
Training Neural Nets
CSCI 601 471/671

NLP: Self-Supervised Models
https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Andrej Karpathy and many others]

Logistics

● Extra credit:
○ HW grades are out of 100%.
○ Gradescope might show >100 because of extra credits.

● Midterm date: Tuesday March 7
○ In class, on paper
○ Purpose: your understanding of ideas presented in the first half of the semester
○ Based on: the lectures and weekly homework assignments
○ Scope: until the end of “Transformers”

Recap: Training Neural Networks ~ Optimizing Parameters

● We can use gradient descent to
minimizes the loss.

● At each step, the weight vector is modified
in the direction that produces the steepest
descent along the error surface.

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥!

𝑥"

𝑥#

𝑥$

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

ℒ 𝐷;𝐖

𝐖
𝐖(")𝐖($)𝐖(%)𝐖(&)

Recap: Back Propagation for Generic Neural Network:

Initialize network parameters with random values
Loop until convergence

Loop over training instances
i. Forward step:

Start from the input and compute all the layers till the end (loss ℒ)

ii. Backward step:
Compute local gradients, starting from the last layer
Compute upstream gradients 𝛿% values, starting from the last layer
Use 𝛿% values to compute global gradients ∇ℒ 𝐖% at each layer

iii. Gradient update:

Update each parameter: 𝐖%
(()!) ← 𝐖%

(() − 𝛼 ∇ℒ 𝐖%

𝐱

+

𝐮+𝐡,

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖!𝐡!

𝑓.

𝐖,/!𝐡,/!

𝑓,/!
In practice, this step is done
over batches of instances!

Recap: Backprop in General Computation Graph

● What if the network does not have a regular structure? Same idea!

● Sort the nodes in topological order (what depends on what)
● Forward-Propagation:

○ Visit nodes in topological sort order and
compute value of node given predecessors

● Backward-Propagation:
○ Compute local gradients
○ Visit nodes in reverse order and

compute global gradients using gradients of successors

…

…

Inputs

Single scalar output

Recap: Backprop in PyTorch

x = torch.tensor(-2.0, requires_grad=True)
y = torch.tensor(5.0, requires_grad=True)
z = torch.tensor(-4.0, requires_grad=True)

f = (x+y)*z # Define the computation graph

f.backward() # PyTorch’s internal backward gradient computation

print('Gradients after backpropagation:', x.grad, y.grad, z.grad)

Want:

Recap: Activation Function Pros/Cons

Sigmoid Tanh ReLU

● A useful recipe:
1. Generally, ReLU is a good activation to start with.
2. Time/compute permitting, you can try other activations to squeeze out

more performance.

Exploding/Vanishing Gradients

● If many numbers |x| > 1 get
multiplied, the result will become
too big.

● NaN gradients --> no learning!

● If many numbers |x| < 1 get
multiplied, the result will become
too small.

● Zero gradients -> no learning!

Exploding/Vanishing Gradients

● Remember gradient computation at layer 𝐿 − 𝑘:

● This matrix multiplication could quickly approach
○ ∞, if the matrix elements are a large — exploding gradients.
○ 0, if the matrix elements are small — vanishing gradients.
○ ∞/0 gradients would kill learning (no flow of information).

● For those interested, convergences of matrix powers is determined
by its largest eigenvalue (HW, extra credit).

∇ℒ 𝐖()* = 𝐉ℓ y 𝐉, 𝐡- 𝐉𝐡0 𝐡-)/ 𝐉𝐡012 𝐖-)0 … 𝐉𝐡31452 𝐖()*
1

𝐱

+

𝐮+𝐡,

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖!𝐡!

𝑓.

𝐖,/!𝐡,/!

𝑓,/!

O(k)-many matrix multiplication

Residual Connections/Blocks

● Create direct “information highways” between layers.

● Shown to diminish vanishing/exploding gradients
● Early in the training, there are fewer layers to propagate through.

○ The network would restore the skipped layers, as it learns richer features.
○ It is also shown to make the

optimization objective smoother.

[Fun fact: the paper (He et al. 2015)
introducing residual layers is the most
cited paper of century!!]

[Li et al. “Visualizing the Loss Landscape of Neural Nets”]

https://arxiv.org/abs/1512.03385

Normalization: Layer, Batch, …

● Normalization of values standardizes the ranges of values
● Prevents value disparities
● Stabilizes and speeds up training

[Ba et al. “Layer Normalization”]

See PyTorch documentations: https://pytorch.org/docs/stable/nn.html#normalization-layers

https://arxiv.org/pdf/1607.06450.pdf
https://pytorch.org/docs/stable/nn.html

Batching

● GPUs are fast with
Tensor operations

● Rather than visiting
instances in sequentially ,
batch them together
for faster training and
inference.

Weight Initialization

● Initializing all weights with a fixed constant (e.g., 0’s) is a very bad idea! (why?)

● If the neurons start with the same weights, then all the neurons will follow the same
gradient, and will always end up doing the same thing as one another.

● Effective initialization is one that breaks such ”symmetries” in the weight space.

x0

x1

x2

xP

Weight Initialization

● Better idea: initialize weights with random Gaussian noise.

● There are fancier initializations (Xavier, Kaiming, etc.) that we won’t get into.

[read more here: https://pytorch.org/docs/stable/nn.init.html]

x = torch.tensor.empty(3, 5)
nn.init.normal_(w)

https://pytorch.org/docs/stable/nn.init.html

Over-training Prevention

● Running too many epochs and/or a NN with many hidden layers may lead to an
overfit network

● Keep a held-out validation set and evaluate accuracy after every epoch
● Early stopping: maintain weights for best performing network on the validation set

and return it when performance decreases significantly beyond that.

16

Dropout Training

● In each forward pass, randomly set some neurons to zero
● Probability of dropping is a hyperparameter; 0.5 is common
● Dropout is implicitly an ensemble (average) of model that share parameters.

○ Each binary mask is one model
○ For example, a layer with 4096 units

has 24096 ~ 101233 possible masks!
○ Only ~ 1082 atoms in the universe ...

18
[Hinton et al, 2012; Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014]

Dropout During Test Time

● The issue for the test time:
○ Dropout adds randomization. L
○ Each dropout mask would lead to a slightly different outcome.

● In ideal world, we would like to “average out” the outcome across all the
possible random masks:

○ Not feasible.
○ Remember the example: a layer with 4096 units has 24096 ~ 101233 possible masks!
○ Only ~ 1082 atoms in the universe ...

19

Dropout During Test Time (2)

● The alternative is to not apply dropout.
● Without dropout, the input values to each neuron would be higher than what was

seen during the training (mismatch between train/test).
● Example: imagine we apply dropout (p=0.5) to the following model:

○ Training time: 𝐸 𝑎 = /
2 𝑤/𝑥/ + 𝑤0𝑥0 + /

2 0 + 0

+ /2 0 + 𝑤0𝑥0 + /2 𝑤/𝑥/ + 0 = /
0 𝑤/𝑥/ + 𝑤0𝑥0

○ Test time: 𝐸 𝑎 = 𝑤/𝑥/ + 𝑤0𝑥0

● Solution: scale the values proportional to dropout probability.
○ Can be applied in either testing (scaling down) or training (scaling up).
○ A very common interview question! J

20

a

x y

w1 w2

Dropout in Practice

Just call the PyTorch function!

It automatically
- activates the dropout for training.

- deactivatives it during evaluations and
scales the values according to its parameter.

21

dropout = nn.Dropout(p=0.2)
x = torch.randn(20, 16)
y = dropout(x)

See PyTorch documentations https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

training step
...
model.train()
...

evaluate model:
...
model.eval()
...

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

The Only Time You Want to Overfit: The First Tryout

● A model with buggy implementation (e.g., incorrect gradient calculations or
updates) cannot learn anything.

● Therefore, a good and easy sanity check is to see if you can overfit few examples.
○ This is really the first test you should do, before any hyperparameter tuning.

● Try to train to 100% training accuracy/performance on a small sample (<30) of
training data and monitor the training loss trends.

○ Does it down? If not, something must be wrong.
○ Try checking the learning rate or modifying the initialization.
○ If those don’t help, check the gradients.

■ If they’re NaN or Inf, might indicate exploding gradients.
■ If they’re zeros, might indicate vanishing gradients.

Additional Comments on Training

● No guarantee of convergence; neural networks form non-convex functions
with multiple local minima

● In practice, many large networks can be trained on large data.

● Many steps (tens of thousands) may be needed for adequate training.

● May be tricky to set learning rate or number of hidden units/layers.

● To avoid local minima: several trials with different random initial weights
with majority or voting techniques

Intuition about Neural Net Representations

Intuition about Neural Net Representations

[Zeiler & Fergus 2013; Yosinski et al. 2015]

https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/abs/1506.06579

Neural Networks: Summary

● Feed-forward network architecture
● Word2Vec is just a feedforward net!

○ And we can easily extend it!

● We learned Backprop, the most important algorithm in neural networks! 🎉
○ Recursively (and hence efficiently) apply the chain rule along computation graph

● Lots of empirical tricks for training neural networks:
○ First test: check if you can overfit.
○ Dropout
○ Be mindful of activations
○ Careful of exploding/vanishing gradients

