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Logistics Update

● The midterm:
○ will be on March 7 during class time. 

○ I will not be here; Adam (TA) will run the show. 

○ it will be on paper 

○ It will be based on the ideas you have seen in homework and lectures. If you understand 

them, you’re set! 

○ Scope HW 1-5 and lectures until last Thursday (Feb 23)



Recap: Self-Attention 
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Self-Attention Layer

• 𝑏𝑖 is obtained based on the 
whole input sequence. 

• can be parallelly computed. 

Idea: replace any thing done by RNN with self-attention. 

RNN

[adopted from Hung-yi Lee]“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014; 
“Attention is All You Need” Vaswani et al. 2017
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Recap: RNN vs Transformer



Recap: Attention Block

Given input 𝐱:

𝑄 =𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√ℎ
𝑉

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762


Recap: Transformer [Vaswani et al. 2017]

● An encoder-decoder architecture

● 3 forms of attention
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[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762


After Transformer …





Impact of Transformers 

● A building block for a variety of LMs 

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-2, GPT-3, LaMDA

❖ Other name: causal or auto-regressive language model 

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, SciBERT.

❖ Captures bidirectional context. Wait, how do we pretrain them?

❖ Examples: Transformer, T5, Meena

❖ What’s the best way to pretrain them?
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BERT
Encoders



Bidirectional Encoder Representations from Transformers
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BERT



Bidirectional Encoder Representations from Transformers

BERT
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Like Bidirectional LSTMs (ELMo), let’s look in both directions



Bidirectional Encoder Representations from Transformers

BERT
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Let’s only use Transformer Encoders, no Decoders



Bidirectional Encoder Representations from Transformers

BERT
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It’s a language model that builds rich representations

via self-supervised learning (pre-training)



BERT (2018)

● Transformer based network

to learn representations of

language

● Improvements
○ Bi-directional LSTM -> Self-attention

○ Massive data

○ Masked-LM objective



BERT: Architecture 

● Stacks of Transformer encoders”

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT: Architecture 

● Model output dimension: 512 

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


<CLS>

x1

brown dog

x3 x4

Encoder #1

Encoder #2

Encoder #12

BERT is trained to uncover masked tokens. 
BERT

The

x2
38

brown 0.92
lazy 0.05

playful 0.03



Probing BERT Masked LM

● Making words forces BERT to use context in both directions to predict the masked 

word.
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https://huggingface.co/bert-base-uncased


Probing BERT Masked LM

● Making words forces BERT to use context in both directions to predict the masked 

word.
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https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased


BERT: Pre-training Objective (1): Masked Tokens   

● Randomly mask 15% 

of the tokens and train 

the model to predict them. 

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT: Pre-training Objective (1): Masked Tokens   

the man went to the [MASK] to buy a [MASK] of milk

● Too little masking: Too expensive to train 

● Too much masking: Underdefined (not enough context)

Galonstore

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT: Pre-training Objective (2): Sentence Ordering

● Predict sentence ordering

● 50% correct ordering, and

50% random incorrect ones

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT: Pre-training Objective (2): Sentence Ordering

● Learn relationships between sentences, predict whether Sentence B is actual 

sentence that proceeds Sentence A, or a random sentence

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT: Input Representation

● Use 30,000 WordPiece vocabulary on input. 

● Each token is sum of three embeddings 
○ Addition to transformer encoder: sentence embedding

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


Training 

● Trains model on unlabeled data over different pre-training tasks (self-supervised learning)

● Data: Wikipedia (2.5B words) + BookCorpus (800M words)

● Training Time: 1M steps (~40 epochs)

● Optimizer: AdamW, 1e-4 learning rate, linear decay 

● BERT-Base: 12-layer, 768-hidden, 12-head

● BERT-Large: 24-layer, 1024-hidden, 16-head

● Trained on 4x4 or 8x8 TPUs for 4 days

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT in Practice



Fine-tuning BERT

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

- Idea: Make pre-trained model usable in downstream tasks

- Initialized with pre-trained model parameters

- Fine-tune model parameters using labeled data from downstream tasks

“Pretrain once, finetune many times.”

https://arxiv.org/abs/1810.04805


An Example Result: SWAG

● Run each Premise + Ending 

through BERT. 

● Produce logit for each pair on 

token 0 ([CLS])

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


Effect of Model Size

● Big models help a lot 

● Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples 

● Improvements have not asymptoted

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


Why did no one think of this before?

● Concretely, why wasn’t contextual pre-training popular before 

2018 with ELMo?

● Good results on pre-training is >1,000x to 100,000 more 

expensive than supervised training.



What Happened After BERT? 

● RoBERTa (Liu et al., 2019) 
○ Drops the next sentence prediction loss! 

○ Trained on 10x data (the original BERT was actually under-trained)

○ Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD) 

○ Still one of the most popular models to date
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● ALBERT (Lan et al., 2020) 
○ Increasing model sizes by sharing model parameters across layers 

○ Less storage, much stronger performance but runs slower..

● ELECTRA (Clark et al., 2020) 
○ Two models generator and discriminator

○ It provides a more efficient training method 



What Happened After BERT? 

● Models that handle long contexts ( 512 tokens) 
○ Longformer, Big Bird, … 

● Multilingual BERT 
○ Trained single model on 104 languages from 

Wikipedia. Shared 110k WordPiece vocabulary

● BERT extended to different domains 
○ SciBERT, BioBERT, FinBERT, ClinicalBERT, …

● Making BERT smaller to use 
○ DistillBERT, TinyBERT, …



Text generation using BERT



Summary Thus Far  

● BERT and the family 

● An encoder; Transformer-based networks trained on massive piles of data. 

● Incredible for learning contextualized embeddings of words

● It’s very useful to pre-train a large unsupervised/self-supervised LM then 

fine-tune on your particular task (replace the top layer, so that it  can work)

● However, they were not designed to generate text. 


