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Recap

● Neural Language Models: neural 

networks trained with LM 
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What Changed from N-Gram LMs to Neural LMs? 

● What is the source of Neural LM’s strength? 

● Why sparsity is less of an issue for Neural LMs? 

● Answer: In n-grams, we treat all prefixes independently of each other! (even those 

that are semantically similar) 

students opened their ___ 
pupils opened their ___ 
scholars opened their ___ 
undergraduates opened their ___ 
students turned the pages of their ___ 
students attentively perused their ___ 
...

Neural LMs are able to 
share information across 

these semantically-similar 
prefixes and overcome the 

sparsity issue. 



Aside: 

Sampling 
From LMs



How do we generate language from LMs? 

Given: 
context

next 
word

P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”
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Approach 1: Greedy (Argmax) 

● Challenge: 
○ Generates boring results — not creative. 

○ May repeat itself . 

context
next 
word

𝑥𝑡 =argmax P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”

mat
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Prob

Some 
model

[The Curious Case of Neural Text Degeneration, Holtzman et al., 2020]

“I went to the place that the place that the place that the place ...”

https://arxiv.org/abs/1904.09751


Approach 2: Sampling from the whole distribution

● Challenge: Likely to result in lots of nonsensical generations. 

● Reason: LMs distribution is more meaningful about high-prob items, but as we get 

further away from high-prob items, the probs are less meaningful. 

context
next 
word

𝑥𝑡 ~ P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”

mat

table
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[The Curious Case of Neural Text Degeneration, Holtzman et al., 2020]

https://arxiv.org/abs/1904.09751


Approach 3: Sampling + Temperature 

Small-ish T would assign more prob to the top of the distribution, while not 

losing diversity. 

“The cat sat on the [MASK]”
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[The Curious Case of Neural Text Degeneration, Holtzman et al., 2020]

https://arxiv.org/abs/1904.09751


Approach 4: Top-p Sampling (Nucleus sampling)

● On each step, randomly sample from the distribution, but restricted to just the 

top-p most probable words
○ Like pure sampling, but truncate the distribution to high-prob content 

● p=1 is basically sampling from the whole distribution 

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Some 
model

[The Curious Case of Neural Text Degeneration, Holtzman et al., 2020]

https://arxiv.org/abs/1904.09751


[The Curious Case of Neural Text Degeneration, Holtzman et al., 2020]

Local Incoherence

https://arxiv.org/abs/1904.09751


Fancier Approaches: Beam Search 

● A heuristic search that allows maximizing words probabilities for a window of words

● Out of scope for us. Feel free to check it in your own time. 



Summary on Sampling Algorithms 

● Greedy decoding: a simple method; gives low quality output 

● Sampling methods are a way to get more diversity and 

randomness 
○ Good for open-ended / creative generation (poetry, stories) 

○ Top-p sampling allows you to control diversity

● Others: Beam search searches for high-probability output 



Aside END! 



Moving Beyond Feedforward Neural LMs 

● Are competitive at language 

modeling task 

● However, they 
○ have difficulty in remembering long 

range dependencies 

○ have a fixed window size 

● Key question: how to better 

capture long-range dependencies? 

● Alternative here: a new family of 

neural networks: recurrent nets intoturningproblemsour

context words in window of size 4 target word

and
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Recurrent LMs: Chapter Plan 

1. A new faculty of neural networks: recurrent neural networks

2. A new family of language models: recurrent neural language models 

3. Doing things with recurrent LMs 

4. Issues with RNNs and fancier variants 



Infinite Use of Finite Model

● Main question: how can a finite model a long (infinite) context? 

● Solution: recursion! (recursive use of a model) 

● RNNs are a family of neural networks introduced to learn sequential data 

via recursive dynamics.

● Inspired by the temporality of human thoughts

16

[Jeff Elman, “Finding structure in time,” 1990]



Recurrent Neural Networks (RNNs)

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡)

● In the diagram, 𝑓(. ) looks at some input 𝑥𝑡 and its 

previous hidden state ℎ𝑡−1 and outputs a revised 

state ℎ𝑡. 

● A loop allows information to be passed from one 

step of the network to the next.
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[Jeff Elman, “Finding structure in time,” 1990]

Input vector at told statenew state



Unrolling RNN

● The diagram above shows what happens if we unroll the loop.

● A recurrent neural network can be thought of as multiple copies of the same 
network, each passing a message to a successor. 

[Jeff Elman, “Finding structure in time,” 1990]

time



LMs w/ Recurrent Neural Nets

● We feed the words one at a time to the RNN. 

● A predictive head uses the latest embedding vector to produce a 

probability over the vocabulary. 

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
contextnext word
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RNN: Forward Propagation
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During training, regardless of our output predictions,

we feed in the correct inputs

𝐶𝐸 𝑦 𝑖, ො𝑦 𝑖 = −෍

𝑤∈𝑉
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𝑖 log( ො𝑦𝑤
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RNN: Forward Propagation
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RNN: Forward Propagation
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Error
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Our total loss is simply the average loss across all 𝑻 time steps

RNN: Forward Propagation
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Backward Step

Output layer

𝑈 𝑈 𝑈 𝑈𝑉 𝑉 𝑉

went? over? class? after?

𝐶𝐸 𝑦4 , ො𝑦4

ො𝑦
Using the chain rule, we trace the derivative all the way 
back to the beginning, while summing the results.

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g.Θ), we calculate the gradient of 

our loss w.r.t. the repeated weight matrix (e.g., 
𝝏𝑳

𝝏Θ
).
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Backward Step

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉3

She went to class

went? over? class?

𝐶𝐸 𝑦4 , ො𝑦4

ො𝑦

To update our weights (e.g.Θ), we calculate the gradient of 

our loss w.r.t. the repeated weight matrix (e.g., 
𝝏𝑳

𝝏Θ
).

Using the chain rule, we trace the derivative all the way 
back to the beginning, while summing the results.
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Backward Step

Output layer

𝑈 𝑈 𝑈 𝑈𝑉 𝑉3

went? over? class?

𝐶𝐸 𝑦4 , ො𝑦4

ො𝑦

𝑉2

Using the chain rule, we trace the derivative all the way 
back to the beginning, while summing the results.

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g.Θ), we calculate the gradient of 

our loss w.r.t. the repeated weight matrix (e.g., 
𝝏𝑳

𝝏Θ
).
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Backward Step

Output layer

𝑈 𝑈 𝑈 𝑈
𝑉3

went? over? class?

𝐶𝐸 𝑦4 , ො𝑦4

ො𝑦
Using the chain rule, we trace the derivative all the way 
back to the beginning, while summing the results.

𝑉2𝑉1

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g.Θ), we calculate the gradient of 

our loss w.r.t. the repeated weight matrix (e.g., 
𝝏𝑳

𝝏Θ
).



Training RNNs: Summary

● RNNs can be trained using “backpropagation through time.”

● Can be viewed as applying normal backprop to the unrolled network.

● Model’s learnable parameters  Θ

1. Compute ℒ(Θ) for a batch of sentences

2. Compute gradients ∇Θℒ(Θ)

3. Update the weights and then repeat 

backpropagated 
feedback

the sat oncat

books
laptops

ℒ



RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from ෝ𝒚
Continue until we generate <EOS> symbol.

33



Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑥1
<START>

“Sorry”

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from ෝ𝒚
Continue until we generate <EOS> symbol.
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RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from ෝ𝒚
Continue until we generate <EOS> symbol.

35
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RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from ෝ𝒚
Continue until we generate <EOS> symbol.

36

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊
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𝑉 𝑉

<START> “Sorry” Harry

“Sorry” Harry shouted,



RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from ෝ𝒚
Continue until we generate <EOS> symbol.
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“Sorry” Harry shouted, panicking



RNN: Generation

● NOTE: we are transmitting contextual information over time. 

38
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RNN: Generation

● When trained on Harry Potter text, it generates:

39
Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6


RNNs: Generation 

● RNN-LM trained on Obama speeches:

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

The United States will step up to the cost of a new 
challenges of the American people that will share the fact 
that we created the problem. They were attacked and so that 
they have to say that all the task of the final days of war 
that I will not be able to get this done.

40

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0


RNNs in Practice 

● RNN-LM trained on food recipes:

https://gist.github.com/nylki/1efbaa36635956d35bcc

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies

Yield: 6 Servings

2 tb Parmesan cheese -- chopped
1 c  Coconut milk
3    Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and 
simmer until firm. Serve hot in bodied fresh, mustard, orange and cheese. Combine the 
cheese and salt together the dough in a large skillet; add the ingredients and stir 
in the chocolate and pepper.

41



Evaluation LMs with Perplexity (2016)

n-gram model→

Source: https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/

Increasingly  
complex RNNs

42

https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/


RNNs: Pros and Cons

● Advantages:
○ Model size doesn’t increase for longer inputs — reusing a 

compact set of  model parameters. 

○ Computation for step t can (in theory) use information

from many steps back

● Disadvantages:
○ Recurrent computation is slow and difficult to parallelize.

■ Next week: self-attention mechanism, better at 

representing long sequences and also parallelizable. 

○ While RNNs in theory can represent long sequences, they

quickly forget portions of the input.

○ Vanishing/exploding gradients.

the students opened their

boo
ks lapto

ps

a zo
o
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Vanishing/Exploding Gradient Problem

● Backpropagated errors multiply at each layer, resulting in 

exponential decay (if derivative is small) 

or growth (if derivative is large).

● Makes it very difficult train deep 

networks, or simple recurrent 

networks over many time steps.

backpropagated 
feedback

the sat oncat

books
laptops

ℒ

𝐉ℒ 𝒉(0) = 𝐉𝒉(1) 𝒉
(0) 𝐉𝒉(2) 𝒉

(1) × … × 𝐉𝒉(4) 𝒉(3) 𝐉ℒ 𝒉(4)

chain rule



● Note: instability of matrix powers can be 

determined from their eigenvalues.  

Vanishing/Exploding Gradient Problem

backpropagated 
feedback

the sat oncat

books
laptops

ℒ

chain rule

𝐉ℒ 𝒉(0) = 𝐉𝒉(1) 𝒉
(0) 𝐉𝒉(2) 𝒉

(1) × … × 𝐉𝒉(4) 𝒉(3) 𝐉ℒ 𝒉(4)

Gradient signal from far away is lost. So, model weights are 
updated only with respect to near effects, not long-term effects.



RNNs: Difficulty in Learning Long-Range Dependencies

● While RNNs in theory can represent long sequences, in practice teaching
them about long-range dependencies is non-trivial.

● Gradient clipping:
○ If the norm of the gradient is greater than some threshold, scale it down before applying

SGD update.

○ Intuition: take a step in the same direction, but a smaller step

46

[“On the difficulty of training recurrent neural networks”, Pascanu et al, 2013]

http://proceedings.mlr.press/v28/pascanu13.pdf


RNNs: Difficulty in Learning Long-Range Dependencies (2)

● While RNNs in theory can represent long sequences, in practice teaching
them about long-range dependencies is non-trivial.

● Using residual layers:
○ lots of new deep architectures 

(RNN or otherwise) add direct 
connections,  thus allowing 
the gradient to flow)

47

"Deep Residual Learning for Image Recognition", 
He et al, 2015.  https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf


RNNs: Difficulty in Learning Long-Range Dependencies (3)

● While RNNs in theory can represent long sequences, in practice teaching
them about long-range dependencies is non-trivial.

● Changes to the architecture makes it easier for the RNN to preserve 
information over many timesteps 

○ Long Short-Term Memory (LSTM)  [Hochreiter and Schmidhuber 1997, Gers+ 2000]

○ Gated Recurrent Units (GRU) [Cho+ 2014]
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RNNs: Difficulty in Learning Long-Range Dependencies (3)

● While RNNs in theory can represent long sequences, in practice teaching
them about long-range dependencies is non-trivial.

● Changes to the architecture makes it easier for the RNN to preserve 
information over many timesteps 

○ Long Short-Term Memory (LSTM)  [Hochreiter and Schmidhuber 1997, Gers+ 2000]

○ Gated Recurrent Units (GRU) [Cho+ 2014]

● Many of these variants were the dominant architecture of  In 2013–2015. 

● We will not cover these alternative architecture in favor or spending more 
time on more modern developments. 
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Adapting RNNs to Application

5
0

Text Classification Language Modeling POS Tags



Encoder-Decoder Architectures 

● It is useful to think of generative models as two sub-models.

“The cat sat on the [MASK]”
Some 
model

51



Encoder-Decoder Architectures 

● It is useful to think of generative models as two sub-models.

“The cat sat on the [MASK]”

En
co

de
r

D
ec

od
er

Representation (compression) of the context

Produces the output sequence item by item 
using the representation of the context. 

Processes the context and 
compiles it into a vector.
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Encoder-Decoder Architectures 

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/ 53



Encoder-Decoder Architectures 



Extending RNNs to Both Directions

● An RNN limitation: Hidden variables capture only one side of the context. 

● Solution: Bi-Directional RNNs

55

RNN Bi-directional RNN


