Large Language Models

CSCI 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

[Slide credit: Chris Tanner, Jacob Devlin and many others]
Logistics Update

- The midterm:
 - will be on March 7 during class time.
 - I will not be here; Adam (TA) will run the show.
 - it will be on paper
 - It will be based on the ideas you have seen in homework and lectures. If you understand them, you’re set!
 - Scope HW 1-5 and lectures until last Thursday (Feb 23)
Recap: Self-Attention

- b_i is obtained based on the whole input sequence.
- can be parallelly computed.

Idea: replace any thing done by RNN with self-attention.

“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;
“Attention is All You Need” Vaswani et al. 2017

[adopted from Hung-yi Lee]
Recap: RNN vs Transformer
Recap: Attention Block

Given input \mathbf{x}:

$$ Q = \mathbf{W}^q \mathbf{x} $$
$$ K = \mathbf{W}^k \mathbf{x} $$
$$ V = \mathbf{W}^v \mathbf{x} $$

$$ \text{Attention}(\mathbf{x}) = \text{softmax} \left(\frac{QK^T}{\sqrt{h}} \right) V $$

[Attention Is All You Need, Vaswani et al. 2017]
Recap: Transformer [Vaswani et al. 2017]

- An encoder-decoder architecture
- 3 forms of attention

[Attention Is All You Need, Vaswani et al. 2017]
After Transformer ...
<table>
<thead>
<tr>
<th>Module Level</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Transformer [156], Gaussian Transformer [42]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictive Attention Transformer [143], Reformer [51], Lasyformer [159]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMTL [98]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Attention [164], Hard-Coded Gaussian Attention [165], Synthesizer [131]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. [73], Deepspe and Nacenshpu [27], Talking-head Attention [119]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaborative MHA [7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-head Attention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive Attention Span [120], Multi-Scale Transformer [64]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Routing [40, 74]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>BERT [28], Wang et al. [198], FLOADER [85]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative</td>
<td>Shaw et al. [116], Music Transformer [56], T5 [104], Transformer-XL [74]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeBERTa [59]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Rep.</td>
<td>TUF [43], Referencer [124]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implicit Rep.</td>
<td>Complex Embedding [140], R-Transformer [141], CPR [28]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placment</td>
<td>post-LN [28, 83, 157], pre-LN [6, 17, 67, 136, 141]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitutes</td>
<td>AdaNorm [153], scaled L_2 normalization [93], PowerNorm [121]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LayerNorm</td>
<td>ReZero-Transformer [1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activa. Func.</td>
<td>Swish [106], GELU [14, 28], GLU [18]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPN</td>
<td>Enlarge Capacity</td>
<td>Product-key Memory [69], Gohard [71], Switch Transformer [36], Expert Prototyping [155], Hash Layer [119]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropping</td>
<td>All-Attention layer [137], Yang et al. [197]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arch. Level</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X-formers</td>
<td>Lite Transformer [48], Funnel Transformer [23], DeLigt [12]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reformer [11], Predictive Attention Transformer [48], Transparent Attention [5]</td>
<td>Feedback Transformer [34]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td>UT [26], Conditional Computation Transformer [7], DeoBERT [150], PABEE [171], Li et al. [179], Jia et al. [197]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversability</td>
<td>Transformer-XL [24], Compressive Transformer [109], Memformer [147]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoshida et al. [169], ERNIE-Doc [38]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hierarchy</td>
<td>Micali et al. [92], HIBERT [166], Liu and Lapatka [86], Hi-Transformer [145], TENER [154], TNT [48]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt. Arch.</td>
<td>ET [12], Macron Transformer [89], Sandwich Transformer [99], MAN [35], DARTSformer [167]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-Train</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder</td>
<td>BERT [28], RoBERTa [87], BigBird [163]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decoder</td>
<td>GPT [101], GPT-X [102], GPT-3 [12]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc. Dec.</td>
<td>BART [72], T5 [104], Switch Transformer [36]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>App.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NLP</td>
<td>BERT [28], ELMo [121], Transformer-XL [24], Compressive Transformer [109], TENER [154]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>Image Transformer [94], DETR [113], ViT [133], Swin Transformer [88], ViViT [3]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>Speech Transformer [11], Streaming Transformer [15], Reformer TTS [97], Music Transformer [56]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multimodal</td>
<td>VisualBERT [12], VLEHR [125], VideoBERT [128], M6 [81], Chimera [46], DALL-E [107], CogView [129]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impact of Transformers

- A building block for a variety of LMs

 - **Encoders**
 - Examples: BERT, RoBERTa, SciBERT.
 - Captures bidirectional context. Wait, how do we pretrain them?

 - **Decoders**
 - Examples: GPT-2, GPT-3, LaMDA
 - Other name: causal or auto-regressive language model
 - Nice to generate from; can’t condition on future words

 - **Encoder-Decoders**
 - Examples: Transformer, T5, Meena
 - What’s the best way to pretrain them?
BERT Encoders
BERT

Bidirectional Encoder Representations from Transformers
BERT

Bidirectional Encoder Representations from Transformers

Like Bidirectional LSTMs (ELMo), let’s look in both directions.
BERT

Bidirectional Encoder Representations from Transformers

Let’s only use Transformer Encoders, no Decoders
BERT

Bidirectional Encoder Representations from Transformers

It’s a language model that builds rich representations via self-supervised learning (pre-training).
BERT (2018)

- Transformer based network to learn representations of language

- Improvements
 - Bi-directional LSTM -> Self-attention
 - Massive data
 - Masked-LM objective

Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.

BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement).

There are two existing strategies for applying pre-trained language representations to downstream tasks: feature-based and fine-tuning. The feature-based approach, such as ELMo (Peters et al., 2018a), uses task-specific architectures that include the pre-trained representations as additional features. The fine-tuning approach, such as the Generative Pre-trained Transformer (OpenAI GPT) (Radford et al., 2018), introduces minimal task-specific parameters, and is trained on the downstream tasks by simply fine-tuning all pre-trained parameters. The two approaches share the same objective function during pre-training, where they use unidirectional language models to learn general language representations.

We argue that current techniques restrict the power of the pre-trained representations, especially for the fine-tuning approaches. The major limitation is that standard language models are unidirectional, and this limits the choice of architectures that can be used during pre-training. For example, in OpenAI GPT, the authors use a left-to-right sampling strategy.
BERT: Architecture

- Stacks of Transformer encoders

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]
BERT: Architecture

- Model output dimension: 512

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]
BERT is trained to uncover masked tokens.

brown 0.92
lazy 0.05
playful 0.03
Probing BERT Masked LM

- Making words forces BERT to use context in both directions to predict the masked word.

Paris is the [MASK] of France.

![Computed Results]

https://huggingface.co/bert-base-uncased
Probing BERT Masked LM

- Making words forces BERT to use context in both directions to predict the masked word.

Today is Tuesday, so tomorrow is [MASK].

Compute

Computation time on cpu: cached

<table>
<thead>
<tr>
<th>Word</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>friday</td>
<td>0.274</td>
</tr>
<tr>
<td>wednesday</td>
<td>0.211</td>
</tr>
<tr>
<td>thursday</td>
<td>0.139</td>
</tr>
<tr>
<td>monday</td>
<td>0.108</td>
</tr>
<tr>
<td>sunday</td>
<td>0.077</td>
</tr>
</tbody>
</table>

https://huggingface.co/bert-base-uncased
BERT: Pre-training Objective (1): Masked Tokens

- Randomly mask 15% of the tokens and train the model to predict them.

Use the output of the masked word’s position to predict the masked word.

Possible classes:
- All English words
- Aardvark
- Improvisation
- Zzyzyva

Input

[CLS] Let’s stick to [MASK] in this skit

FFNN + Softmax
BERT: Pre-training Objective (1): Masked Tokens

the man went to the [MASK] to buy a [MASK] of milk

- Too little masking: Too expensive to train
- Too much masking: Underdefined (not enough context)
BERT: Pre-training Objective (2): Sentence Ordering

- Predict sentence ordering
 - Predict likelihood that sentence B belongs after sentence A
 - 1% IsNext
 - 99% NotNext

- 50% correct ordering, and 50% random incorrect ones

![Diagram of sentence ordering](image)

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]
BERT: Pre-training Objective (2): Sentence Ordering

- Learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]
BERT: Input Representation

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings
 - Addition to transformer encoder: sentence embedding

<table>
<thead>
<tr>
<th>Input</th>
<th>[CLS]</th>
<th>my</th>
<th>dog</th>
<th>is</th>
<th>cute</th>
<th>[SEP]</th>
<th>he</th>
<th>likes</th>
<th>play</th>
<th>#/ing</th>
<th>[SEP]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Token Embeddings</th>
<th>(E_{[CLS]})</th>
<th>(E_{my})</th>
<th>(E_{dog})</th>
<th>(E_{is})</th>
<th>(E_{cute})</th>
<th>(E_{[SEP]})</th>
<th>(E_{he})</th>
<th>(E_{likes})</th>
<th>(E_{play})</th>
<th>(E_{#/ing})</th>
<th>(E_{[SEP]})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment Embeddings</th>
<th>(E_A)</th>
<th>(E_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position Embeddings</th>
<th>(E_0)</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
<th>(E_5)</th>
<th>(E_6)</th>
<th>(E_7)</th>
<th>(E_8)</th>
<th>(E_9)</th>
<th>(E_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al., 2018]
Training

● Trains model on unlabeled data over different pre-training tasks (self-supervised learning)
● **Data:** Wikipedia (2.5B words) + BookCorpus (800M words)
● **Training Time:** 1M steps (~40 epochs)
● **Optimizer:** AdamW, $1e^{-4}$ learning rate, linear decay
● **BERT-Base:** 12-layer, 768-hidden, 12-head
● **BERT-Large:** 24-layer, 1024-hidden, 16-head
● Trained on 4x4 or 8x8 TPUs for 4 days

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]
BERT in Practice

TensorFlow: https://github.com/google-research/bert

PyTorch: https://github.com/huggingface/transformers
Fine-tuning BERT

“Ideation once, finetune many times.”

- **Idea:** Make pre-trained model **usable** in **downstream tasks**
- **Initialized** with pre-trained model parameters
- **Fine-tune** model parameters using labeled data from downstream tasks
An Example Result: SWAG

A girl is going across a set of monkey bars. She
(i) jumps up across the monkey bars.
(ii) struggles onto the bars to grab her head.
(iii) gets to the end and stands on a wooden plank.
(iv) jumps up and does a back flip.

- Run each Premise + Ending through BERT.
- Produce logit for each pair on token 0 ([CLS])
Effect of Model Size

- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Improvements have not *asymptoted*

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]
Why did no one think of this before?

- Concretely, why wasn’t contextual pre-training popular before 2018 with ELMo?

- Good results on pre-training is $>1,000 \times$ to $100,000$ more expensive than supervised training.
What Happened After BERT?

- RoBERTa (Liu et al., 2019)
 - Drops the next sentence prediction loss!
 - Trained on 10x data (the original BERT was actually under-trained)
 - Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)
 - Still one of the most popular models to date

<table>
<thead>
<tr>
<th>Model</th>
<th>data</th>
<th>bsz</th>
<th>steps</th>
<th>SQuAD (v1.1/2.0)</th>
<th>MNLI-m</th>
<th>SST-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoBERTa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with BOOKS + WIKI</td>
<td>16GB</td>
<td>8K</td>
<td>100K</td>
<td>93.6/87.3</td>
<td>89.0</td>
<td>95.3</td>
</tr>
<tr>
<td>+ additional data (§3.2)</td>
<td>160GB</td>
<td>8K</td>
<td>100K</td>
<td>94.0/87.7</td>
<td>89.3</td>
<td>95.6</td>
</tr>
<tr>
<td>+ pretrain longer</td>
<td>160GB</td>
<td>8K</td>
<td>300K</td>
<td>94.4/88.7</td>
<td>90.0</td>
<td>96.1</td>
</tr>
<tr>
<td>+ pretrain even longer</td>
<td>160GB</td>
<td>8K</td>
<td>500K</td>
<td>94.6/89.4</td>
<td>90.2</td>
<td>96.4</td>
</tr>
<tr>
<td>BERT\textsubscript{LARGE}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with BOOKS + WIKI</td>
<td>13GB</td>
<td>256</td>
<td>1M</td>
<td>90.9/81.8</td>
<td>86.6</td>
<td>93.7</td>
</tr>
</tbody>
</table>
What Happened After BERT?

- **RoBERTa** (Liu et al., 2019)
 - Drops the next sentence prediction loss!
 - Trained on 10x data (the original BERT was actually under-trained)
 - Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)
 - Still one of the most popular models to date

- **ALBERT** (Lan et al., 2020)
 - Increasing model sizes by sharing model parameters across layers
 - Less storage, much stronger performance but runs slower.

- **ELECTRA** (Clark et al., 2020)
 - Two models generator and discriminator
 - It provides a more efficient training method
What Happened After BERT?

- Models that handle long contexts (512 tokens)
 - Longformer, Big Bird, ...

- Multilingual BERT
 - Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary

- BERT extended to different domains
 - SciBERT, BioBERT, FinBERT, ClinicalBERT, ...

- Making BERT smaller to use
 - DistillBERT, TinyBERT, ...
Text generation using BERT

BERT has a Mouth, and It Must Speak:
BERT as a Markov Random Field Language Model

Alex Wang
New York University
alexwang@nyu.edu

Kyunghyun Cho
New York University
Facebook AI Research
CIFAR Azrieli Global Scholar
kyunghyun.cho@nyu.edu

Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Marjan Ghazvininejad*
Omer Levy*
Yinhan Liu*
Luke Zettlemoyer

Facebook AI Research
Seattle, WA

Exposing the Implicit Energy Networks behind Masked Language Models via Metropolis--Hastings

Kartik Goyal, Chris Dyer, Taylor Berg-Kirkpatrick

Leveraging Pre-trained Checkpoints for Sequence Generation Tasks

Sascha Rothe, Shashi Narayan, Aliaksei Severyn

<table>
<thead>
<tr>
<th>src</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Abzug der franzischen Kampftruppen wurde am 20. November abgeschlossen.</td>
<td>The departure of the French combat troops was completed on 20 November.</td>
</tr>
<tr>
<td>completed</td>
<td>completed on 20 November.</td>
</tr>
<tr>
<td>completed</td>
<td>completed on November 20th.</td>
</tr>
</tbody>
</table>

t = 0 The departure of the French combat troops was completed on 20 November.

t = 1 The departure of the French combat troops was completed on 20 November.

t = 2 The withdrawal of French combat troops was completed on November 20th.
Summary Thus Far

- BERT and the family
- An encoder; Transformer-based networks trained on massive piles of data.
- Incredible for learning contextualized embeddings of words
- It’s very useful to pre-train a large unsupervised/self-supervised LM then fine-tune on your particular task (replace the top layer, so that it can work)
- However, they were not designed to generate text.