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Motivation

● Earlier we define Self-Supervised models as as 
predictive models of the world! 

● Word2Vec: Predictive models given word representations.

● Now with neural networks: predictive models of word 
compositions 



Chapter Plan 

1. Language modeling: definitions and history 
2. Language modeling with counting 
3. Measuring language modeling quality 
4. Language Modeling with feed-forward networks 



The
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The cat
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The cat sat
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The cat sat on
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The cat sat on    __?__
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The cat sat on the mat.
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The cat sat on the mat.
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P(mat |The cat sat on the)
context  or prefixnext word
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P(𝑋!| 𝑋", …, 𝑋!#")

Probability of Upcoming Word 

context  or prefixnext word
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LMs as a Marginal Distribution

● Directly we train models on “marginals”: 
context

next 
word

P(𝑋! | 𝑋", …, 𝑋!#")

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Some 
model



LMs as Implicit Joint Distribution of Language 

● Though implicitly we are learning the full 
distribution over the language: 

○ Remember the chain rule: P(𝑋!, … , 𝑋") = P(𝑋!)∏#$!
" P(𝑋# |𝑋!, 𝑋%… ,𝑋#)

● Language Modeling ≜ learning prob distribution over language sequence. 



Doing Things with Language Model 

● What is the probability of ….

● LMs assign a probability to every sentence (or any string of words). 

“I like Johns Hopkins University”

“like Hopkins I University Johns” 

P(“I like Johns Hopkins University EOS”)=10-5

P(“like Hopkins I University Johns EOS” )=10-15



Doing Things with Language Model (2)

● We can rank sentences.

● While LMs show “typicality”, this may be a proxy indicator to other properties: 
○ Grammaticality, fluency, factuality, etc.  

P(“I like Johns Hopkins University. EOS”)    >   P(“I like John Hopkins University EOS”)  
P(“I like Johns Hopkins University. EOS”)    >   P(“University. I Johns EOS Hopkins like”) 
P(“JHU is located in Baltimore. EOS”)   >   P(“JHU is located in Virginia. EOS”) 

context
next 
word

P(𝑋! | 𝑋", …, 𝑋!#")



Doing Things with Language Model (3)

● Can also generate strings 

● Let’s say we start “Johns Hopkins is ”
● Using this prompt as initial condition, recursively sample from an LM: 

1. Sample  fromP(X | “Johns Hopkins is ”)   →“located”
2. Sample  fromP(X | “Johns Hopkins is located”)   →“at”
3. Sample  fromP(X | “Johns Hopkins is located at”)   →“the”
4. Sample  fromP(X | “Johns Hopkins is located at the”)   →“state”
5. Sample  fromP(X | “Johns Hopkins is located at the state”)   →“of”
6. Sample  fromP(X | “Johns Hopkins is located at the state of”)   →“Maryland”
7. Sample  fromP(X | “Johns Hopkins is located at the state of Maryland”)   →“EOS”

context
next 
word

P(𝑋! | 𝑋", …, 𝑋!#")



Why Should We Care About Language Modeling?

● Language Modeling is an effective proxy for language understanding. 
○ Effective ability to predict forthcoming words rely on understanding of context/prefix 

● Language Modeling is a subcomponent superset of many NLP tasks, especially 
those involving text generation: 

○ Summarization 
○ Machine translation 
○ Spelling correction 
○ Dialogue etc. 



You use Language Models every day! 
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You use Language Models every day! 
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You use Language Models every day! 
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It Can be Misused Too … 

● A lot more about 
harms later in the class. 

https://pdos.csail.mit.edu/archive/scigen/

Is this a real 
science article?



P(𝑋!| 𝑋", …, 𝑋!#")
How do we estimate these probabilities?  
Let’s just count! 

P(mat | the cat sat on the) ≈ -./01(“134 -51 651 .0 134 751”)
-./01(“134 -51 651 .0 134”)
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P(𝑋!| 𝑋", …, 𝑋!#")
How do we estimate these probabilities?  
Let’s just count! 

P(mat | the cat sat on the) = -./01(“134 -51 651 .0 134 751”)
-./01(“134 -51 651 .0 134”)
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Challenge: Increasing 𝑛makes sparsity problems worse.
Typically, we can’t have 𝑛 bigger than 5.

Some partial solutions (e.g., smoothing and backoffs) 
though still an open problem. 



Language Models: A History

● Shannon (1950): The predictive difficulty (entropy) 
of English. 

26
[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋!| 𝑋", …, 𝑋!#")
Shannon (1950) build an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its nondescendants, given its parents.

1st order approximation: 

P(mat | the cat sat on the) ≈ P(mat | the)   
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1 element

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋!| 𝑋", …, 𝑋!#")
Shannon (1950) build an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its nondescendants, given its parents.

2nd order approximation: 

P(mat | the cat sat on the) ≈ P(mat | on the)  
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2 elements

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋!| 𝑋", …, 𝑋!#")
Shannon (1950) build an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its nondescendants, given its parents.

3rd order approximation: 

P(mat | the cat sat on the) ≈ P(mat | sat on the)  
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3 elements

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋!| 𝑋", …, 𝑋!#")
Shannon (1950) build an approximate language model with word co-
occurrences. 

Then, we can use counts of approximate conditional probability. 
Using the 3rd order approximation, we can: 

P(mat | the cat sat on the) ≈ P(mat | sat on the) = !"#$%(“()% "$ %*+,)%”)
!"#$%(“"$ %*+,)%”)
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[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


N-gram Language Models 

● Terminology: n-gram is a chunk of n consecutive words: 
○ unigrams: “cat”, “mat”, “sat”, …
○ bigrams: “the cat”, “cat sat”, “sat on”, …
○ trigrams: “the cat sat”, “cat sat on”, “sat on the”, …
○ four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, …

● n-gram language model: 

P(𝑋/| 𝑋0, …, 𝑋/10) ≈ P(𝑋/| 𝑋/1230, …, 𝑋/10) 

𝑛 − 1 elements
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[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Language models can tell us 
something about us … 
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