
Self-Supervised Learning w/ 
Recurrent Neural Nets

CSCI 601 471/671 
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Chris Tanner, Mohit Iyyer, Chris Manning and many others ]



Logistics Update

● HW3 grading is done.

● HW5 is released.

● Please be careful about the academic honesty code of the class. 

● We will taper off HWs as we get closer to the end of the semester.
○ We will have less HW than we expected (probably 8 HW).
○ This should give you time to focus on your final projects — Project details coming soon!



Recap: Recurrent Neural Networks

● Repeated use of a finite model
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Recap: Encoder-Decoder Architectures

● It is useful to think of generative models as two sub-models.

“The cat sat on the [MASK]” Some 
model
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Recap: Encoder-Decoder Architectures
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Recap: Extending RNNs to Both Directions

● An RNN limitation: Hidden variables capture only one side of the context. 
● Solution: Bi-Directional RNNs
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RNN Bi-directional RNN



Self-Supervised 
Learning w/ RNNs



ELMo: First Major Self-Supervised LM

General idea:  Goal is to get highly rich, contextualized  embeddings (word tokens)

Contextual representations, i.e., depend on the entire sentence in which a word is used.

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


ELMo: First Major Self-Supervised LM

● Use both directions of context (bi-directional), with increasing abstractions (stacked) 
○ Two LSTMs in different directions — capture both directions

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


ELMo: First Major Self-Supervised LM

● Linearly combine all abstract representations  (hidden layers) and optimize w.r.t. a 
particular  task (e.g., sentiment classification)

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


ELMo: Some Details 

● Train a forward LM and backward LMs 
● Use 4096 dim hidden states
● Residual connections from 

the first to second layer 
● Trained 10 epochs on 1B Word Benchmark
● Perplexity ~39

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


ELMo Representations for Tasks 

[Deep contextualized word representations, Peters et al. 2018]

● Fine-tune classifiers using
contextualized word representations 
extracted from ELMo. 

https://arxiv.org/abs/1802.05365


ELMo: Evaluation

● SQuAD: question answering 
● SNLI: textual entailment 
● SRL: semantic role labeling 
● Coref: coreference resolution 
● NER: named entity recognition 
● SST-5: sentiment analysis

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


Experimental Results

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


[Deep contextualized word representations, Peters et al. 2018]

Syntactic information is better represented at lower layers
while semantic information is captured a higher layers

https://arxiv.org/abs/1802.05365


Summary

● ELMo: Stacked Bi-directional LSTMs

● ELMo yielded incredibly good contextualized embeddings, which 
yielded SOTA results when applied to many NLP tasks.

● Main ELMo takeaway: given enough [unlabeled] training data, having tons 
of explicit connections between your vectors is useful — the system can 
determine how to best use context. 
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[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


Summary

● Recurrent Neural Networks 
○ A family of neural networks 

that allow architecture for 
inputs of variable length 

● RNN-LM: LM based on RNNs 
● A notable example: ELMo

● Cons: 
○ Sequential processing 
○ While in theory it maintain infinite history, in practice it suffers from long-range dependencies. 
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Atomic Units 
of Language



The cat sat on the mat.
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The cat sat on the mat.
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words split based on white space?

BOS, The, cat, sat, on, the, mat, ., EOS

characters?

BOS, T, h, e, SPACE, c, a, t, SPACE, s, …

bytes??!

011000010111000001110000011011000110010101100001
1110000011100000110110001100101011000010111000 …



The cat sat on the mat.
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words split based on white space?

BOS, The, cat, sat, on, the, mat, ., EOS

characters?

BOS, T, h, e, SPACE, c, a, t, SPACE, s, …

bytes??!

011000010111000001110000011011000110010101100001
1110000011100000110110001100101011000010111000 …

Which one should we use as the atomic 
building blocks for modeling language? 🤔



Cost of Using Word Units 

● What happens when we encounter a word at test time that we’ve never seen in our 
training data?

○ Loquacious:
○ Omnishambles:
○ COVID-19: was unseen until 2020! 
○ Aquire: incorrect spelling of “acquire”
○ Acknowleadgement: incorrect spelling of “acknowledgement”

● What about relevant words?: “dog” vs “dogs”; ”run” vs “running” 

● With word level tokenization, we have no way of understanding an unseen word!
● Also, not all languages have spaces between words like English! 

Tending to talk a great deal; talkative.
A situation that has been mismanaged, due to blunders and miscalculations.



Cost of Using Character Units 

● What if we use characters? 

● Pro: (1) small vocabulary, just the number 
of unique characters in the training data.
(2) fewer out-of-vocabulary tokens

● Cost: much longer input sequences 
As we discussed, modeling long-range 
dependences is challenging. 



Subword Tokenization

● Breaks words into smaller units that are indicative of their morphological construction.
○ Developed for machine translation (Sennrich et al. 2016)

● Dominantly used in modern language models (BERT, T5, GPT, …)
● Relies on a simple algorithm called byte pair encoding (Gage, 1994)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") 
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

['Using', 'a', 'transform', '##er', 'network', 'is', 'simple’]

tokenizer = AutoTokenizer.from_pretrained("albert-base-v1") 
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

[‘_using', ‘_a', ‘_transform', 'er', ‘_network', ‘_is', ‘_simple’]

print(tokenizer.convert_tokens_to_ids(tokens))

[7993, 170, 13809, 23763, 2443, 1110, 3014]



The Tokenization Pipeline 

● Strip extra spaces 
● Unicode normalization, … 

Normalization Pre-
tokenization Tokenization Pos-

processing



The Tokenization Pipeline 

● White spaces between words and sentences 
● Punctuations 
● … 

Normalization Pre-
tokenization Tokenization Pos-

processing



The Tokenization Pipeline 

● BPE, …. (will discuss this in a second)  

Normalization Pre-
tokenization Tokenization Pos-

processing



The Tokenization Pipeline 

● Add special tokens: for example [CLS], [SEP] for BERT
● Truncate to match the maximum length of the model 
● Pad all sentences in a batch to the same length 

Normalization Pre-
tokenization Tokenization Pos-

processing



Byte-pair Encoding (BPE)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● An algorithm for forming subword tokens based on a collection of raw text. 

and there are no re ##fueling stations anywhere 
One of the city’s more un ##princi ##pled real state agents 

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding (BPE)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Idea: Repeatedly merge the most frequent adjacent tokens 

● Doing 30k merges => vocabulary of around 30k subwords. Includes many whole 
words. 

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding (BPE): Example

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Form base vocabulary of all characters that occur in the training set. 
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s

Does not show the word 
separator for simplicity. 

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (2)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the frequency of each token pair in the data
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (3)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Choose the pair that occurs more, merge them and add to vocab. 
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (4)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Choose the pair that occurs more, merge them and add to vocab. 
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (5)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Retokenize the data
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies: 

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (6)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (7)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (7)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (7)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies: 
• j + h -> 3
• h + u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho, hop, jh
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Token pair frequencies: 
• j + h -> 3
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• hop + k -> 1
• hop + s -> 2
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• n + s -> 1
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https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies: 
• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu
Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies: 
• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
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Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example: 

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops” 
Base vocab:  h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu
Tokenized data: jhu jhu jhu hop k i n s hop hop s hop s
Token pair frequencies: 
• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/


Limitations of Subwords

● Hard to apply to languages with agglutinative (e.g., Turkish) 
or non-concatenative (e.g., Arabic) morphology



Other Subword Encodings 

● WordPiece (Schuster & Nakajima, ICASSP 2012): merge by likelihood as measured by language 
model, not by frequency

○ While voc size < target: 
1. Build a language model over your corpus 
2. Merge tokens that lead to highest improvement in LM perplexity 

● Issues: What LM to use? How to make it tractable? 

[ Shuster & Nakajima 2012; Wu et al. 2016]

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37842.pdf
https://arxiv.org/abs/1609.08144


Other Subword Encodings (2) 

● SentencePiece (Kudo et al., 2018): 
○ A more advanced tokenized extending BPE
○ Good for languages that don’t always separate words w/ spaces. 

[SentencePiece, Kudo & Richardson 2018]

https://github.com/google/sentencepiece

https://arxiv.org/abs/1808.06226
https://github.com/google/sentencepiece


Other Subword Encodings (3)

● Use byte representation of words 
○ E.g., H -> 01010111

● Vocabulary size: 2^8=256 
● Limitation: sequence length 

[Byte-level machine reading across morphologically varied languages, Kenter et al. 2018;  
ByT5: Towards a Token-Free Future with Pre-trained Byte-to-Byte Models, Xue at al. 2021, and several others]

https://ojs.aaai.org/index.php/AAAI/article/view/12050
https://arxiv.org/pdf/2105.13626.pdf


Summary

● Fundamental question: what should be the atomic unit of representation? 

● Words: too coarse
● Characters: too small

● Subwords:
○ A useful representational choice for language. 
○ Capture language morphology 


