Logistics update

HW?7 is due this week Thursday.
It is also the last homework ... yay!
e Q4 isnow an extra credit.

® Project proposals are due this week.
e Please continue to discuss the project ideas with each other and the course staff.

e Common question: What is the expected amount of effort for the project?
o Imagine how much effort you put toward finishing the weekly homework assignments. Now you'd
put that toward the final project.
o final project = ~[4-6] x homework assignment



On Project Proposals

e Make sure that you follow the expected protocol for the proposal.

e The project proposal is a 2 page description of what you intend to do
o motivation,

hypothesis,

experiments,

datasets,

methods,

expected outcome,

etc.

O O 0O 0O 0O O

e If you're missing these details, we will not receive the “proposal” credits and we will
ask you to redo it.



On Project Proposals: Examples of Wordings

"we will first collect an extensive dataset from various sources such as Google News
articles, Reddit discussions, and Twitter conversations.”

What data? What annotations?
"the model will be trained to produce a sentiment indicator that ranges from -10 to 10...”

What model?
Where did we get these labels?

You want to be as clear and as specific as possible.



Scaling LMs ~/
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Scaling
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Scaling

Photocredit:PaLM, Chowdheryet.al, 2022
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Large language models exhibit emergent abilities

e With scaling models
their ICL perf consistency

Improves.

Accuracy (%)
=N W e O
o o © & & o

70

60
S 50
= 40

Q
<

£ 30
220
10

—e— LaMDA —=— GPT-3

(A) Mod. arithmetic

1018 1020 1022 1024

(E) TruthfulQA

10  10** 10*

(B) IPA transliterate

0
10
0+~ SR

10'8 10%° 10?2 10%*

(F) Grounded mappings

70
60

= 50
% 40
‘E,-; 30
£ 20
10

0

10 10** 10*

—&— Gopher

—#— Chinchilla —@— PaLM - - - Random

(C) Word unscramble

50

§ 40
§ 30

£ 20
S

B
& 10 ”°
O__ _____

1018 1020 1022 1024

(G) Multi-task NLU
70

60
& 50
= 40
&
£ 30
220
10
0

10%° 10> 10**

Model scale (training FLOPs)

(D) Figure of speech

50

1018 1020 1022 1024

(H) Word in context
70

60
& 50 - - -

= 40
2

£ 30
220
10

0

1020 1022 1024

Emergence —qualitative changes in behavior with some scaling parameter




259

What is “Scaling”?

e ‘“scaling means larger model size”
O But model parameters may be under-utilized.

® “scaling means more compute”
O But computation may be unnecessarily wasted.

e "scaling means more data”
o But more data might not necessarily contain more information (e.g., duplications)

e Scale means all the above: effective compression of information
O Requires model capacity
O Requires compute
o Requires large, rich data



Scaling Laws

e Hypothesis: there are fundamental principles that govern effective scaling

e Importance: understanding these “laws” would allow us to find optimal models for
a given data/compute budget.

e Think of Newton’s laws
o Provide the basis for understanding and analyzing the motion of objects in the physical world
o Canbe used to calculate the trajectory of a rocket, the speed of a car, or the motion of a planet.



Scaling - Optimal Model Size

® Smaller models don’t have enough capacity
to utilize the extra compute. They plateau

early.

® Larger models are initially slower to train,
but with more compute they reach lower

losses.

® Given acompute budget, whatisthe
optimal model size to use?

Validation Loss
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[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

Parameters


https://github.com/allenai/acl2022-zerofewshot-tutorial/

Scaling - Optimal Model Size

e Theidea of "optimal model size for given
compute” was introduced by Kaplan et. al.

e Inideal world, we are given lots of compute

to train many models to find the optimality.

® Alas not feasible when you have budget to
train a single model.

e If we have the equations (“laws") describing

the behavior, we can compute it analytically.

Validation Loss
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Parameters


https://github.com/allenai/acl2022-zerofewshot-tutorial/

Scaling Laws of Kaplanet. al,, 2020

e Also, fit a power-law function to predict
the “compute efficient” frontier:

I, C—0.048

Validation Loss

e Useitto predict the optimal model size
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[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]
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https://github.com/allenai/acl2022-zerofewshot-tutorial/

N: number of model parameters
C: compute
D: dataset size

Scaling Laws: Kaplan et al.

e Optimal model size and optimal number of tokens, for a given compute budget

C0.73 C0.27
Kaplanet.al.2020 | N_, Dooe &

N_,. exponent >> D_ . exponent

e Takeaway: grow the model size faster than growing the number of tokens.
o Example: Given 10x compute, increase N by 5.5x, and D by 1.8x

e GPT3 (and many other followed this recipe) training a 175B model on 300B tokens

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]



https://github.com/allenai/acl2022-zerofewshot-tutorial/

N: number of model parameters
C: compute
D: dataset size

Scaling Laws: Hoffmann et al.

e Optimal model size and optimal number of tokens, for a given compute budget

C0.73 C0.27
Kaplanet.al.2020 | N_, Dooe &

C0.50 C0.50
Hoffmann et. al,, 2021 N, & Dope &

N,,. exponent = D__. exponent

e Compute and tokens should increase at the same rate.
o Example: Given 10x compute, grow N by 3.2x and D by 3.2x

e Hoffmann et. al., followed this recipe:

o Trained a 70B model on 1.4T tokens (Chinchilla) outperforming their previous 280B model trained on 300B tokens
(Gopher)

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]



https://github.com/allenai/acl2022-zerofewshot-tutorial/

Scaling - Kaplan et. al., 2020 vs. Hoffmann et. al.,, 2022

e The main difference isthe learning rate schedule!!!
e Kaplanet. al.: all experiments same LR schedule

e Hoffmann et. al. experiment while changing differentLR schedule
o Their LR reaches zeroat the end of the training

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]



https://github.com/allenai/acl2022-zerofewshot-tutorial/

Why didn’t we
scale earlier??



ML Theory Told Us Otherwise

® Learning theory made us allergic to over-parametrized models.

under-fitting over-fitting
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[Reconciling modern machine learning practice and the bias-variance trade-off, Belkin et al. 2019]
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https://arxiv.org/abs/1812.11118

There Were Empirical Evidence

e Evenin mid-go’s there were evidence supporting the benefit of larger models
e Although they were ignored ....
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" .... larger networks may generalize well and better generalization is possible from larger networks if
they can be trained more successfully than the smaller networks” -- Lawrence, Giles, and Tsoi in 1997

[Lawrence, Giles, and Tsoi 1997]



There Were Empirical Evidence

e Evenin mid-go’s there were evidence supporting the benefit of larger models
e Although they were ignored .... g

" .... "Nets of all sizes overfit some
problems. But generalization is surprisingly
insensitive to excess capacity if the net is
trained with backprop.”

10 Hidden Units 100 Hidden Units

Figure 3: MLP approximation using backpropagation (BP) training of data from Equation 1 as the
number of hidden units is increased. No significant overfitting can be seen.

07 T T T T T 07

-- Caruana, Lawrence, and Giles (2000) X
Eu; 03 F E (H:

Figure 4: Test Normalized Mean Squared Error for MLPs trained with BP (left) and CG (right).
Results are shown with both box-whiskers plots and the mean plus and minus one standard deviation.

[Caruana, Lawrence, and Giles 2000]



Retrieval-
Augmented LMs



What is Missing from LMs?

e LMsautomatically acquire knowledge from the web, but...
. alot of itis noisy or incorrect: misinformation, rumors, opinions.
e ... we cannot trace the model's knowledge back to an attributable source.

e We can edit individual facts inside a Transformer's memory, but...
... it doesn't work reliably yet.
... current approaches break down after multiple edits.

We can store knowledge inside feedforward layers, but...
e ... current memory capacity is too small, and scaling up is expensive!

[Slides: Kelvin Guu]



WhatisaMemory-Augmented Model?

A memory could be:

group of dolphins network .
= ® Recordin adatabase
l e I/mages of the world
Memory ®
retriever
P N This model can have desirable attributes:
”‘l* " A group of dolphins
e Wﬂ r_‘,c S | e Separates world kn_owledge from LM parameters
W ol or a "pod"... Less opaque; more interpretable
< 17 /
B Editable knowledge
WIKIPEDIA Attribution

The Free Encyclopedia o .
More efficient scaling

[Slides: Kelvin Guu]



What are the Key Design Questions?

e What are your memories?
o Documents, database records, training examples, etc.

e How to retrieve memories?
o  Use an off-the-shelf search engine (e.g. Google, StackOverflow).
o How to train your own memory retriever.

e How to use retrieved memories?
o  "Text fusion", "label smearing".
o  Common failure modes:
m  Underutilization: model ignores retrieved memories.
m  Overreliance: model depends too much on memories!

[Slides: Kelvin Guu]



Anatomy of a Neural Retriever

1.
2.

Score the input against each key.

Return the value for the hlghest scoring key.

input

[Slides: Kelvin Guu]

key / value \
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key / value \
key / value \




Anatomy of a Neural Retriever

1. Score the input against each key.

2. Return the value for the hlghest scoring key.

input

Example:

e Input ="An essay on Eiffel Tower”

e Key=<doctitle>
e Value =<doc content>

[Slides: Kelvin Guu]
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Anatomy of a Neural Retriever

1. Score the input against each key.
2. Return the value for the hlghest scoring key.

key / value \

key / value \
input

key / value \

key / value \

Aretrieverisjustafunction:  f(input, key) — score

[Slides: Kelvin Guu]



Anatomy of a Neural Retriever: Simplified

1. Score the input against each memory.
2. Return the highest scoring memory.

memory

—— memory

input

— memory

A retrieverisjust afunction: f(input, memory) — score

[Slides: Kelvin Guu]



Retrieval Scoring Function f(input, memory) — score

score

T

L regression }

BERT

!

memory

Advantages:

e UsingapowerfulTransformer model to compare
theinputagainsteach memory.

e Differentiable -- canoptimize with gradient
descent.

Disadvantages:

e Foreachnewinput,youhavetodo this
comparisonagainst EVERY memory.

e Tooslowifyouhave millions of memories.

[Slides: Kelvin Guu]



Retrieval Scoring Function f(input, memory) — score

T

4 dot J Advantages:

. product

/\

[ mputvector [ mem vector ]

I

e Canprecomputeallmemoryvectors.

e Onlyhavetodothisonce, NOTfor every
input.

J

e Computingasimpledotproductis fast.

e Differentiable -- can optimize with
BERT BERT .
2 O gradientdescent.

\

Disadvantages:

input memory

e Dotproductisnotveryexpressive.

[Slides: Kelvin Guu]



End-to-end Training

® There are various ideas in the literature for how to train these models efficiently and in
an end-to-end fashion.

Frozen/Trainable Trainable
Test Context ~ \\
] = Jobs cofounded
Jobs is the
[ CEO of _ j—’ I Apple in his - @)
Retriever parents' garage | White-box LM

/ #pafam. S




Retrieval-Augmented Language Models

RAG (Lewis, et al. 2020)
REALM (Guu et al. 2020)
SPALM (Yogatama et al. 2021)
RETRO (Borgeaud, et al. 2022)
RePlug (Shi et al. 2022)
RA-CM3 (Yasunaga et al. 2022)

BlenderBot 2.0 (Komeili et al. 2021)



Highlighting Some Results
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Maintakeaways

e How do we enable LMs to utilize external knowledge?
e Retrieval-augmented language models

e Aretrieveris a function, f(input, memory) — score

e What we did not discuss:

Tracing decisions to the source knowledge
How to modify the knowledge

Conflicting knowledge



