# Large Language Models

#### CSCI 601 471/671 NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/



[Slide credit: Chris Tanner, Jacob Devlin and many others ]

## Logistics Update

- The midterm:
  - will be on March 7 during class time.
  - I will not be here; Adam (TA) will run the show.
  - o it will be on paper
  - It will be based on the ideas you have seen in homework and lectures. If you understand them, you're set!
  - Scope HW 1-5 and lectures until last Thursday (Feb 23)

#### Recap: Self-Attention

- b<sup>i</sup> is obtained based on the whole input sequence.
- can be parallelly computed.



#### Idea: replace any thing done by RNN with self-attention.

"Neural machine translation by jointly learning to align and translate" Bahdanau etl. 2014; "Attention is All You Need" Vaswani et al. 2017

[adopted from Hung-yi Lee]

#### Recap: RNN vs Transformer





Recap: Attention Block

Given input **x**:

 $Q = \mathbf{W}^{q} \mathbf{x}$  $K = \mathbf{W}^{k} \mathbf{x}$  $V = \mathbf{W}^{v} \mathbf{x}$ Attention( $\mathbf{x}$ ) = softmax  $\left(\frac{QK^{T}}{\sqrt{h}}\right) V$ 



[Attention Is All You Need, Vaswani et al. 2017]

#### Recap: Transformer [Vaswani et al. 2017]

- An encoder-decoder architecture



Output Probabilities

Softmax

Linear

Add & Norm

Feed Forward

## After Transformer ...



## Impact of Transformers

• A building block for a variety of LMs



Encoders

Encoder-

Decoders

- Examples: BERT, RoBERTa, SciBERT.
- Captures bidirectional context. Wait, how do we pretrain them?



- Examples: GPT-2, GPT-3, LaMDA
- Other name: causal or auto-regressive language model
- Nice to generate from; can't condition on future words
- Examples: Transformer, T<sub>5</sub>, Meena
- What's the best way to pretrain them?



# BERT



Encoders





#### Like Bidirectional LSTMs (ELMo), let's look in both directions



#### Let's only use Transformer Encoders, no Decoders



It's a language model that builds rich representations via self-supervised learning (pre-training)



#### BERT (2018)

 Transformer based network to learn representations of language

#### Improvements

- o Bi-directional LSTM -> Self-attention
- o Massive data
- o Masked-LM objective

#### BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova

Google AI Language

{jacobdevlin,mingweichang,kentonl,kristout}@google.com

#### Abstract

We introduce a new language representation model called **BERT**, which stands for **B**idirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications.

BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute imThere are two existing strategies for applying pre-trained language representations to downstream tasks: *feature-based* and *fine-tuning*. The feature-based approach, such as ELMo (Peters et al., 2018a), uses task-specific architectures that include the pre-trained representations as additional features. The fine-tuning approach, such as the Generative Pre-trained Transformer (OpenAI GPT) (Radford et al., 2018), introduces minimal task-specific parameters, and is trained on the downstream tasks by simply fine-tuning *all* pretrained parameters. The two approaches share the same objective function during pre-training, where they use unidirectional language models to learn general language representations.

We argue that current techniques restrict the power of the pre-trained representations, especially for the fine-tuning approaches. The major limitation is that standard language models are unidirectional, and this limits the choice of architectures that can be used during pre-training. For example, in OpenAI GPT, the authors use a left-to-

#### **BERT:** Architecture

Stacks of Transformer encoders" 







BERTLARGE

#### **BERT:** Architecture

• Model output dimension: 512





[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]



BERT is trained to uncover masked tokens.

#### Probing BERT Masked LM

• Making words forces BERT to use context in both directions to predict the masked word.

| Paris is the [MASK] of France.  |            |
|---------------------------------|------------|
| Compute                         |            |
| Computation time on cpu: cached |            |
| capital                         | 0.997      |
| heart                           | 0.001      |
| center                          | 0.000      |
| centre                          | 0.000      |
| city                            | 0.000      |
| <>> JSON Output                 | I Maximize |

#### Probing BERT Masked LM

• Making words forces BERT to use context in both directions to predict the masked word.

Today is Tuesday, so tomorrow is [MASK]. Compute Computation time on cpu: cached 0.274 friday 0.211 wednesday 0.139 thursday 0.108 monday 0.077 sunday </>
</>
> JSON Output Maximize

https://huggingface.co/bert-base-uncased

#### BERT: Pre-training Objective (1): Masked Tokens

 Randomly mask 15% of the tokens and train the model to predict them.



[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

#### BERT: Pre-training Objective (1): Masked Tokens



- Too little masking: Too expensive to train
- Too much masking: Underdefined (not enough context)

#### BERT: Pre-training Objective (2): Sentence Ordering

• Predict sentence ordering

• 50% correct ordering, and 50% random incorrect ones



[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

#### BERT: Pre-training Objective (2): Sentence Ordering

• Learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

#### **BERT: Input Representation**

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings
  - Addition to transformer encoder: sentence embedding





#### [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

#### Training

- Trains model on unlabeled data over different pre-training tasks (self-supervised learning)
- Data: Wikipedia (2.5B words) + BookCorpus (800M words)
- Training Time: 1M steps (~40 epochs)
- **Optimizer:** AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on 4x4 or 8x8 TPUs for 4 days

#### **BERT** in Practice

#### TensorFlow: https://github.com/google-research/bert

| google-research / bert                                                           | Owner         871         ★ Star         19.6k         % Fork         5.2k |  |  |  |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| ♦ Code ① Issues 498 ⑦ Pull requests 59 ◎ Actions Ⅲ Projects 0 Ⅲ Wiki             | Security     Insights                                                      |  |  |  |  |
| TensorFlow code and pre-trained models for BERT https://arxiv.org/abs/1810.04805 |                                                                            |  |  |  |  |
| nlp google natural-language-processing natural-language-understanding tensorflow |                                                                            |  |  |  |  |

#### **PyTorch**: <u>https://github.com/huggingface/transformers</u>



## Fine-tuning BERT

- Idea: Make pre-trained model usable in downstream tasks
- Initialized with pre-trained model parameters
- Fine-tune model parameters using labeled data from downstream tasks



[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

| An Example Result: SWAG                                                                                                                       | (i<br>(i   | <ul><li>(i) jumps up across the monkey bars.</li><li>(ii) struggles onto the bars to grab her head.</li><li>(iii) gets to the end and stands on a wooden plank.</li><li>(iv) jumps up and does a back flip.</li></ul> |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rank Model                                                                                                                                    | Test Score |                                                                                                                                                                                                                       |  |  |
| <b>BERT (Bidirectional Encoder Representations from Transfo</b><br>Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova<br>10/11/2018 | 86.28%     | <ul> <li>Run each Premise + Ending</li> </ul>                                                                                                                                                                         |  |  |
| 2 OpenAl Transformer Language Model<br>Original work by Alec Radford, Karthik Narasimhan, Tim Salimans,<br>10/11/2018                         | 77.97%     | <ul> <li>through BERT.</li> <li>Produce logit for each pair on</li> </ul>                                                                                                                                             |  |  |
| <b>ESIM with ELMo</b><br>Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin<br>08/30/2018                                     | 59.06%     | token o ([CLS])                                                                                                                                                                                                       |  |  |
| 4 ESIM with Glove<br>Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin<br>08/29/2018                                         | 52.45%     |                                                                                                                                                                                                                       |  |  |

A girl is going across a set of monkey bars. She

#### [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

## Effect of Model Size





Transformer Params (Millions)

- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Improvements have not asymptoted

## Why did no one think of this before?

• Concretely, why wasn't contextual pre-training popular before 2018 with ELMo?

• Good results on pre-training is >1,000x to 100,000 more expensive than supervised training.

### What Happened After BERT?

- RoBERTa (Liu et al., 2019)
  - Drops the next sentence prediction loss!
  - Trained on 10x data (the original BERT was actually under-trained)
  - Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)
  - o Still one of the most popular models to date

| Model                    | data  | bsz | steps      | <b>SQuAD</b> (v1.1/2.0) | MNLI-m | SST-2 |
|--------------------------|-------|-----|------------|-------------------------|--------|-------|
| RoBERTa                  |       |     |            |                         |        |       |
| with BOOKS + WIKI        | 16GB  | 8K  | 100K       | 93.6/87.3               | 89.0   | 95.3  |
| + additional data (§3.2) | 160GB | 8K  | 100K       | 94.0/87.7               | 89.3   | 95.6  |
| + pretrain longer        | 160GB | 8K  | 300K       | 94.4/88.7               | 90.0   | 96.1  |
| + pretrain even longer   | 160GB | 8K  | 500K       | 94.6/89.4               | 90.2   | 96.4  |
| BERTLARGE                |       |     |            |                         |        |       |
| with BOOKS + WIKI        | 13GB  | 256 | 1 <b>M</b> | 90.9/81.8               | 86.6   | 93.7  |

## What Happened After BERT?

- RoBERTa (Liu et al., 2019)
  - Drops the next sentence prediction loss!
  - Trained on 10x data (the original BERT was actually under-trained)
  - o Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)
  - o Still one of the most popular models to date
- ALBERT (Lan et al., 2020)
  - o Increasing model sizes by sharing model parameters across layers
  - Less storage, much stronger performance but runs slower..
- ELECTRA (Clark et al., 2020)
  - o Two models generator and discriminator
  - It provides a more efficient training method



## What Happened After BERT?

- Models that handle long contexts ( 512 tokens)
  - Longformer, Big Bird, ...
- Multilingual BERT
  - Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary
- BERT extended to different domains
   SciBERT, BioBERT, FinBERT, ClinicalBERT, ...
- Making BERT smaller to use
  - DistillBERT, TinyBERT, ...



(d) random

(c) dilated



#### Text generation using BERT

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

Alex Wang New York University alexwang@nyu.edu Kyunghyun Cho New York University Facebook AI Research CIFAR Azrieli Global Scholar kyunghyun.cho@nyu.edu

#### Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Marjan Ghazvininejad\*

Luke Zettlemoyer

Facebook AI Research Seattle, WA

**Omer Levy**\*

#### Exposing the Implicit Energy Networks behind Masked Language Models via Metropolis--Hastings

Kartik Goyal, Chris Dyer, Taylor Berg-Kirkpatrick

## Leveraging Pre-trained Checkpoints for Sequence Generation Tasks

Sascha Rothe, Shashi Narayan, Aliaksei Severyn

src Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen .

Yinhan Liu\*

- t = 0 The departure of the French combat completed completed on 20 November .
- t = 1 The departure of French combat troops was completed on 20 November.
- t=2 The withdrawal of French combat troops was completed on November 20th .

## Summary Thus Far

- BERT and the family
- An encoder; Transformer-based networks trained on massive piles of data.
- Incredible for learning **contextualized** embeddings of words
- It's very useful to pre-train a large unsupervised/self-supervised LM then fine-tune on your particular task (replace the top layer, so that it can work)
- However, they were not designed to generate text.