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Logistics Update
e Q: Will there be any normalization (“curve fitting”) for the final grades? Nope
e Q: Will we have access to large[r] GPUs? Yes, Details after the midterm.

e The midterm:
o will be on March 7 during class time.
o itwill be on paper
o It will be based on the ideas you have seen in homework and lectures. If you understand
them, you're set!
o Scope HW 1-5and lectures until today (Feb 23)



Language Models: A History

e Probabilistic n-gram models of text generation [Jelinek+ 19807s, ...]
® Applications: Speech Recognition, Machine Translation

e Word representation learning [Brown 1992, ...]
e Brown, LSA, Word2Vec, Glove ...

e Statistical or shallow neural LMs (late 9o’s — mid 00°S) [gengio+ 2001, ...

e Pre-training deep neural language models (2017's onward):
® Many models based on: Self-Attention



RNNs, Back to the Cons

e While RNNs in theory can represent long sequences, they quickly
forget portions of the input.

e Vanishing/exploding gradients

e Difficult to parallelize



« b'lisobtained based on the

Self-Attention whole input sequence.
* can be parallelly computed.
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|dea: replace any thing done by RNN with self-attention.

“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;
“Attention is All You Need” Vaswani et al. 2017

[adopted from Hung-yi Leef



Attention

e Coreidea: build a mechanism to focus (“attend”) on a
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[Attention Is AllYou Need, Vaswani et al. 2017]


https://arxiv.org/abs/1706.03762

Defining Self-Attention

e Terminology:
o Query: to match others
o Key: to be matched
o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]
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Defining Self-Attention [An analogy .... }

e Terminology:
o Query: to match others
o Key: to be matched

Key #4 D:[:l } value #4

Key #3 []:l:l value #3
o Value:informationto be e
Query #9 Key #2 |:|:|:| value #2 ‘
it

value #1

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]
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Defining Self-Attention

e Terminology:
o Query: to match others
o Key: to be matched

o Value: information to be ¢
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q: query (to match others)
q; = Wix;

k: key (to be matched)
ki = kai

v: value (information to be extracted)
V; = vai
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q: query (to match others)
q; = Wix;

k: key (to be matched)
ki = kai

v: value (information to be extracted)
V; = vai
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q: query (to match others)

qi = Wx;
k: key (to be matched)
k; = Wkx;
v: value (information to be extracted)
= vai
3 CI4 k4 v4
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q: query (to match others)

1
a, =9 %/
1 a k: key (to be matched)
\ v: value (information to be extracted)
Scaled dot product
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should “The”
a a a

attend to other L1 12 L3 A14
positions?
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Self-Attention

e Can write it in matrix form:
e GiveninputX:

Q = Wix

K = Wkx

IV = WVx

Attention(X) = softmax

hardmaru
© o @hardmaru

The most important formula in deep learning after 2018

Self-Attention
What is self-attention? Self-attention calculates a weighted
average of feature representations with the weight propor-
tional to a similarity score between pairs of representations.
Formally, an input sequence of n tokens of dimensions d,
X € R™? is projected using three matrices Wq € R%%4q,
Wk € R and Wy € R % to extract feature repre-
sentations @, K, and V, referred to as query, key, and value
respectively with d = d,. The outputs Q, K, V are com-
puted as

Q=XWq, K=XWgk, V=XWy. (1)

So, self-attention can be written as,

T
S = D(Q, K, V) = softmax (Q%) V, 2)
q
where softmax denotes a row-wise softmax normalization
function. Thus, each element in S depends on all other ele-
ments in the same row.

9:08 PM - Feb 9, 2021 - Twitter Web App

553 Retweets 42 Quote Tweets 3,338 Likes




One issue: the model doesn’t know
word positions/ordering.
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00 pl = 5. .t _
b z %Y One issue: the model doesn’t know
word positions/ordering.
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Allows model to learn
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p; are positional
embeddings
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Self-Attention: Back to Big Picture

e Attention is a powerful mechanism to create context-aware representations
e A way to focus on select parts of the input
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Self-Attention Layer
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® Better at maintaining long-distance dependencies in the context.

[Attention Is All You Need, Vaswani et al. 2017]
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Properties of Self-Attention

Layer Type Complexity per Layer Sequential
Operations

Self-Attention O(n?-d) O(1)

Recurrent O(n - d?) O(n)

e n=sequence length, d = hidden dimension

e Quadratic complexity, but:
o 0Of(2) sequential operations (not linear like in RNN)

e Efficientimplementations

[Attention Is All You Need, Vaswani et al. 2017]
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Multi-Headed Self-Attention

e Multiple parallel attention layers is quite common.
o Each attention layer has its own parameters.

o Concatenate the results and run them through a linear projection.

l Self-Attention Layer

23

[Attention Is All You Need, Vaswani et al. 2017]
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NEURAL
NETWORKS

How Do We Make it Deep?

STACK
MORE
LAYERS

V/’

LAYERS

/N
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* Add a feed-forward network on top it
to add more capacity/expressivity.

* Repeat!

00 00 00

Feedforward Net: Refresher \

Hidden
layer

Input
layer

Feed Forward Network

Output
layer

Inputs
Outputs

Multi-Headed
Self-Attention Layer

* * ’ A fully-connected network

(0)©) 00 00 \( of nodes and weights. /

[Attention Is All You Need, Vaswani et al. 2017]
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How Do We Prevent Vanishing Gradients?

* Residual connections let the model “skip” layers

* These connections are particularly useful for
training deep networks

* Use layer normalization to stabilize the network
and allow for proper gradient flow

[Attention Is All You Need, Vaswani et al. 2017]
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Putting It Together

Given input Xx:

Q:WQX
K = Wkx
V =W'x

. QK"
Attention(x) = softmax - |4

L

\

—

f-" Add & Norm l

———

Feed
Forward

4 )
Add & Norm

A

Multi-Head
Attention

Xt )

J

Positional
Encoding

[Attention Is All You Need, Vaswani et al. 2017]
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Transformer

[Attention Is All You Need, Vaswani et al. 2017]
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Transformer [vaswani et al. 2017]

e An encoder-decoder architecture built with attention modules.
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Transformer [vaswani et al. 2017]

e Computation of encoder attends to both sides.
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Transformer [vaswani et al. 2017]

e Atany step of decoder, it attends to previous computation of encoder
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Transformer [vaswani et al. 2017]

e Atany step of decoder, it attends to previous computation of encoder
as well as decoder’s own generations
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Transformer [vaswani et al. 2017]

e Atany step of decoder, it attends to previous computation of encoder

as well as decoder’s own generations

e Atany step of decoder, re-use previous
computation of encoder.

e Computation of decoder is linear,
instead of quadratic.
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Tra nsfo FMer [Vaswanietal. 2017]

® Anencoder-decoder architecture

e 3 forms of attention

Encoder-Decoder Attention
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. . |
[Attention Is All You Need, Vaswani et al. 2017]
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Impact of Transformers

Let to better predictive models of language!

Model Layers | Heads | Perplexity

LSTMs (Grave et al., 2016) - - 40.8

QRNN s (Merity et al., 2018) - - 33.0
Transformer 16 16 19.8
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["Efficient Content-Based Sparse Attention with Routing Transformers” Roy et al. 2020]



Wrapping it up

o Yaaay we know Transformers now! &3
o Midterm will be up to here!

o Next: extensions on Transformers.
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