
Self-Supervised Learning w/
Recurrent Neural Nets

CSCI 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Chris Tanner, Mohit Iyyer, Chris Manning and many others]

Logistics Update

● HW3 grading is done.

● HW5 is released.

● Please be careful about the academic honesty code of the class.

● We will taper off HWs as we get closer to the end of the semester.
○ We will have less HW than we expected (probably 8 HW).
○ This should give you time to focus on your final projects — Project details coming soon!

Recap: Recurrent Neural Networks

● Repeated use of a finite model

3

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥! 𝑥" 𝑥# 𝑥$

𝑉 𝑉 𝑉

<START> “Sorry” Harry shouted,

“Sorry” Harry shouted, panicking

Recap: Encoder-Decoder Architectures

● It is useful to think of generative models as two sub-models.

“The cat sat on the [MASK]” Some
model

4

Recap: Encoder-Decoder Architectures

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1

ENCODER RNN

ℎ𝐸 2ℎ𝐸 3ℎ𝐸 4ℎ𝐸

The brown dog ran

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1

ENCODER RNN

ℎ𝐸 2ℎ𝐸 3ℎ𝐸 4ℎ𝐸

The brown dog ran

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1ℎ𝐸 2ℎ𝐸 3ℎ𝐸 4ℎ𝐸

The brown dog ran

1ℎ𝐷

<s>

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

DECODER RNNENCODER RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1ℎ𝐸 2ℎ𝐸 ℎ𝐸 ℎ𝐸
3 4

The brown dog ran

1ℎ𝐷

<s>

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le

DECODER RNNENCODER RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1ℎ𝐸 2ℎ𝐸 ℎ𝐸 ℎ𝐸
3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> Le

DECODER RNNENCODER RNN

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1ℎ𝐸 2ℎ𝐸 ℎ𝐸 ℎ𝐸
3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> Le

DECODER RNNENCODER RNN

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le chien

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1ℎ𝐸 2ℎ𝐸 ℎ𝐸 ℎ𝐸
3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> chien

3ℎ𝐷

Le

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le chien

DECODER RNNENCODER RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1ℎ𝐸 2ℎ𝐸 ℎ𝐸 ℎ𝐸
3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> chien

3ℎ𝐷

Le

brun

DECODER RNNENCODER RNN

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le chien

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1ℎ𝐸 2ℎ𝐸 ℎ𝐸 ℎ𝐸
3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> chien brun

3ℎ𝐷 4ℎ𝐷

Le

brun

DECODER RNNENCODER RNN

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le chien

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

1ℎ𝐸 2ℎ𝐸 ℎ𝐸 ℎ𝐸
3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> chien brun a couru

3ℎ𝐷 4ℎ𝐷

Le

ℎ𝐷 ℎ𝐷
5 6

brun a

DECODER RNNENCODER RNN

couru <s>

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le chien

Recap: Extending RNNs to Both Directions

● An RNN limitation: Hidden variables capture only one side of the context.
● Solution: Bi-Directional RNNs

16

RNN Bi-directional RNN

Self-Supervised
Learning w/ RNNs

ELMo: First Major Self-Supervised LM

General idea: Goal is to get highly rich, contextualized embeddings (word tokens)

Contextual representations, i.e., depend on the entire sentence in which a word is used.

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

ELMo: First Major Self-Supervised LM

● Use both directions of context (bi-directional), with increasing abstractions (stacked)
○ Two LSTMs in different directions — capture both directions

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

ELMo: First Major Self-Supervised LM

● Linearly combine all abstract representations (hidden layers) and optimize w.r.t. a
particular task (e.g., sentiment classification)

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

ELMo: Some Details

● Train a forward LM and backward LMs
● Use 4096 dim hidden states
● Residual connections from

the first to second layer
● Trained 10 epochs on 1B Word Benchmark
● Perplexity ~39

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

ELMo Representations for Tasks

[Deep contextualized word representations, Peters et al. 2018]

● Fine-tune classifiers using
contextualized word representations
extracted from ELMo.

https://arxiv.org/abs/1802.05365

ELMo: Evaluation

● SQuAD: question answering
● SNLI: textual entailment
● SRL: semantic role labeling
● Coref: coreference resolution
● NER: named entity recognition
● SST-5: sentiment analysis

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

Experimental Results

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

[Deep contextualized word representations, Peters et al. 2018]

Syntactic information is better represented at lower layers
while semantic information is captured a higher layers

https://arxiv.org/abs/1802.05365

Summary

● ELMo: Stacked Bi-directional LSTMs

● ELMo yielded incredibly good contextualized embeddings, which
yielded SOTA results when applied to many NLP tasks.

● Main ELMo takeaway: given enough [unlabeled] training data, having tons
of explicit connections between your vectors is useful — the system can
determine how to best use context.

27
[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

Summary

● Recurrent Neural Networks
○ A family of neural networks

that allow architecture for
inputs of variable length

● RNN-LM: LM based on RNNs
● A notable example: ELMo

● Cons:
○ Sequential processing
○ While in theory it maintain infinite history, in practice it suffers from long-range dependencies.

28

Atomic Units
of Language

The cat sat on the mat.

30

The cat sat on the mat.

31

words split based on white space?

BOS, The, cat, sat, on, the, mat, ., EOS

characters?

BOS, T, h, e, SPACE, c, a, t, SPACE, s, …

bytes??!

011000010111000001110000011011000110010101100001
1110000011100000110110001100101011000010111000 …

The cat sat on the mat.

32

words split based on white space?

BOS, The, cat, sat, on, the, mat, ., EOS

characters?

BOS, T, h, e, SPACE, c, a, t, SPACE, s, …

bytes??!

011000010111000001110000011011000110010101100001
1110000011100000110110001100101011000010111000 …

Which one should we use as the atomic
building blocks for modeling language? 🤔

Cost of Using Word Units

● What happens when we encounter a word at test time that we’ve never seen in our
training data?

○ Loquacious:
○ Omnishambles:
○ COVID-19: was unseen until 2020!
○ Aquire: incorrect spelling of “acquire”
○ Acknowleadgement: incorrect spelling of “acknowledgement”

● What about relevant words?: “dog” vs “dogs”; ”run” vs “running”

● With word level tokenization, we have no way of understanding an unseen word!
● Also, not all languages have spaces between words like English!

Tending to talk a great deal; talkative.
A situation that has been mismanaged, due to blunders and miscalculations.

Cost of Using Character Units

● What if we use characters?

● Pro: (1) small vocabulary, just the number
of unique characters in the training data.
(2) fewer out-of-vocabulary tokens

● Cost: much longer input sequences
As we discussed, modeling long-range
dependences is challenging.

Subword Tokenization

● Breaks words into smaller units that are indicative of their morphological construction.
○ Developed for machine translation (Sennrich et al. 2016)

● Dominantly used in modern language models (BERT, T5, GPT, …)
● Relies on a simple algorithm called byte pair encoding (Gage, 1994)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

['Using', 'a', 'transform', '##er', 'network', 'is', 'simple’]

tokenizer = AutoTokenizer.from_pretrained("albert-base-v1")
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

[‘_using', ‘_a', ‘_transform', 'er', ‘_network', ‘_is', ‘_simple’]

print(tokenizer.convert_tokens_to_ids(tokens))

[7993, 170, 13809, 23763, 2443, 1110, 3014]

The Tokenization Pipeline

● Strip extra spaces
● Unicode normalization, …

Normalization Pre-
tokenization Tokenization Pos-

processing

The Tokenization Pipeline

● White spaces between words and sentences
● Punctuations
● …

Normalization Pre-
tokenization Tokenization Pos-

processing

The Tokenization Pipeline

● BPE, …. (will discuss this in a second)

Normalization Pre-
tokenization Tokenization Pos-

processing

The Tokenization Pipeline

● Add special tokens: for example [CLS], [SEP] for BERT
● Truncate to match the maximum length of the model
● Pad all sentences in a batch to the same length

Normalization Pre-
tokenization Tokenization Pos-

processing

Byte-pair Encoding (BPE)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● An algorithm for forming subword tokens based on a collection of raw text.

and there are no re ##fueling stations anywhere
One of the city’s more un ##princi ##pled real state agents

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding (BPE)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Idea: Repeatedly merge the most frequent adjacent tokens

● Doing 30k merges => vocabulary of around 30k subwords. Includes many whole
words.

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding (BPE): Example

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Form base vocabulary of all characters that occur in the training set.
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s

Does not show the word
separator for simplicity.

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (2)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the frequency of each token pair in the data
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (3)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Choose the pair that occurs more, merge them and add to vocab.
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (4)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Choose the pair that occurs more, merge them and add to vocab.
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (5)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Retokenize the data
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (6)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (7)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (7)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (7)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies:
• j + h -> 3
• h + u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies:
• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu
Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies:
• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding: Example (8)

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

● Count the token pairs and merge the most frequent one
● Example:

Our (very fascinating🙄) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu
Tokenized data: jhu jhu jhu hop k i n s hop hop s hop s
Token pair frequencies:
• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Limitations of Subwords

● Hard to apply to languages with agglutinative (e.g., Turkish)
or non-concatenative (e.g., Arabic) morphology

Other Subword Encodings

● WordPiece (Schuster & Nakajima, ICASSP 2012): merge by likelihood as measured by language
model, not by frequency

○ While voc size < target:
1. Build a language model over your corpus
2. Merge tokens that lead to highest improvement in LM perplexity

● Issues: What LM to use? How to make it tractable?

[Shuster & Nakajima 2012; Wu et al. 2016]

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37842.pdf
https://arxiv.org/abs/1609.08144

Other Subword Encodings (2)

● SentencePiece (Kudo et al., 2018):
○ A more advanced tokenized extending BPE
○ Good for languages that don’t always separate words w/ spaces.

[SentencePiece, Kudo & Richardson 2018]

https://github.com/google/sentencepiece

https://arxiv.org/abs/1808.06226
https://github.com/google/sentencepiece

Other Subword Encodings (3)

● Use byte representation of words
○ E.g., H -> 01010111

● Vocabulary size: 2^8=256
● Limitation: sequence length

[Byte-level machine reading across morphologically varied languages, Kenter et al. 2018;
ByT5: Towards a Token-Free Future with Pre-trained Byte-to-Byte Models, Xue at al. 2021, and several others]

https://ojs.aaai.org/index.php/AAAI/article/view/12050
https://arxiv.org/pdf/2105.13626.pdf

Summary

● Fundamental question: what should be the atomic unit of representation?

● Words: too coarse
● Characters: too small

● Subwords:
○ A useful representational choice for language.
○ Capture language morphology

