Fixed-Window/Feedforward
Language Models

CSCl 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

JOHNS HOPKINS

UNIVERSILITY

[Slide credit: Mohit lyyer, Chris Manning, and many others ]



Logistics

e HW2 grades are up!
0 Min: 5o
0 Max1iag
O Median: 104

e HWjyisreleased!
e Please continue to give us feedback if you see any potential typos, odd phrasings, etc.

e Office hour update: Starting from today | will have two office hours
o Both Tuesday and Thursday immediately after the class.



Recap: LMs

e Directly we train models on “conditionals”: next
word context

K_/\/ A

P(th Xll "y Xt 1)

mat —————————————1
Some

e —
bed T
mOdeI desk :|

—

“The cat sat on the [N 4|”

chair



Recap: LMs as Implicit Joint Distribution of Language

e Though implicitly we are learning the full
distribution over the language:

o Rememberthe chainrule: P(Xy, ..., X;) = P(X)) TT21 P(X; | X1, X5 oo, X))

e Language Modeling £ learning prob distribution over language sequence.



P(X¢| X1, ... X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(mat | the cat sat on the) =

count(“the cat sat on the”)

Challenge: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.




Recap: N-gram Language Models

e Terminology: n-gram is a chunk of n consecutive words:

7\ "\

o unigrams: “cat”, "mat”, “sat”, ...

"\

bigrams: “the cat”, “cat sat”, “sat on”, ...

"\ "\

®)
o trigrams: “the cat sat”, “cat sat on”, “"sat on the”, ...
®)

n” \ ” \

four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, ...

e n-gram language model:
n — 1 elements
A

' \
P(X¢| X1, oy Xp—1) = PXe| Xp—pi1s oo Xe—1)




Chapter Plan

Language modeling: definitions and history
Language modeling with counting

Measuring language modeling quality

Language Modeling with feed-forward networks

M~ W oN R



Generation from N-Gram Models

® You can build a simple trigram Language Model over a 1.7 million words corpus in a

few seconds on your laptop*

today the
Sparsity problem: not
. company  @.153 much granularity in the
get probability bank ~ ©.153 probability distribution
distribution price 0.077
italian ©.039 ]
emirate 0.039 Otherwise, seems reasonable!

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]



Generation from N-Gram Models

e Now we can sample from this mode:

today the
get probability ;g:iany
italian
emirate

0.153
0.153
0.077
0.039
0.039

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

* Try for yourself: https://nlpforhackers.io/language-models/

[adopted from Chris Manning]



Generation from N-Gram Models

* Now we can sample from this mode:

condition on this

today the priée

Sparsity problem: not

L of 0.308 much granularity in the
get. prgbalyhty for 0.050 probability distribution
distribution it 0.046
to 0.046 _
is 0.031 Otherwise, seems reasonable!

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 0



Generation from N-Gram Models

e Now we can sample from this mode:

condition on this
AL

today the brice o‘f _

Sparsity problem: not

N the 0.072 much granularity in the
get probability 18 0.043 probability distribution
distribution oil 0.043
its 9.036 _
gold 0.018 Otherwise, seems reasonable!

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] H



N-Gram Models in Practice

e Now we can sample from this mode:

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

But quite incoherent! To improve coherence, one may consider increasing
larger than 3-grams, but that would worsen the sparsity problem!

* Try for yourself: https://nlpforhackers.io/language-models/

[adopted from Chris Manning] 2



Scaling N-Grams

e We can extend to trigrams, 4-grams, 5-grams, but soon we will hit
the sparsity limitations.

e Ingeneral, thisis an insufficient model of language because language
has long-distance dependencies:

"The computer which I had just put into the
machine room on the fifth floor crashed.”



Chapter Plan

Language modeling: definitions and history
Language modeling with counting

Measuring language modeling quality

Language Modeling with feed-forward networks

M~ W oN R



How Good is Our
Language Model?



Evaluating Language Models

e Does ourlanguage model prefer good sentences to bad ones?
o Assign higher probability to “real” or “frequently observed” sentences
O Than“ungrammatical” or “rarely observed” sentences?

e We test the model’s performance on data we haven't seen.



Evaluating Language Models

Setup:

o Train it on asuitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

- Held-Out Test
Training Data Data Bl
Counts / parameters from Hyperparameters Evaluate here

here from here



Evaluating Language Models: Example

Setup:

o Train it on asuitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

Example: |use a bunch of New Now I'm going to evaluate the
YorkTimes articlesto builda _ _ probability of some heldout
bigram probability table shouldassigna high datausingour bigramtable

probability to held-out text!

A good language model

eval
count(“on the mat’) —————)




Be Careful About Data Leakage!

Advice from a grandpa?:
- Don't allow test sentences leak into training set.
- Otherwise, you will assign it an artificially high probability (=cheating).

Example:|use a bunch of New A good language model Now I’'m going to evaluate the

YorkTimesarticlesto builda hould asei hiah probability of some heldout
bigram probability table AeClEeEEIgE e datausingourbigramtable

probability to held-out text!

eval
count(“on the mat’) —————)




Evaluating Language Models: Intrinsic vs Extrinsic

o Intrinsic: measure how good we are at modeling language
o Extrinsic: build a new language model, use it for some task (MT, ASR, etc.)

Google
% Translate
Example:1use abunch of New Now I'm going to evaluate the

bigram probability table extrinsic datausingourbigramtable

eval

eval .
count(“on the mat”) ) N\




Evaluation Metric for Language Modeling: Perplexity

e Perplexity is the inverse probability of the test set, normalized by the number of
words: 1

ppl(Wy, ..., wy) = P(Wy, Wy, ..., wy) 7

e A measure of predictive quality of a language model.
e Minimizing perplexity is the same as maximizing probability



Evaluation Metric for Language Modeling: Perplexity

e Perplexity is the inverse probability of the test set, normalized by the number of

words: 1

ppl(Wy, ..., wy) = P(Wy, Wy, ..., wy) 7

e Quiz: let's suppose we have a sentence wy, ..., w,, and it’s fixed. Our model will
correctly guess each word with probability 1/5. What is perplexity of our model?

1 —
ppl(wl, ...,Wn) = ((1/5)n)_n — 5 Intuition: the

model is indecisive
among 5 choices.




Evaluation Metric for Language Modeling: Perplexity

e Perplexity is the inverse probability of the test set, normalized by the number of

words: 1

ppl(Wl! ---;Wn) — P(Wl,Wz, ...,Wn)_ﬁ
n 1
P(Wl, W2, ""WTL)

\

n
. n 1 (the chain rule)
I._I P(w;|lwg;)
=1




Evaluation Metric for Language Modeling: Perplexity

e Perplexity for n-grams: 1( ) = " ﬁ 1
| PPEWL Wl = ] IP(wiwa)
\ i=1

n
n 1_[ 1
o Bi-gra IMS (2" order Markov assumption): ppl(Wl’ B Wn) = P(Wl |Wi—1)
=1

n
. n 1_[ 1
o Trl-grams (3 order Markov assumption): ppl(Wl’ e Wn) = P(W |W ) )
i=1 LIWi—1, Wi-2




Evaluation Metric for Language Modeling: Perplexity

e In practice, we prefer to use log-probabilities
e We can rewrite perplexity formula in terms of log-probs:

n

ppl(wy, ..., w,) =
V

n
l_[ 1 B 2log n\/l‘[
) P(w;|ws;)

n 1

=1P(w;ilwe;)

ppl(wy, ..., w,) = 2, where H = —%2?:11082 P(w;|wy,

...,Wl'_l)



Evaluation Metric for Language Modeling: Perplexity

e In practice, we prefer to use log-probabilities
e We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ...,w,,) = 27, where H = —=Xi=1loga P(wilwy, ..., wi—q)

# getting loss using cross entropy

n be interpr
loss = F.cross_entropy(output, target) Can be interpreted as

cross-entropy between LM

# calculating perplexity prob and language prob
perplexity = torch.exp(loss)

print('Loss:', loss, 'PP:', perplexity)



Evaluation Metric for Language Modeling: Perplexity

e Inpractice, we prefer to use log-probabilities
e We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ...,w,,) = 27, where H = —=Xi=1loga P(wilwy, ..., wi—q)

e Quiz: let's suppose we have a sentence wy, ..., w,, and it's fixed. Our model will
correctly guess each word with probability 1/5. What is perplexity of our model?

H = —% [1082 (%) + .-+ log, (%)] = —log (%) = ppl(D) =5



Evaluation Metric for Language Modeling: Edge Cases

1
ppl(wy, ..., w,) = 2, where H = — =Xt logy P(wilwy, ..., wi—q)

e If P(.) uninformative:

1 1
Yw € V: P(wlwyy_1) = — = ppl(D) = 272" °8W = |v|

14
o IfP(.)is exact:
1
Iw € V:P(w|wy;_{) =1 = ppl(D) =2"n"10821 =1

Perplexity is a measure of model’s uncertainty Perplexity ranges
about next word (aka “average branching factor”) between 1 and |V/|.

30



Lower perplexity == Better Model

e Training 38 million words, test 1.5 million words, Wall Street Journal

Perplex1ty 170

[Jurafsky & Martin: https://web.stanford.edu/~jurafsky/slp3/3.pdf]



https://web.stanford.edu/~jurafsky/slp3/3.pdf

How Should One Deal With Zeros?

n
n 1
I(wyq, ..., wy,) =
PP o o I._IP<wi|W<i>
\ 1=1

o IfP(w;|lw.;) =0, pplwould go @& !! (division by zero)



How Should One Deal With Zeros?

Training set: Test set:
. denied the allegations
. denied the reports .. denied the offer
. denied the claims .. denied the load

. denied the request

P(offer| denied the) = o

[Dan Jurafsky]



How Should One Deal With Zeros?

e Actually, how common are zero-probabilities?
e Example: Shakespeare as text corpus
o n=884,647 tokens (the length of Shakespeare writing),
o |V]|=29,066 (the size vocab used by Shakespear)
o Shakespeare produced ~300,000 bigrams
o Out of |V|*2= 844 million possible bigrams (some of them don’t make sense, but ok!)

® S0, 99.96% of the possible bigrams are never seen (have zero entries in the table)

[Mohit lyyer]



How Should One Deal With Zeros? Smoothing

count(“denied the” + w)

e When we have sparse statistics:

3 allegations, 2 reports,
1 claims, 1 request = 7 total

e Steal probability mass to generalize better

2.5 allegations, 1.5 reports,
0.5 claims, 0.5 request, 2 other = 7 total

[Dan Klein]

(]

% §

c O

£ & 5

c & O

g v

= ~ €

A Y S

2| & c 5 8

=Q_mﬁﬂm3

me.ggmgo
o ([ @ | ] [




Summary Thus Far

e Language Models (LM): distributions over language

e N-gram:language modeling via counting
O  Models size O(exp(n)) — not good &

e Challenge with large N’s: sparsity problem — many zero counts/probs.
e Challenge with small N's: not very informative and lack of long-range dependencies.



N-Gram Language Models, A Historical Highlight

Probabilistic n-gram models of text generation [Jelinek+ 1980's, ...]
® Applications: Speech Recognition, Machine Translation

§32

PROCEEDINGS OF THE IEEE, VOL. 64, NO. 4, APRIL 1976

Continuous Speech Recognition by Statistical
Methods

FREDERICK JELINEK, FELLOW, IEEE

Abstract—Statistical methods useful in automatic recognition of con-
tinuous speech are described. They concern modeling of a speaker and
of an acoustic processor, extraction of the models’ statistical param-
eters, and hypothesis search procedures and likelihood computations of
linguistic decoding. Experimental results are presented that indicate
the power of the methods.

utterance models used will incorporate more grammatical
features, and statistics will have been grafted onto grammatical
models. Most methods presented here concern modeling of
the speaker’s and acoustic processor’s performance and should,
therefore, be universally useful.

Antomatic recosnition of continnous (Englich) eneech is an

37



Chapter Plan

Language modeling: definitions and history
Language modeling with counting

Measuring language modeling quality

Language Modeling with feed-forward networks

M~ W oN R



From Counting (N-Gram) to Neural Models

e Probabilistic n-gram models of text generation [Jelinek+ 1980’s, ...]
® Applications: Speech Recognition, Machine Translation

e "Shallow"” statistical/neural language models (2000°s) [Bengio+ 1999 & 2001, ...

NeurIPS 2000 A Neural Probabilistic Language Model

Yoshua Bengio; Réjean Ducharme and Pascal Vincent
Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal
Montréal, Québec, Canada, H3C 3J]7
{bengioy,ducharme,vincentp} @iro.umontreal.ca

39



A Fixed-Window Neural LM

e Given the embeddings of the context, predict the word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

and our problems  turning

. M . . \_Y_’
context words in window of size 4 target word




blah—blah—blah——blah and our problems  turning

A Fixed-Window Neural LM

e Given the embeddings of the context, predict the word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

e Discard anything beyond its context window

) L )

. Y . M . . \_Y_’
discard context words in window of size 4 target word



A Fixed-Window Neural LM

e Giventhe embeddings of the context, predict a target word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

e Training this model is basically optimizing its parameters @ such that it assigns
high probability to the target word.

| 1 | | |

Trainable parameters
of neural network

FFN ( 000 000 000 000 ,\G)/)» ’Cable_ |

] Probs over vocabulary

mat |

A A A A into |
Ioog(up embeddE;ngs ant -:]
and our problems  turning - chair [
) -Y . . ! \_Y_’
context words in window of size 4 target word

[Bengio et al. 2003]



A Fixed-Window Neural LM

e Thisis actually a pretty good model!
e It will also lay the foundation for the future models (e.g., transformers, ...)
e But first we need to figure out how to train neural networks!

| 1 | | |

Trainable parameters
of neural network

FFN ( 000 000 000 000 ,\6/)» table_ |

] Probs over vocabulary

mat |

A A A A into |
Ioog(up embeddE;ngs ant -:|
and our problems  turning - chair [
) -Y . . ! \_Y_’
context words in window of size 4 target word

[Bengio et al. 2003]



A Fixed-Window Neural LM

Prob

[N output distribution
mat [— — l Softmax l
tazz: — B y = SOftmaX(WZh)
desk [0
chair 7: WZ
hidden layer
000000000000000 _
h = f(Wix)
W,
.concatenate ............................................... concatenated word embeddings
. 000 000 000 000 —
A A T ! x = [V1, V3, V3, V4]

‘aEEEsEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEAEEEEEEEEEEEnmmnmanmmnnn®

Ioo§<up embeddﬁings

and our problems  turning -
) \ )

context words in window of size 4 target word

[Bengio et al. 2003]



A Fixed-Window Neural LM: Compared to N-Grams

Improvements over n-gram LM:

Prob
t

mat s l Softmax l
TR S—) _

A
bed |ESm—————

e Tackles the sparsity problem ook w,
® Modelsize is O(n) not O(exp(n)) —
000000000000000
n being the window size.
Wy
n || valid. | test. Dok N
MLP10 6 104 | 109 ' 000 000 000 000 i
Back-off KN | 3 121 127 erans ‘ ............. ‘ ............... ‘ ................ ‘
Back-off KN | 4 || 113 | 119 lookup embeddings
Back-off KN | 5 12 117 and our probslems turniing -
‘ . o ,
context words in window of size 4 target word

[Bengio et al. 2003, notes from Richard Socher]



A Fixed-Window Neural LM: Compared to N-Grams

Prob

mat [ S
] | oftmax |
SO _

Improvements over n-gram LM: O S— :
e Tackles the sparsity problem ) w,
e Modelssize is O(n) not O(exp(n)) —

. . . 0000000000000 0O0
n being the window size.
W,
Remaining problems: concatenate
_ | | PSS RS,
e Fixed window is too small ‘[ ooo0 000 000 000
A A A A

‘aEEEsEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEAEEEEEEEEEEEnmmnmanmmnnn®

e Enlarging window enlarges W —
Window can never be large enough!

Ioof<up embeddEings |
e It's not deep enough to capture nuanced and our  problems turning [intoN]
) \ J

L

contextual meani ngs context words in window of size 4 target word

[Bengio et al. 2003, notes from Richard Socher]



A Fixed-Window Neural LM: Going Deeper

Revisiting Simple Neural Probabilistic Language Models

Simeng Sun and Mohit Iyyer
College of Information and Computer Sciences
University of Massachusetts Amherst
{simengsun, miyyer}(@cs.umass.edu

Abstract Predict: years «—{ (Gaaptive)
Recent progress in language modeling has
been driven not only by advances in neural ar-
chitectures, but also through hardware and op-
timization improvements. In this paper, we re- The drought had . Feed
visit the neural probabilistic language model < v - omfard
(NPLM) of Bengio et al. (2003), which sim- /| -
ply concatenates word embeddings within a [eYe)e) [e]e)e) [o)e)e) [e]e)e) [e]e)e) [e)e)e) [e]0)6)
fixed window and passes the result through a Stenste  Jasted  now  for  ten million

feed_farward netwanrk ta nredict the next ward




Prob

table Emmmmma
bed _:I

desk 7:’
( chair [
Add & Norm |
I
Feed-Forward
layer
. 1 XN _J
concatenate J
L CLITTTEEEEFERPELEEEELRREREE -
. 000 000 000 000 |:
COR S S S S
lookup embeddings

Add & Norm |

Feed-Forward
layer

A

Add & Norm |

Feed-Forward
layer

A

Add & Norm |

and our problems  turning -

context words in window of size 4 target'word

[Sun and lyyer 2021]

Feed-Forward
layer

A

> N layers




Prob
ot [—— X

table Emmmmma

Y

SR weight layer
’ o P Jrem y
chair :
Add &INorm | weight layer dentity
Feed-Forward
layer ]:(X) e
5

\_ xN_J . .

Uses residual connections (He et al. 2016)
concatenate J we f . h h " |
e e L L LU LI L LU EE I L L L LT IIE LD . — N Ormat|on |g Ways between ayers_
;R 090 090 Sl (we saw them in the earlier chapter)

Iooi<up embeddi._ngs

and our problems  turning -

context words in window of size 4 target'word

[Sun and lyyer 2021]


https://arxiv.org/abs/1512.03385

Prob

table ]

bed _:I
desk 7:
(" chair [
Add & Norm |
]
Feed-Forward
'a‘V}er Uses layer normalization (Ba et al. 2016)
N ; . ;
\ — which reduces variance across different
concatenate . . .
AR b . data/batches and makes the optimization
: | 000 000 000 000 easier/faster.
ORI S S L ST L -

Iooi<up embeddi._ngs

and our problems  turning -

context words in window of size 4 target'word

[Sun and lyyer 2021]


https://arxiv.org/abs/1607.06450

LN ——
bed _:I
desk 7:’
(" chair —
Add & Norm |
I
Feed-Forward
layer
. 1 xN_J
concatenate J
PP SETPPTTTTTTTITLCLLLLUPPPEPPPPS .
. 000 000 000 000 &
. A A A :

Iooi_<up embeddi._ngs

and our problems  turning -

Y
context words in window of size 4

ta rget'word

Use “dropout” to avoid overfitting.

Use ADAM optimizer (Kingma & Ba, 2017),
a variant of Stochastic Gradient Descent.

[Sun and lyyer 2021]


https://arxiv.org/pdf/1412.6980.pdf

Model # Params Val. perplexity

Transformer 148M 25.0
Prob NPLM-old 32M° 216.0
Soft e ——g
© [—— NPLM-old (large) 221M3 128.2
table _:I
bed [FEEEEEET NPLM 1L 123M 52.8
desk [T
p . NPLM 4L 128M 38.3
I - Residual connections 148M 660.0
Feed-Forward - Adam, + SGD 148M 418.5
layer - Layer normalization 148M 33.0
. 1 xN_J
Table 1: NPLM model ablation on WIKITEXT-103.
concatenate J
e ELLICITTNL FTPRRITIPFRI AR -
: 000 000 000 000 |: .
S SO A A A Takeaways:
Iooi_<up embeddi._ngs ¢ Depth helps
e Residual connections are important
and our problems  turning - g
\ o , e Adam works (here) better than SGD
context words in window of size 4 target'word

[Sun and lyyer 2021]



Prob
table :1
bed _:I
desk 7:|
(" chair [
Add & Norm |
]
Feed-Forward
layer
\_ 1 xN_J
concatenate J
PP SETPPTTTTTTTITLCLLLLUPPPEPPPPS .
- 00O 00O 00O 000 :
SR S— S L ST S ;

Iooi_<up embeddi._ngs

and our problems  turning -

\

Y
context words in window of size 4

ta rget' word

Effect of window size:

150
—o— Transformer
12
B S —»— NPLM
5 100
£l
o 75
o
50
- %
25 . —

10 20 30 40 50
Prefix length (# tokens)

Fixed-WindowLM (NPLM) is better than
the Transformer (will see themin 2
weeks!) with short prefixes but worse on

longer ones.

[Sun and lyyer 2021]



Flashback to Word2Vec

e Word2Vec objective is similar to the language modeling objective.
Word2Vec representations are fixed
o e.g. “play” has one vector regardless of the context.
e In contrast, the meaning representation extracted from more advanced
architectures (e.g, FFN-LM) is contextual.

problems  turning banking crises  as

L ) \ )
Y Y { J

Y
outside context words center word outside context words
in window of size 2 at positiont in window of size 2




Summary

e Language Modeling (LM), a useful predictive objective for language
e Perplexity, a measure of an LM'’s predictive ability

e N-gram models (~1980 to early 2000's),
o Earlyinstances of LMs
o Difficult to scale to large window sizes

e FFN-LMs (early and mid-2000's),

o Effective predictive models based on feed-forward networks

o Difficulty in long-range dependencies

59



What Changed from N-Gram LMs to Neural LMs?

e Whatisthe source of Neural LM's strength?
Why sparsity is less of an issue for Neural LMs?

e Answer: In n-grams, we treat all prefixes independently of each other! (even those
that are semantically similar)

students’ opened thelr Neural LMs are able to N
pupils opened their _ _

scholars Opened their L Shal’e |nformat|on adCross
undergraduates opened their these semantically-similar
students turned the pages of their prefixes and overcome the

students attentively perused their

sparsity issue. V.




Best of both worlds

n-grams are easy to compute for small "n”

e Why waste energy to make neural-LMs [re]Iearn these statistics?

e Lietal. 2022 propose learning neural LMs to fits the residual between an n-gram
LM and real-data distribution.

e Allows the neural part to focus on the deeper understanding of language.

# IT Koran Law Medical Subtitles | AVG.
1 | #SENT 222,927 17,982 467,309 248,099 500,000 -

2 | #WORD 2,585,965 4,512,266 15,348,052 4,512,266 5,125,239 -

3 | KENLM-5GRAM 95.89 3391 15.74 24.00 101.99 54.63
4 | GPT-2 66.49 35.34 9.93 15.18 77.34 40.86
5 | + FINETUNE 53.69 26.77 943 12.96 69.33 34.44
6 | + NGRAMRES 54.29 28.08 8.93 13.29 71.80 35.28

Table 1: Test perplexity of five domains. Results in lines 1-2 are the statistical information of each domain. Results

[N-gram Is Back: Residual Learning of Neural Text Generation with n-gram Language Model, Li et al. 2022]



https://arxiv.org/pdf/2210.14431.pdf

Summary Thus Far

e Language Models (LM): distributions over language

e N-gram:language modeling via counting

e Neural Language Models: neural networks trained with LM objective
e Fixed-window Neural LM: first of many LMs we will see in this class

e Key question: how to better 150
| d d .5 —e— Transformer
capture long-range dependencies? 125 —w— NPLM
¥ 100
o
o 75
o
= —% %
25 —

10 20 30 40 50
Prefix length (# tokens)



