
Fixed-Window/Feedforward 
Language Models 

CSCI 601 471/671 
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Mohit Iyyer, Chris Manning, and many others ]



Logistics 

● HW2 grades are up! 
○ Min: 50 
○ Max 115 
○ Median: 104 

● HW4 is released! 

● Please continue to give us feedback if you see any potential typos, odd phrasings, etc. 

● Office hour update: Starting from today I will have two office hours 
○ Both Tuesday and Thursday immediately after the class. 



Recap: LMs

● Directly we train models on “conditionals”: 
context

next 
word

P(𝑋! | 𝑋", …, 𝑋!#")

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Some 
model



Recap: LMs as Implicit Joint Distribution of Language

● Though implicitly we are learning the full 
distribution over the language: 

○ Remember the chain rule: P(𝑋!, … , 𝑋") = P(𝑋!)∏#$!
" P(𝑋# |𝑋!, 𝑋%… ,𝑋#)

● Language Modeling ≜ learning prob distribution over language sequence. 



P(𝑋!| 𝑋", …, 𝑋!#")
How do we estimate these probabilities?  
Let’s just count! 

P(mat | the cat sat on the) = -./01(“134 -51 651 .0 134 751”)
-./01(“134 -51 651 .0 134”)

5

Challenge: Increasing 𝑛makes sparsity problems worse.
Typically, we can’t have 𝑛 bigger than 5.

Some partial solutions (e.g., smoothing and backoffs) 
though still an open problem. 



Recap: N-gram Language Models

● Terminology: n-gram is a chunk of n consecutive words: 
○ unigrams: “cat”, “mat”, “sat”, …
○ bigrams: “the cat”, “cat sat”, “sat on”, …
○ trigrams: “the cat sat”, “cat sat on”, “sat on the”, …
○ four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, …

● n-gram language model: 

P(𝑋!| 𝑋", …, 𝑋!#") ≈ P(𝑋!| 𝑋!#$%", …, 𝑋!#") 

𝑛 − 1 elements

6



Chapter Plan 

1. Language modeling: definitions and history 
2. Language modeling with counting
3. Measuring language modeling quality
4. Language Modeling with feed-forward networks 



Generation from N-Gram Models

● You can build a simple trigram Language Model over a 1.7 million words corpus in a

few seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the 

Otherwise, seems reasonable!

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

company 0.153 
bank 0.153 
price 0.077 
italian 0.039 
emirate 0.039
...

8



Generation from N-Gram Models

● Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

company 0.153 
bank 0.153 
price 0.077 
italian 0.039 
emirate 0.039
...

9

Otherwise, seems reasonable!



Generation from N-Gram Models

• Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

of 0.308 
for 0.050 
it 0.046 
to 0.046 
is 0.031
...

condition on this

10

Otherwise, seems reasonable!



Generation from N-Gram Models

● Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

the 0.072 
18 0.043 
oil 0.043 
its 0.036 
gold 0.018
...

condition on this

11

Otherwise, seems reasonable!



N-Gram Models in Practice

● Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical! 

But quite incoherent! To improve coherence, one may consider increasing 
larger than 3-grams, but that would worsen the sparsity problem! 

12



Scaling N-Grams 

● We can extend to trigrams, 4-grams, 5-grams, but soon we will hit 
the sparsity limitations. 

● In general, this is an insufficient model of language because language 
has long-distance dependencies:

“The computer which I had just put into the 
machine room on the fifth floor crashed.”



Chapter Plan 

1. Language modeling: definitions and history 
2. Language modeling with counting 
3. Measuring language modeling quality 
4. Language Modeling with feed-forward networks 



How Good is Our 
Language Model? 



Evaluating Language Models 

● Does our language model prefer good sentences to bad ones?
○ Assign higher probability to “real” or “frequently observed” sentences
○ Than “ungrammatical” or “rarely observed” sentences?

● We test the model’s performance on data we haven’t seen.



Evaluating Language Models 

Setup: 
○ Train it on a suitable training documents. 
○ Evaluate their predictions on different, unseen documents. 
○ An evaluation metric tells us how well our model does on the test set.

18



Evaluating Language Models: Example

Setup: 
○ Train it on a suitable training documents. 
○ Evaluate their predictions on different, unseen documents. 
○ An evaluation metric tells us how well our model does on the test set.

19

train
count(“on the mat”)

eval

Example:I use a bunch of New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluate the 
probabilityof some heldout
data usingour bigramtable

A good language model 
shouldassigna high 

probability to held-out text!



Be Careful About Data Leakage! 

Advice from a grandpa👴: 
- Don’t allow test sentences leak into training set. 
- Otherwise, you will assign it an artificially high probability (=cheating). 

20

train
count(“on the mat”)

eval

Example:I use a bunch of New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluate the 
probabilityof some heldout
data usingour bigramtable

A good language model 
shouldassigna high 

probability to held-out text!



Evaluating Language Models: Intrinsic vs Extrinsic 

○ Intrinsic: measure how good we are at modeling language
○ Extrinsic: build a new language model, use it for some task (MT, ASR, etc.)

21

train
count(“on the mat”)

eval

Example:I use a bunch of New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluate the 
probabilityof some heldout
data usingour bigramtableextrinsic 

eval



Evaluation Metric for Language Modeling: Perplexity

● Perplexity is the inverse probability of the test set, normalized by the number of 
words: 

● A measure of predictive quality of a language model. 
● Minimizing perplexity is the same as maximizing probability

ppl 𝑤", … , 𝑤$ = 𝐏 𝑤", 𝑤), … , 𝑤$
#"$



Evaluation Metric for Language Modeling: Perplexity

● Perplexity is the inverse probability of the test set, normalized by the number of 
words: 

● Quiz: let’s suppose we have a sentence 𝑤!, … , 𝑤" and it’s fixed. Our model will 
correctly guess each word with probability 1/5. What is perplexity of our model? 

ppl 𝑤", … , 𝑤$ = 1/5 $ #!" = 5 Intuition: the 
model is indecisive 
among 5 choices. 

ppl 𝑤", … , 𝑤$ = 𝐏 𝑤", 𝑤), … , 𝑤$
#"$



Evaluation Metric for Language Modeling: Perplexity

● Perplexity is the inverse probability of the test set, normalized by the number of 
words: 

ppl 𝑤", … , 𝑤$ = 𝐏 𝑤", 𝑤), … , 𝑤$
#"$

=
" 1
𝐏 𝑤", 𝑤), … , 𝑤$

=
"

-
-."

$
1

𝐏 𝑤-|𝑤/-
(the chain rule)



Evaluation Metric for Language Modeling: Perplexity

● Perplexity for n-grams:

● Bi-grams (2nd order Markov assumption): 

● Tri-grams (3rd order Markov assumption): 

ppl 𝑤!, … , 𝑤& =
!

G
#$!

&
1

𝐏 𝑤#|𝑤#'!

ppl 𝑤!, … , 𝑤& =
!

G
#$!

&
1

𝐏 𝑤#|𝑤#'!, 𝑤#'%

ppl 𝑤!, … , 𝑤& =
!

G
#$!

&
1

𝐏 𝑤#|𝑤(#



Evaluation Metric for Language Modeling: Perplexity

● In practice, we prefer to use log-probabilities  
● We can rewrite perplexity formula in terms of log-probs: 

ppl 𝑤", … , 𝑤$ = 20, where 𝐻 = − "
$
∑-."$ log) 𝐏 𝑤- 𝑤", … , 𝑤-#")

= 2
)*+ ! ∏"#$

! !
𝐏 ."|.%"ppl 𝑤!, … , 𝑤& =

!

G
#$!

&
1

𝐏 𝑤#|𝑤(#



Evaluation Metric for Language Modeling: Perplexity

● In practice, we prefer to use log-probabilities  
● We can rewrite perplexity formula in terms of log-probs: 

ppl 𝑤", … , 𝑤$ = 20, where 𝐻 = − "
$
∑-."$ log) 𝐏 𝑤- 𝑤", … , 𝑤-#")

Can be interpreted as 
cross-entropy between LM 

prob and language prob

# getting loss using cross entropy
loss = F.cross_entropy(output, target) 

# calculating perplexity
perplexity = torch.exp(loss) 

print('Loss:', loss, 'PP:', perplexity) 



Evaluation Metric for Language Modeling: Perplexity

● In practice, we prefer to use log-probabilities  
● We can rewrite perplexity formula in terms of log-probs: 

● Quiz: let’s suppose we have a sentence 𝑤!, … , 𝑤" and it’s fixed. Our model will 
correctly guess each word with probability 1/5. What is perplexity of our model? 

ppl 𝑤", … , 𝑤$ = 20, where 𝐻 = − "
$
∑-."$ log) 𝐏 𝑤- 𝑤", … , 𝑤-#")

𝐻 = −
1
𝑛 log#

1
5 +⋯+ log#

1
5 = −log

1
5 ⇒ ppl D = 5



Evaluation Metric for Language Modeling: Edge Cases

● If	𝑃 . uninformative:

● If	𝑃 . is	exact:	
∀𝑤 ∈ 𝑉: 𝐏 𝑤 𝑤!:#'!) =

!
|1|

⇒ ppl 𝐷 = 2'
$
& & )*+'

$
( = |𝑉|

∃𝑤 ∈ 𝑉: 𝐏 𝑤 𝑤!:#'!) = 1 ⇒ ppl 𝐷 = 2'
$
& & )*+' ! = 1

Perplexity is a measure of model’s uncertainty 
about next word (aka ”average branching factor”)

Perplexity ranges  
between 1 and |V|. 

30

ppl 𝑤", … , 𝑤$ = 20, where 𝐻 = − "
$
∑-."$ log) 𝐏 𝑤- 𝑤", … , 𝑤-#")



Lower perplexity == Better Model 

● Training 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

[Jurafsky & Martin: https://web.stanford.edu/~jurafsky/slp3/3.pdf] 

https://web.stanford.edu/~jurafsky/slp3/3.pdf


How Should One Deal With Zeros? 

● If 𝐏 𝑤$|𝑤%$ = 0, ppl would go 🤯 !! (division by zero)

ppl 𝑤", … , 𝑤$ =
"

-
-."

$
1

𝐏 𝑤-|𝑤/-



How Should One Deal With Zeros? 

Training set: Test set:

[Dan Jurafsky] 

… denied the allegations
… denied the reports
… denied the claims
… denied the request

… denied the offer
… denied the load

P(offer| denied the) = 0



How Should One Deal With Zeros? 

● Actually, how common are zero-probabilities? 🤔
● Example: Shakespeare as text corpus 

○ n=884,647 tokens (the length of Shakespeare writing), 
○ |V|=29,066 (the size vocab used by Shakespear)
○ Shakespeare produced ~300,000 bigrams 
○ Out of |V|^2= 844 million possible bigrams (some of them don’t make sense, but ok!)

● So, 99.96% of the possible bigrams are never seen (have zero entries in the table)

[Mohit Iyyer] 



How Should One Deal With Zeros? Smoothing 

[Dan Klein] 

● When we have sparse statistics:

3 allegations, 2 reports, 
1 claims, 1 request = 7 total

● Steal probability mass to generalize better

2.5 allegations, 1.5 reports, 
0.5 claims, 0.5 request, 2 other = 7 total

count(“denied the” + w)

w

w



Summary Thus Far

● Language Models (LM): distributions over language 

● N-gram: language modeling via counting 
○ Models size O(exp(n)) — not good 😔

● Challenge with large N’s: sparsity problem — many zero counts/probs. 
● Challenge with small N’s: not very informative and lack of long-range dependencies. 



N-Gram Language Models, A Historical Highlight 

● Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation

37



Chapter Plan 

1. Language modeling: definitions and history 
2. Language modeling with counting 
3. Measuring language modeling quality 
4. Language Modeling with feed-forward networks 



From Counting (N-Gram) to Neural Models

● Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation

● “Shallow” statistical/neural language models (2000’s) [Bengio+ 1999 & 2001, …]

NeurIPS 2000

39



A Fixed-Window Neural LM

● Given the embeddings of the context, predict the word on the right side. 
○ Dropping the right context for simplicity -- not a fundamental limitation. 

intoturningproblemsourand

context words in window of size 4 target word



A Fixed-Window Neural LM

● Given the embeddings of the context, predict the word on the right side. 
○ Dropping the right context for simplicity -- not a fundamental limitation. 

● Discard anything beyond its context window 

intoturningproblemsourand

context words in window of size 4 target worddiscard

blah    blah    blah     blah     



A Fixed-Window Neural LM

● Given the embeddings of the context, predict a target word on the right side. 
○ Dropping the right context for simplicity -- not a fundamental limitation. 

● Training this model is basically optimizing its parameters Θ such that it assigns 
high probability to the target word.

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O FFN ( , Θ)
lookup embeddings

Trainable parameters 
of neural network 

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]



A Fixed-Window Neural LM

● This is actually a pretty good model!  
● It will also lay the foundation for the future models (e.g., transformers, ...) 
● But first we need to figure out how to train neural networks! 

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O , Θ)
lookup embeddings

Trainable parameters 
of neural network 

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

FFN (



A Fixed-Window Neural LM

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Bengio et al. 2003]

concatenate

O O O O O O O O O O O O O O O 

mat

table

bed

desk

chair

Prob

Softmax

𝑾!

𝑾%

concatenated word embeddings

𝑥 = [𝑣!, 𝑣%, 𝑣2, 𝑣3]

hidden layer

ℎ = 𝑓(𝑊!𝑥)

output distribution

y = softmax(𝑊%ℎ)



Improvements over n-gram LM:
● Tackles the sparsity problem
● Model size is O(n) not O(exp(n)) —

n being the window size. 

A Fixed-Window Neural LM: Compared to N-Grams 

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Bengio et al. 2003, notes from Richard Socher]

concatenate

O O O O O O O O O O O O O O O 

mat

table

bed

desk

chair

Prob

Softmax

𝑾!

𝑾%



Improvements over n-gram LM:
● Tackles the sparsity problem
● Model size is O(n) not O(exp(n)) —

n being the window size. 

Remaining problems:
● Fixed window is too small
● Enlarging window enlarges 𝑾—

Window can never be large enough!
● It’s not deep enough to capture nuanced 

contextual meanings 

A Fixed-Window Neural LM: Compared to N-Grams 

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Bengio et al. 2003, notes from Richard Socher]

concatenate

O O O O O O O O O O O O O O O 

mat

table

bed

desk

chair

Prob

Softmax

𝑾!

𝑾%



A Fixed-Window Neural LM: Going Deeper 



intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward 
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

Feed-Forward 
layer

Add & Norm

Feed-Forward 
layer

Add & Norm

Feed-Forward 
layer

Add & Norm

N layers



intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward 
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

Uses residual connections (He et al. 2016)
— “information highways” between layers. 
(we saw them in the earlier chapter)

https://arxiv.org/abs/1512.03385


intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward 
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

Uses layer normalization (Ba et al. 2016)
which reduces variance across different 
data/batches and makes the optimization 
easier/faster. 

https://arxiv.org/abs/1607.06450


intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward 
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

Use ADAM optimizer (Kingma & Ba, 2017), 
a variant of Stochastic Gradient Descent. 

Use “dropout” to avoid overfitting. 

https://arxiv.org/pdf/1412.6980.pdf


Takeaways: 
● Depth helps 
● Residual connections are important 
● Adam works (here) better than SGD

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward 
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm



intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward 
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob
Effect of window size: 

Fixed-WindowLM (NPLM) is better than 
the Transformer (will see them in 2 
weeks!) with short prefixes but worse on 
longer ones.

Add & Norm



Flashback to Word2Vec 

● Word2Vec objective is similar to the language modeling objective. 
● Word2Vec representations are fixed 

○ e.g., “play” has one vector regardless of the context. 

● In contrast, the meaning representation extracted from more advanced 
architectures (e.g, FFN-LM) is contextual. 

…crisesbankingintoturningproblems… as

outside context words center word outside context words 
in window of size 2 at position t in window of size 2



Summary

● Language Modeling (LM), a useful predictive objective for language

● Perplexity, a measure of an LM’s predictive ability

● N-gram models (~1980 to early 2000’s), 

○ Early instances of LMs 

○ Difficult to scale to large window sizes 

● FFN-LMs (early and mid-2000’s ), 

○ Effective predictive models based on feed-forward networks 

○ Difficulty in long-range dependencies 

59



What Changed from N-Gram LMs to Neural LMs? 

● What is the source of Neural LM’s strength? 
● Why sparsity is less of an issue for Neural LMs? 

● Answer: In n-grams, we treat all prefixes independently of each other! (even those 
that are semantically similar) 

students opened their ___ 
pupils opened their ___ 
scholars opened their ___ 
undergraduates opened their ___ 
students turned the pages of their ___ 
students attentively perused their ___ 
...

Neural LMs are able to
share information across 

these semantically-similar 
prefixes and overcome the 

sparsity issue. 



Best of both worlds 
● n-grams are easy to compute for small ”n”. 
● Why waste energy to make neural-LMs [re]learn these statistics? 
● Li et al. 2022 propose learning neural LMs to fits the residual between an n-gram 

LM and real-data distribution. 
● Allows the neural part to focus on the deeper understanding of language. 

[N-gram Is Back: Residual Learning of Neural Text Generation with n-gram Language Model, Li et al. 2022]

https://arxiv.org/pdf/2210.14431.pdf


Summary Thus Far  

● Language Models (LM): distributions over language 
● N-gram: language modeling via counting 
● Neural Language Models: neural networks trained with LM objective
● Fixed-window Neural LM: first of many LMs we will see in this class
● Key question: how to better 

capture long-range dependencies? 


