Self-Supervised Learning w/ Recurrent Neural Nets

CSCI 601 471/671
NLP: Self-Supervised Models
https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Chris Tanner, Mohit Iyyer, Chris Manning and many others]
Logistics Update

- HW3 grading is done.
- HW5 is released.
- Please be careful about the academic honesty code of the class.
- We will taper off HWs as we get closer to the end of the semester.
 - We will have less HW than we expected (probably 8 HW).
 - This should give you time to focus on your final projects — Project details coming soon!
Recap: Recurrent Neural Networks

- Repeated use of a finite model
Recap: Encoder-Decoder Architectures

- It is useful to think of generative models as two sub-models.

“The cat sat on the [MASK]”
Recap: Encoder-Decoder Architectures
Sequence-to-Sequence (seq2seq)
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

The encoder RNN processes the input sequence and generates intermediate hidden states $h^E_1, h^E_2, h^E_3, h^E_4$. The final hidden state h^E_4 is then used as the initial state for the decoder RNN.
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

- **Input layer:** The, brown, dog, ran
- **Hidden layer:** h^E_1, h^E_2, h^E_3, h^E_4
- **Encoder RNN:**
 - h^E_1
 - h^E_2
 - h^E_3
 - h^E_4
- **Decoder RNN:**
 - h^D_1
 - h^D_2

The final hidden state of the encoder RNN is the initial state of the decoder RNN.
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

The hidden states of the encoder RNN are:
- h^E_1
- h^E_2
- h^E_3
- h^E_4

The hidden states of the decoder RNN are:
- h^D_1
- h^D_2

Input layer:
- The
- brown
- dog
- ran

Output layer:
- $<$s$>$
- Le
- chien
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

The input sequence is "The brown dog ran." The encoder RNN processes this sequence, generating hidden states h_1^E, h_2^E, h_3^E, and h_4^E. The decoder RNN then uses the final hidden state h_4^E as its initial state to generate the French translation "Le chien."
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

The brown dog ran <s> Le chien brun

ENCODER RNN

DECODER RNN
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

Input layer: The brown dog ran

Hidden layer:
- h_1^E
- h_2^E
- h_3^E
- h_4^E

Encoder RNN:
- h_1^D to h_4^D

Decoder RNN:
- Le, chien, brun

The output sequence is: Le, chien, brun
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.
Recap: Extending RNNs to Both Directions

- An RNN limitation: Hidden variables capture only one side of the context.
- Solution: Bi-Directional RNNs
Self-Supervised Learning w/ RNNs
ELMo: First Major Self-Supervised LM

General idea: Goal is to get highly rich, contextualized embeddings (word tokens).

Contextual representations, i.e., depend on the entire sentence in which a word is used.

[Deep contextualized word representations, Peters et al. 2018]
ELMo: First Major Self-Supervised LM

- Use both directions of context (bi-directional), with increasing abstractions (stacked)
 - Two LSTMs in different directions — capture both directions

[Deep contextualized word representations, Peters et al. 2018]
ELMo: First Major Self-Supervised LM

- Linearly combine all abstract representations (hidden layers) and optimize w.r.t. a particular task (e.g., sentiment classification)

[Deep contextualized word representations, Peters et al. 2018]
ELMo: Some Details

- Train a forward LM and backward LMs
- Use 4096 dim hidden states
- Residual connections from the first to second layer
- Trained 10 epochs on 1B Word Benchmark
- Perplexity ~39

[Deep contextualized word representations, Peters et al. 2018]
ELMo Representations for Tasks

- Fine-tune classifiers using contextualized word representations extracted from ELMo.

[out = softmax(W₃ \cdot z₂)

z₂ = f(W₂ \cdot z₁)

z₁ = f(W₁ \cdot av)

av = \sum_{i=1}^{n} \frac{c_i}{n}

... a really good book ...

[Deep contextualized word representations, Peters et al. 2018]
ELMo: Evaluation

- SQuAD: question answering
- SNLI: textual entailment
- SRL: semantic role labeling
- Coref: coreference resolution
- NER: named entity recognition
- SST-5: sentiment analysis

[Deep contextualized word representations, Peters et al. 2018]
Experimental Results

[Deep contextualized word representations, Peters et al. 2018]
Deep contextualized word representations, Peters et al. 2018

Syntactic information is better represented at lower layers while semantic information is captured at higher layers

[Deep contextualized word representations, Peters et al. 2018]
Summary

- ELMo: Stacked Bi-directional LSTMs

- ELMo yielded incredibly good contextualized embeddings, which yielded SOTA results when applied to many NLP tasks.

- Main ELMo takeaway: given enough [unlabeled] training data, having tons of explicit connections between your vectors is useful — the system can determine how to best use context.

[Deep contextualized word representations, Peters et al. 2018]
Summary

- **Recurrent Neural Networks**
 - A family of neural networks that allow architecture for inputs of variable length

- **RNN-LM: LM based on RNNs**
- **A notable example: ELMo**

- **Cons:**
 - Sequential processing
 - While in theory it maintains infinite history, in practice it suffers from long-range dependencies.
Atomic Units of Language
The cat sat on the mat.
The cat sat on the mat.

words split based on white space?
BOS, The, cat, sat, on, the, mat, ., EOS

characters?
BOS, T, h, e, SPACE, c, a, t, SPACE, s, ...

bytes??!
011000010111000001110000011011000110010101011100001
111000001110000011011000110010101011000010111000 ...
The cat sat on the mat.

words split based on white space?

Which one should we use as the atomic building blocks for modeling language? 🤔

bytes??!

0110000101110000011100000110110001100101010101100001
1110000011100000011011000110010101011000010111000 ...
Cost of Using **Word** Units

- What happens when we encounter a word at test time that *we’ve never seen in our training data*?
 - *Loquacious*: Tending to talk a great deal; talkative.
 - *Omnishambles*: A situation that has been mismanaged, due to blunders and miscalculations.
 - *COVID-19*: was unseen until 2020!
 - *Aquire*: incorrect spelling of “acquire”
 - *Acknowleadgement*: incorrect spelling of “acknowledgement”

- What about relevant words?: “dog” vs “dogs”; “run” vs “running”

- With *word level* tokenization, we have *no way of understanding an unseen word*!

- Also, not all languages have spaces between words like English!
Cost of Using **Character Units**

- **What if we use characters?**

- **Pro:** (1) **small vocabulary**, just the number of unique characters in the training data.
 (2) fewer out-of-vocabulary tokens

- **Cost:** much longer input sequences
 As we discussed, modeling long-range dependences is challenging.

Character Units

<table>
<thead>
<tr>
<th>Character</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>5</td>
</tr>
<tr>
<td>f</td>
<td>6</td>
</tr>
<tr>
<td>g</td>
<td>7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>!</td>
<td>37</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>à</td>
<td>256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Character</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>of</td>
<td>2</td>
</tr>
<tr>
<td>and</td>
<td>3</td>
</tr>
<tr>
<td>to</td>
<td>4</td>
</tr>
<tr>
<td>in</td>
<td>5</td>
</tr>
<tr>
<td>was</td>
<td>6</td>
</tr>
<tr>
<td>the</td>
<td>7</td>
</tr>
<tr>
<td>is</td>
<td>8</td>
</tr>
<tr>
<td>for</td>
<td>9</td>
</tr>
<tr>
<td>as</td>
<td>10</td>
</tr>
<tr>
<td>on</td>
<td>11</td>
</tr>
<tr>
<td>with</td>
<td>12</td>
</tr>
<tr>
<td>that</td>
<td>13</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>malapropism</td>
<td>170,000</td>
</tr>
</tbody>
</table>
Subword Tokenization

- Breaks words into smaller units that are indicative of their morphological construction.
 - Developed for machine translation (Sennrich et al. 2016)

- Dominantly used in modern language models (BERT, T5, GPT, ...)
- Relies on a simple algorithm called byte pair encoding (Gage, 1994)

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

['Using', 'a', 'transform', '##er', 'network', 'is', 'simple']

print(tokenizer.convert_tokens_to_ids(tokens))

[7993, 170, 13809, 23763, 2443, 1110, 3014]

tokenizer = AutoTokenizer.from_pretrained("albert-base-v1")
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

[‘_using’, ‘_a’, ‘_transform’, ‘er’, ‘_network’, ‘_is’, ‘_simple’]
The Tokenization Pipeline

- Strip extra spaces
- Unicode normalization, ...
The Tokenization Pipeline

- White spaces between words and sentences
- Punctuations
- ...
The Tokenization Pipeline

- Normalization
- Pre-tokenization
- Tokenization
- Post-processing

- BPE, (will discuss this in a second)
The Tokenization Pipeline

- Add special tokens: for example [CLS], [SEP] for BERT
- Truncate to match the maximum length of the model
- Pad all sentences in a batch to the same length
Byte-pair Encoding (BPE)

- An algorithm for forming subword tokens based on a collection of raw text.

and there are no re ##fueling stations anywhere
One of the city’s more un ##princi ##pled real state agents

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding (BPE)

Idea: Repeatedly merge the most frequent adjacent tokens

```python
for i in range(num_merges):
    pairs = get_stats(vocab)
    best = max(pairs, key=pairs.get)
    vocab = merge_vocab(best, vocab)
```

- Doing 30k merges => vocabulary of around 30k subwords. Includes many whole words.

Byte-pair Encoding (BPE): Example

- Form base vocabulary of all characters that occur in the training set.
- **Example:**

 Our (very fascinatingäm francais) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u
 Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s

Does not show the word separator for simplicity.

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (2)

- Count the frequency of each token pair in the data
- Example:

 Our (very fascinating 😍) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u
 Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
 Token pair frequencies:
 - j + h -> 3
 - h + u -> 3
 - h + o -> 4
 - o + p -> 4
 - p + k -> 1
 - k + i -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (3)

- Choose the pair that occurs more, merge them and add to vocab.
- Example:

 Our (very fascinating😊) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u
 Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
 Token pair frequencies:
 - j + h -> 3
 - h + u -> 3
 - h + o -> 4
 - o + p -> 4
 - p + k -> 1
 - k + i -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (4)

- Choose the pair that occurs more, merge them and add to vocab.
- Example:

 Our (very fascinating😉) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho
 Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
 Token pair frequencies:
 - j + h -> 3
 - h + u -> 3
 - h + o -> 4
 - o + p -> 4
 - p + k -> 1
 - k + i -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (5)

- Retokenize the data
- *Example:*

 Our (very fascinating😊) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho
 Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
 Token pair frequencies:
Byte-pair Encoding: Example (6)

- Count the token pairs and merge the most frequent one
- **Example:**

 Our (very fascinating😊) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho
 Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
 Token pair frequencies:
 - j + h -> 3
 - h + u -> 3
 - ho + p -> 4
 - p + k -> 1
 - k + i -> 1
 - i + n -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (7)

- Count the token pairs and merge the most frequent one

Example:

Our (very fascinating 😄) training data: “jhu jhu jhu hopkins hop hops hops”

Base vocab: h, i, j, k, n, o, p, s, u, ho

Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s

Token pair frequencies:

- j + h -> 3
- h + u -> 3
- ho + p -> 4
- p + k -> 1
- k + i -> 1
- i + n -> 1
-

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (7)

- Count the token pairs and merge the most frequent one
- Example:

Our (very fascinating😊) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:
 - j + h -> 3
 - h + u -> 3
 - ho + p -> 4
 - p + k -> 1
 - k + i -> 1
 - i + n -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (7)

- Count the token pairs and merge the most frequent one
- Example:

Our (very fascinating😊) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies:
- j + h -> 3
- h + u -> 3
- ho + p -> 4
- p + k -> 1
- k + i -> 1
- i + n -> 1
-

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (8)

- Count the token pairs and merge the most frequent one
- *Example:*

 Our (very fascinating😊) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
 Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
 Token pair frequencies:
 - j + h -> 3
 - h + u -> 3
 - hop + k -> 1
 - hop + s -> 2
 - k + i -> 1
 - i + n -> 1
 - n + s -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (8)

- Count the token pairs and merge the most frequent one
- Example:

 Our (very fascinating 😊) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
 Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
 Token pair frequencies:
 - j + h -> 3
 - h + u -> 3
 - hop + k -> 1
 - hop + s -> 2
 - k + i -> 1
 - i + n -> 1
 - n + s -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (8)

- Count the token pairs and merge the most frequent one
- *Example:*

 Our (very fascinating😊) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
 Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
 Token pair frequencies:
 - j + h -> 3
 - h + u -> 3
 - hop + k -> 1
 - hop + s -> 2
 - k + i -> 1
 - i + n -> 1
 - n + s -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (8)

- Count the token pairs and merge the most frequent one
- **Example:**

 Our (very fascinating 😄) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
 Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s

 Token pair frequencies:
 - j h+u -> 3
 - hop + k -> 1
 - hop + s -> 2
 - k + i -> 1
 - i + n -> 1
 - n + s -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (8)

- Count the token pairs and merge the most frequent one
- Example:

 Our (very fascinating 😄) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu
 Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
 Token pair frequencies:
 - j h + u -> 3
 - hop + k -> 1
 - hop + s -> 2
 - k + i -> 1
 - i + n -> 1
 - n + s -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Byte-pair Encoding: Example (8)

- Count the token pairs and merge the most frequent one
- **Example:**

 Our (very fascinating 😊) training data: “jhu jhu jhu hopkins hop hops hops”
 Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu
 Tokenized data: jhu jhu jhu hop k i n s hop hop s hop s
 Token pair frequencies:
 - j h+u -> 3
 - hop + k -> 1
 - hop + s -> 2
 - k + i -> 1
 - i + n -> 1
 - n + s -> 1
 -

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016] [A new algorithm for data compression, Gage 1994]
Limitations of Subwords

- Hard to apply to languages with agglutinative (e.g., Turkish) or non-concatenative (e.g., Arabic) morphology

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>كتب</td>
<td>k-t-b</td>
<td>“write” (root form)</td>
</tr>
<tr>
<td>كتب</td>
<td>kataba</td>
<td>“he wrote”</td>
</tr>
<tr>
<td>كتب</td>
<td>kattaba</td>
<td>“he made (someone) write”</td>
</tr>
<tr>
<td>كتب</td>
<td>iktataba</td>
<td>“he signed up”</td>
</tr>
</tbody>
</table>

Table 1: Non-concatenative morphology in Arabic.⁴ The root contains only consonants; when conjugating, vowels, and sometimes consonants, are interleaved with the root. The root is not separable from its inflection via any contiguous split.

Clark et al., 2021, “CANINE”
Other Subword Encodings

- **WordPiece** *(Schuster & Nakajima, ICASSP 2012)*: merge by likelihood as measured by language model, not by frequency

 - While voc size < target:
 1. Build a language model over your corpus
 2. Merge tokens that lead to highest improvement in LM perplexity

- **Issues**: What LM to use? How to make it tractable?

[Schuster & Nakajima 2012; Wu et al. 2016]
Other Subword Encodings (2)

- **SentencePiece** (Kudo et al., 2018):
 - A more advanced tokenized extending BPE
 - Good for languages that don’t always separate words w/ spaces.

SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabulary size is predetermined prior to the neural model training. SentencePiece implements subword units (e.g., byte-pair-encoding (BPE) [Sennrich et al.]) and unigram language model [Kudo]) with the extension of direct training from raw sentences. SentencePiece allows us to make a purely end-to-end system that does not depend on language-specific pre/postprocessing.

https://github.com/google/sentencepiece

[SentencePiece, Kudo & Richardson 2018]
Other Subword Encodings (3)

- Use byte representation of words
 - E.g., H → 01010111
- Vocabulary size: \(2^8 = 256\)
- **Limitation:** sequence length

[Byte-level machine reading across morphologically varied languages, Kenter et al. 2018; ByT5: Towards a Token-Free Future with Pre-trained Byte-to-Byte Models, Xue at al. 2021, and several others]
Summary

- **Fundamental question**: what should be the atomic unit of representation?

- **Words**: too coarse
- **Characters**: too small

- **Subwords**:
 - A useful representational choice for language.
 - Capture language morphology