
Self-Supervised
Language Modeling

CSCI 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Mohit Iyyer, Chris Manning, and many others]

Motivation

● Earlier we define Self-Supervised models as as
predictive models of the world!

● Word2Vec: Predictive models given word representations.

● Now with neural networks: predictive models of word
compositions

Chapter Plan

1. Language modeling: definitions and history
2. Language modeling with counting
3. Measuring language modeling quality
4. Language Modeling with feed-forward networks

The

4

The cat

5

The cat sat

6

The cat sat on

7

The cat sat on __?__

8

The cat sat on the mat.

9

The cat sat on the mat.

10

P(mat |The cat sat on the)
context or prefixnext word

11

P(𝑋!| 𝑋", …, 𝑋!#")

Probability of Upcoming Word

context or prefixnext word

12

LMs as a Marginal Distribution

● Directly we train models on “marginals”:
context

next
word

P(𝑋! | 𝑋", …, 𝑋!#")

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Some
model

LMs as Implicit Joint Distribution of Language

● Though implicitly we are learning the full
distribution over the language:

○ Remember the chain rule: P(𝑋!, … , 𝑋") = P(𝑋!)∏#$!
" P(𝑋# |𝑋!, 𝑋%… ,𝑋#)

● Language Modeling ≜ learning prob distribution over language sequence.

Doing Things with Language Model

● What is the probability of ….

● LMs assign a probability to every sentence (or any string of words).

“I like Johns Hopkins University”

“like Hopkins I University Johns”

P(“I like Johns Hopkins University EOS”)=10-5

P(“like Hopkins I University Johns EOS”)=10-15

Doing Things with Language Model (2)

● We can rank sentences.

● While LMs show “typicality”, this may be a proxy indicator to other properties:
○ Grammaticality, fluency, factuality, etc.

P(“I like Johns Hopkins University. EOS”) > P(“I like John Hopkins University EOS”)
P(“I like Johns Hopkins University. EOS”) > P(“University. I Johns EOS Hopkins like”)
P(“JHU is located in Baltimore. EOS”) > P(“JHU is located in Virginia. EOS”)

context
next
word

P(𝑋! | 𝑋", …, 𝑋!#")

Doing Things with Language Model (3)

● Can also generate strings

● Let’s say we start “Johns Hopkins is ”
● Using this prompt as initial condition, recursively sample from an LM:

1. Sample fromP(X | “Johns Hopkins is ”) →“located”
2. Sample fromP(X | “Johns Hopkins is located”) →“at”
3. Sample fromP(X | “Johns Hopkins is located at”) →“the”
4. Sample fromP(X | “Johns Hopkins is located at the”) →“state”
5. Sample fromP(X | “Johns Hopkins is located at the state”) →“of”
6. Sample fromP(X | “Johns Hopkins is located at the state of”) →“Maryland”
7. Sample fromP(X | “Johns Hopkins is located at the state of Maryland”) →“EOS”

context
next
word

P(𝑋! | 𝑋", …, 𝑋!#")

Why Should We Care About Language Modeling?

● Language Modeling is an effective proxy for language understanding.
○ Effective ability to predict forthcoming words rely on understanding of context/prefix

● Language Modeling is a subcomponent superset of many NLP tasks, especially
those involving text generation:

○ Summarization
○ Machine translation
○ Spelling correction
○ Dialogue etc.

You use Language Models every day!

19

You use Language Models every day!

20

You use Language Models every day!

21

It Can be Misused Too …

● A lot more about
harms later in the class.

https://pdos.csail.mit.edu/archive/scigen/

Is this a real
science article?

P(𝑋!| 𝑋", …, 𝑋!#")
How do we estimate these probabilities?
Let’s just count!

P(mat | the cat sat on the) ≈ -./01(“134 -51 651 .0 134 751”)
-./01(“134 -51 651 .0 134”)

24

P(𝑋!| 𝑋", …, 𝑋!#")
How do we estimate these probabilities?
Let’s just count!

P(mat | the cat sat on the) = -./01(“134 -51 651 .0 134 751”)
-./01(“134 -51 651 .0 134”)

25

Challenge: Increasing 𝑛makes sparsity problems worse.
Typically, we can’t have 𝑛 bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.

Language Models: A History

● Shannon (1950): The predictive difficulty (entropy)
of English.

26
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋!| 𝑋", …, 𝑋!#")
Shannon (1950) build an approximate language model with word co-
occurrences.

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

1st order approximation:

P(mat | the cat sat on the) ≈ P(mat | the)

27

1 element

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋!| 𝑋", …, 𝑋!#")
Shannon (1950) build an approximate language model with word co-
occurrences.

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

2nd order approximation:

P(mat | the cat sat on the) ≈ P(mat | on the)

28

2 elements

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋!| 𝑋", …, 𝑋!#")
Shannon (1950) build an approximate language model with word co-
occurrences.

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

3rd order approximation:

P(mat | the cat sat on the) ≈ P(mat | sat on the)

29

3 elements

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋!| 𝑋", …, 𝑋!#")
Shannon (1950) build an approximate language model with word co-
occurrences.

Then, we can use counts of approximate conditional probability.
Using the 3rd order approximation, we can:

P(mat | the cat sat on the) ≈ P(mat | sat on the) = !"#$%(“()% "$ %*+,)%”)
!"#$%(“"$ %*+,)%”)

30
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

N-gram Language Models

● Terminology: n-gram is a chunk of n consecutive words:
○ unigrams: “cat”, “mat”, “sat”, …
○ bigrams: “the cat”, “cat sat”, “sat on”, …
○ trigrams: “the cat sat”, “cat sat on”, “sat on the”, …
○ four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, …

● n-gram language model:

P(𝑋/| 𝑋0, …, 𝑋/10) ≈ P(𝑋/| 𝑋/1230, …, 𝑋/10)

𝑛 − 1 elements

31
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Language models can tell us
something about us …

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Language models can tell us
something about us …

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

