Self-Supervised
Language Modeling

CSCl 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

JOHNS HOPKINS

UNIVERSILITY

[Slide credit: Mohit lyyer, Chris Manning, and many others]

Motivation

e Earlier we define Self-Supervised models as as
predictive models of the world!

e Word2Vec: Predictive models given word representations.

e Now with neural networks: predictive models of word
compositions

Chapter Plan

Language modeling: definitions and history
Language modeling with counting
Measuring language modeling quality

M~ W oN R

Language Modeling with feed-forward networks

The

The cat

The cat sat

The cat sat on

The cat sat on

The cat sat on the mat.

The cat sat on the mat.

P(mat [The cat sat on the)

—

next word context or prefix

Probability of Upcoming Word

P(X¢| X1, oo Xe—1)

\/—/\ TN

next word context or prefix

LMs as a Marginal Distribution

e Directly we train models on "marginals”: next
word context

K_/\/ A

P(X¢| X1, o Xo1)

Prob
mat -—|

Some e —
«c i) od |E—
The cat sat on the [S4 model dzs‘::

chair —

LMs as Implicit Joint Distribution of Language
e Though implicitly we are learning the full
distribution over the language:

o Remember the chainrule: P(Xy, ..., X;) = P(X)) TTi{ P(X; | X1, X5 ..., Xi)

e Language Modeling £ learning prob distribution over language sequence.

Doing Things with Language Model

e Whatis the probability of " like Johns Hopkins University”

"“like Hopkins | University Johns”

e | Ms assign a probability to every sentence (or any string of words).

P("I like Johns Hopkins University EOS”) =10->

P(“like Hopkins | University Johns EOS”) =10-1°

Doing Things with Language Model (2) next

word context
K'/\ ~ — —
e We canrank sentences. P(th Xl, y Xt—l)

e While LMs show “typicality”, this may be a proxy indicator to other properties:
o Grammaticality, fluency, factuality, etc.

P("I like Johns Hopkins University. EOS") > P("l like John Hopkins University EOS”)
P("I like Johns Hopkins University. EOS") > P("University. | Johns EOS Hopkins like”)
P("JHU is located in Baltimore. EOS”) > P("JHU is located in Virginia. EOS”)

Doing Things with Language Model (3) rex

word context
K')\ ~ —
e (an also generate strings P(th Xll y Xt 1)

e Let'ssaywe start "Johns Hopkins is ”
e Using this prompt as initial condition, recursively sample from an LM:

Sample from P(X|"Johns Hopkins is) —"located”

Sample from P(X|"Johns Hopkins is located”) — “at”

Sample from P(X|"Johns Hopkins is located at”) — “the”

Sample from P(X|"Johns Hopkins is located at the”) — "“state”

Sample from P(X|"Johns Hopkins is located at the state”) — "“of"

Sample from P(X|"Johns Hopkins is located at the state of”) — “Maryland”
Sample from P(X|"Johns Hopkins is located at the state of Maryland”) —“EOS"

N ouv s R NR

Why Should We Care About Language Modeling?

e Language Modeling is an effective proxy for language understanding.
o Effective ability to predict forthcoming words rely on understanding of context/prefix

e Language Modeling is a subeempenent superset of many NLP tasks, especially

those involving text generation:
Summarization

Machine translation

Spelling correction

Dialogue etc.

O O O ©O

e I'll meet you at the

airport

You use Language Models every day!

And now the fun starts
Add label

€3 Brian Strope «
to me

May 1

They finally came through with the
contract.

| expect the work to start tomorrow.
Sorry for all the delays.

No worries, Great news,
thanks for thanks for
the update! | | the updat

That's great

news!

Can't makeit Addlabel

©3 Brian Strope -
May 17 View details
Ugh, | took a turn for the worst last night.

| won't be able to make it to the party.
Please have a great time without me.

Oh no! Feel We will Sorry to
better! miss you! hear that
- LN

Reply Reply a For

19

You use Language Models every day!

Jo!

0O 0 0 O O HOLPL L OLP

Google

JHU's best

jhu best majors

jhu best essays

jhu best skin

jhu best places to study

jmu best freshman year

best jhu team hero wars

johns hopkins best dressed sale 2021
johns hopkins best programs

johns hopkins best hospital in the world

johns hopkins best neurologist

Google Search I'm Feeling Lucky

Report inappropriate predictions

{=

20

You use Language Models every day!

21

It Can be Misused Too ...

Is this a real
science article?

e A lot more about
harms later in the class.

Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification
of virtual machines and real-time theory. To what extent can
web browsers be constructed to achieve this purpose?

Certainly, the usual methods for the emulation of Smalltalk
that paved the way for the investigation of rasterization do
not apply in this area. In the opinions of many, despite the
fact that conventional wisdom states that this grand challenge
is continuously answered by the study of access points, we
believe that a different solution is necessary. It should be
noted that Rooter runs in Q(loglogn) time. Certainly, the
shortcoming of this type of solution, however, is that compilers
and superpages are mostly incompatible. Despite the fact that
similar methodologies visualize XML, we surmount this issue
without synthesizing distributed archetypes.

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-
dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10] is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we
concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
Q((n + logn)) time [22]. In the end, we conclude.

II. ARCHITECTURE

Our research is principled. Consider the early methodology
by Martin and Smith; our model is similar, but will actually
overcome this grand challenge. Despite the fact that such
a claim at first glance seems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
time algorithm for the refinement of write-ahead logging by
Edward Feigenbaum et al. [15] is impossible; our application
is no different. This may or may not actually hold in reality.
We consider an application consisting of n access points.
Next, the model for our heuristic consists of four independent
components: simulated annealing, active networks, flexible
modalities, and the study of reinforcement learning.

We consider an algorithm consisting of n semaphores.
Any unproven synthesis of introspective methodologies will

https://pdos.csail.mit.edu/archive/scigen/

P(X¢| X1, ... X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(mat | the cat sat on the) ~ — = o then

Glogle "the bird sat on the mat" X 8 @ Q

Q Al [Images [»] Videos { Shopping © Maps : More Tools

About 1 results (0.22 seconds)

It looks like there aren't many great matches for your
search 24

P(X¢| X1, ... X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(mat | the cat sat on the) =

count(“the cat sat on the”)

Challenge: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.

25

Language Models: A History

e Shannon (1950): The predictive difficulty (entropy)
of English.

Prediction and Entropy of Printed English
By C. E. SHANNON
(ManuscriptReceived Sept. 15, 1950)

A new method of estimating the cntron and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, an dg depends on experimental results
in prediction of the next letter when the precedmg text is known. Results of
experiments in prediction are given, and some properties of an ideal predictor are
developed.

[Prediction and Entropy of Printed English, Shanon 1950]

26

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ... X¢—1)

Shannon (1950) build an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

1°t order approximation:
1 element

I_h\
P(mat | the cat sat on the) ® P(mat | the)

27
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ... X¢—1)

Shannon (1950) build an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

2" order approximation:
2 elements

I_h\
P(mat | the cat sat on the) ® P(mat | on the)

28
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ... X¢—1)

Shannon (1950) build an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

rd : : .

order approximation:

3 pp 3 elements
AL

P(mat | the cat sat on the) = P(mat| sat on the)

29
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ... X¢—1)

Shannon (1950) build an approximate language model with word co-
occurrences.

Andrey Markov

Then, we can use counts of approximate conditional probability.
Using the 3™ order approximation, we can:

count(“sat on the mat”)
count(“on the mat”)

P(mat | the cat sat on the) = P(mat | sat on the) =

30
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

N-gram Language Models

e Terminology: n-gram is a chunk of n consecutive words:

7\ "\ 14

o unigrams: “cat”, "mat”, “sat”, ...

"\

bigrams: “the cat”, “cat sat”, “sat on”, ...

o
o trigrams: “the cat sat”, “cat sat on”, “"sat on the”, ...
O

n” \ ” \

four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, ...

e n-gram language model:
n — 1 elements
A

' \
P(X¢| X1, oy Xp—1) = PXe| Xp—pi1s oo Xe—1)

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Pre-Computed N-Grams Google Books Ngram Viewer

0.00550% -

0.00500% -

0.00450% -
0.00400% -
0.00350% -

0.00300% democracy

depression
0.00250% -

0.00200% -
0.00150% -

bomb

0.00100% - terrorism

0.00050%

0.00000% -1 T T T T T T T T T T
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.gooqleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

0.001000% -
0.000900% -
0.000800% - The United States is (All)
0.000700% -

0.000600% —

0.000500% -

0.000400% -

0.000300% - The United States are (All)

0.000200% —

0.000100% -

0.000000% T T T T T T T T
1780 1800 1820 1840 1860 1880 1900 1920 1940

(click on line/label for focus, right click to expand/contract wildcards)

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.qgoogleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

6.0000110% - Language models can tell us
something about us ...

0.0000100% —

0.0000090% -
0.0000080% -
0.0000070% -
0.0000060% —
0.0000050% —
0.0000040% -
0.0000030% -
0.0000020% -

women vote (All)
0.0000010% - men vote (All

0.0000000% -t T T T T T T T T
1780 1800 1820 1840 1860 1880 1900 1920 1940

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.qgoogleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

0001205 - Language models can tell us
0001105 - something about us ...

0.00100% -
0.00090% -
0.00080% -
0.00070% -
0.00060% -
civil war
0.00050% -
0.00040% - emancipation
0.00030% -
0.00020% -

0.00010% -

0.00000% T T T T T T T T T T
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

(click on line/label for focus)

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.qgoogleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

