

- We learned Backprop, the most important algorithm in neural networks!
 - Recursively (and hence efficiently) apply the chain rule along computation graph

- Lots of empirical tricks for training neural networks:
 - First test: check if you can overfit.
 - Dropout
 - Be mindful of activations
 - Careful of exploding/vanishing gradients