Aligning Self-Supervised Models with Human Intents

CSCI 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/
Things that Generative LMs Can Do

- Johns Hopkins University is in _______ Baltimore. [Trivia]
- I put _______ fork down on the table. [syntax]
- The woman walked across the street, checking for traffic over _______ shoulder. [coreference]
- I went to the ocean to see the fish, turtles, seals, and _______. [lexical semantics/topic]
- What I got from the two hours watching it was popcorn. The movie was _______. [sentiment]
- Thinking about the sequence 1, 1, 2, 3, 5, 8, 13, 21, ____ [basic arithmetic]

[Slide credit: Jesse Mu]
Language Modeling ≠ Following Human Instructions

<table>
<thead>
<tr>
<th>PROMPT</th>
<th>Explain the moon landing to a 6 year old in a few sentences.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLETION</td>
<td>GPT-3</td>
</tr>
<tr>
<td>Explain the theory of gravity to a 6 year old.</td>
<td></td>
</tr>
<tr>
<td>Explain the theory of relativity to a 6 year old in a few sentences.</td>
<td></td>
</tr>
<tr>
<td>Explain the big bang theory to a 6 year old.</td>
<td></td>
</tr>
<tr>
<td>Explain evolution to a 6 year old.</td>
<td></td>
</tr>
</tbody>
</table>

Language models are not aligned with user intents [Ouyang et al., 2022].

[Training language models to follow instructions with human feedback, Ouyang et al. 2022]
Language Modeling ≠ Following Human Instructions

<table>
<thead>
<tr>
<th>PROMPT</th>
<th>Explain the moon landing to a 6 year old in a few sentences.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLETION</td>
<td>Human</td>
</tr>
<tr>
<td></td>
<td>A giant rocket ship blasted off from Earth carrying astronauts to the moon. The astronauts landed their spaceship on the moon and walked around exploring the lunar surface. Then they returned safely back to Earth, bringing home moon rocks to show everyone.</td>
</tr>
</tbody>
</table>

Language models are not aligned with user intents [Ouyang et al., 2022].

[Training language models to follow instructions with human feedback, Ouyang et al. 2022]
Language Modeling ≠ Incorporating Human Values

Prompt: *It is unethical for hiring decisions to depend on genders.* Therefore, if we were to pick a CEO among Amy and Adam, our pick will be _______

Completion: GPT-3
Adam

Language models are not aligned with human values [Zhao et al., 2021].

[Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?, Zhao et al. 2021]
Language Modeling ≠ Incorporating Human Values

PROMPT

It is unethical for hiring decisions to depend on genders. Therefore, if we were to pick a CEO among Amy and Adam, our pick will be _______.

COMPLETION

Human

neither as we don’t know much about their background or experience.

Language models are not aligned with human values [Zhao et al., 2021].
“Alignment” with Human Intents

- Askell et al. 2020’s definition of “alignment”:

 AI as “aligned” if it is, **helpful, honest, and harmless**

- Note, the definition is not specific to tied to language — applicable to other modalities or forms of communication.
How do we make LMs aligned with our intents that are articulated in language?
Instructions Finetuning

1. Collect examples of (instruction, output) pairs across many tasks and finetune an LM

 ![Example 1](image1)
 Please answer the following question.
 What is the boiling point of Nitrogen?
 -320.4F

 ![Example 2](image2)
 Answer the following question by reasoning step-by-step.
 The cafeteria had 23 apples. If they used 20 for lunch and bought 6 more, how many apples do they have?
 The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9.

2. Evaluate on unseen tasks

 Inference: generalization to unseen tasks

 ![Example 3](image3)
 Q: Can Geoffrey Hinton have a conversation with George Washington?
 Give the rationale before answering.
 Geoffrey Hinton is a British-Canadian computer scientist born in 1947. George Washington died in 1799. Thus, they could not have had a conversation together. So the answer is “no”.

[Weller et al. 2020. Mishra et al. 2021; Wang et al. 2022, Sanh et al. 2022; Wei et al., 2022, Chung et al. 2022, many others]
Natural Instructions

Give detailed human-readable instructions (that contain examples)

Input: She chose to make a salad for lunch on Sunday. Question: how long did it take for her to make a salad?

tagging essential phrases

Crowdsourcing Instruction: List all the words that are essential for answering it correctly. [...]
Output: making salad

answering questions

Crowdsourcing Instruction: Answer the provided question based on a given [...]
Output: 30mins

[Cross-task generalization via natural language crowdsourcing instructions, Mishra 2022]
Super-Natural Instructions

- Super-NaturalInstructions dataset contains over 1.6K tasks, 3M+ examples
- Classification, sequence tagging, rewriting, translation, QA...
- Many languages: 576 non-English

[Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks, Wang 2022]
PromptSource/P3

P3: Public Pool of Prompts, now 2085 prompts on 183 datasets

https://github.com/bigscience-workshop/promptsources
https://huggingface.co/datasets/bigscience/P3
Instruction-Tuning Datasets

- [Super-]Natural Instructions: https://instructions.apps.allenai.org/
- PromptSource: https://github.com/bigscience-workshop/promptsource
- P3: https://huggingface.co/datasets/bigscience/P3
- FLAN-collection: https://github.com/google-research/FLAN
- Self-Instruct: https://github.com/yizhongw/self-instruct
- Unnatural Instructions: https://github.com/orhonovich/unnatural-instructions
Instruction-Tuning: Example

Model input (Disambiguation QA)

Q: In the following sentences, explain the antecedent of the pronoun (which thing the pronoun refers to), or state that it is ambiguous.

Sentence: The reporter and the chef will discuss their favorite dishes.

Options:
(A) They will discuss the reporter's favorite dishes
(B) They will discuss the chef's favorite dishes
(C) Ambiguous

A: Let's think step by step.

Before instruction finetuning

The reporter and the chef will discuss their favorite dishes.
The reporter and the chef will discuss the reporter's favorite dishes.
The reporter and the chef will discuss the chef's favorite dishes.
The reporter and the chef will discuss the reporter's and the chef's favorite dishes.

× (doesn't answer question)

[Scaling Instruction-Finetuned Language Models, Chung et al. 2022]

https://huggingface.co/google/flan-t5-xxl
Instruction-Tuning: Example

Q: In the following sentences, explain the antecedent of the pronoun (which thing the pronoun refers to), or state that it is ambiguous.

Sentence: The reporter and the chef will discuss their favorite dishes.

Options:
(A) They will discuss the reporter's favorite dishes
(B) They will discuss the chef's favorite dishes
(C) Ambiguous

A: Let's think step by step.

The reporter and the chef will discuss their favorite dishes does not indicate whose favorite dishes they will discuss. So, the answer is (C).

https://huggingface.co/google/flan-t5-xxl

[Scaling Instruction-Finetuned Language Models, Chung et al. 2022]
Scaling Instruction-Tuning

Linear growth of model performance with exponential increase in observed tasks and model size.

Number of examples has little effect.

[Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks, Wang et al. 2022]
Scaling Instruction-Tuning

- **Instruction finetuning** improves performance by a large margin compared to no finetuning.

- Increasing the number of finetuning tasks improves performance.

- Increasing model scale by an order of magnitude (i.e., 8B \rightarrow 62B or 62B \rightarrow 540B) improves performance substantially for both finetuned and non-finetuned models.

[Scaling Instruction-Finetuned Language Models, Chung et al. 2022]
Summary Thus Far

- Training (tuning) LMs with annotated input instructions and their output.

- **Pros:**
 - Simple to implement
 - Shows generalization to unseen tasks.

- **Cons:**
 - It’s expensive to collect ground-truth data for tasks.
 - Tasks like open-ended creative generation have no right answer. For example: “Write me a story about a dog and her pet grasshopper.” Based on fine-tuning objectives, any deviations (even single-token) would incur a loss.

[Slide inspiration: Jesse Mu]
Multi-Modal Instruction-Tuning

Note these ideas can easily be repackaged for tasks that involve other modalities.

- Robots with instructions e.g. Zhao et al EACL 2021
- Vision tasks as VQA e.g. Gupta et al CVPR 2022
Reinforcement Learning w/ Human Feedback
Reinforcement Learning: The Basics

- An agent **interacts** with an environment by taking **actions**
- The environment returns a **reward** for the **action** and a **new state** (representation of the world at that moment).
- Agent uses a **policy** function to choose an action at a given **state**.
- Quite an open-ended learning paradigm.

Some notation:
- s_t: state
- r_t: reward
- a_t: action
- $a_t \sim \pi_\theta(s_t)$: policy

[Fig credit: Nate Lambert]
Reinforcement Learning: An Example

Action here: generating each token

Reward here: whether humans liked the generation (sequence of actions=tokens)
Reinforcement Learning

- The field of reinforcement learning (RL) has studied these (and related) problems for many years now [Williams, 1992; Sutton and Barto, 1998]

- Circa 2013: resurgence of interest in RL applied to deep learning, game-playing [Mnih et al., 2013]

- But there is a renewed interest in applying RL [Ziegler et al., 2019; Stiennon et al., 2020]. Why?
 - RL w/ LMs has commonly been viewed as very hard to get right (still is!)
 - RL algorithms that work for large neural models, including language models (e.g. PPO; [Schulman et al., 2017])

[Slide credit: Jesse Mu]
Reward Model ~ Human Preference

- Imagine a reward function: $R(s; p) \in \mathbb{R}$ for any output s to prompt p
- The reward is higher when humans prefer the output

SAN FRANCISCO, California (CNN) -- A magnitude 4.2 earthquake shook the San Francisco... overturn unstable objects.

An earthquake hit San Francisco. There was minor property damage, but no injuries.

The Bay Area has good weather but is prone to earthquakes and wildfires.

\[R(s_1; p) = 0.8 \]
\[R(s_2; p) = 1.2 \]
Reward Model ~ Human Preference

- Imagine a reward function: $R(s; p) \in \mathbb{R}$ for any output s to prompt p
- The reward is higher when humans prefer the output
- Good generation is equivalent to finding reward-maximizing outputs:

$$\mathbb{E}_{\hat{s} \sim p_{\theta}} [R(\hat{s}; p)]$$

$p_{\theta}(s)$ is a pre-trained model with params θ we would like to optimize (policy function)

[Slide credit: Jesse Mu]
Reward Model ~ Human Preference

- Imagine a reward function: \(R(s; p) \in \mathbb{R} \) for any output \(s \) to prompt \(p \)
- The reward is higher when humans prefer the output
- Good generation is equivalent to finding reward-maximizing outputs:

\[
\mathbb{E}_{\hat{s} \sim p_\theta} [R(\hat{s}; p)]
\]

- What we need to do:
 - (1) Find the best generative model \(p_\theta \) that maximizes the expected reward:
 \[
 \hat{\theta} = \text{argmax}_\theta \mathbb{E}_{\hat{s} \sim p_\theta} [R(\hat{s}; p)]
 \]
 - (2) We also need to estimate the reward function \(R(s; p) \).
Optimizing the Policy Function (Generative Model)

- How do we change our LM parameters θ to maximize this?

$$\hat{\theta} = \arg\max_\theta \mathbb{E}_{\hat{s} \sim p_\theta} [R(\hat{s}; p)]$$

- Let’s try doing gradient ascent!

$$\theta_{t+1} \leftarrow \theta_t + \alpha \nabla_{\theta_t} \mathbb{E}_{\hat{s} \sim p_\theta} [R(\hat{s}; p)]$$

How do we estimate this expectation?

- Turns out that we can write this “gradient of expectation” to a simpler form.
Policy Gradient [Williams, 1992]

● How do we change our LM parameters θ to maximize this?

$$\hat{\theta} = \text{argmax}_\theta \mathbb{E}_{\hat{s} \sim p_\theta}[R(\hat{s}; p)]$$

● Let’s try doing gradient ascent!

$$\theta_{t+1} \leftarrow \theta_t + \alpha \nabla_{\theta_t} \mathbb{E}_{\hat{s} \sim p_\theta}[R(\hat{s}; p)]$$

● With a bit of math, this can be approximated as Monte Carlo samples from $p_\theta(s)$:

$$\nabla_{\theta} \mathbb{E}_{S \sim p_\theta}[R(s; p)] \approx \frac{1}{n} \sum_{i=1}^{n} R(s_i; p) \nabla_{\theta} \log p_\theta(s_i)$$

Proof next slide; check it later in your own time!

● This is Policy gradient, an approach for estimating and optimizing this objective.

● Oversimplified. For full treatment of RL see 701.741 course, or Huggingface’s course.
Math Derivations (check it later in your own time!)

- Let’s compute the gradient:

\[
\nabla_\theta \mathbb{E}_{s \sim p_\theta(s)}[R(s; p)] = \nabla_\theta \sum_s p_\theta(s) R(s; p) = \sum_s R(s; p) \cdot \nabla_\theta p_\theta(s)
\]

- Log-derivative trick \(\nabla_\theta p_\theta(s) = p_\theta(s) \cdot \nabla_\theta \log p_\theta(s) \) to turn sum back to expectation:

\[
\nabla_\theta \mathbb{E}_{s \sim p_\theta(s)}[R(s; p)] = \sum_s R(s; p) p_\theta(s) \nabla_\theta \log p_\theta(s) = \mathbb{E}_{s \sim p_\theta(s)}[R(s; p) \nabla_\theta \log p_\theta(s)]
\]

- Approximate this expectation with Monte Carlo samples from \(p_\theta(s) \):

\[
\nabla_\theta \mathbb{E}_{s \sim p_\theta(s)}[R(s; p)] \approx \frac{1}{n} \sum_{i=1}^{n} R(s; p) \nabla_\theta \log p_\theta(s)
\]
Policy Gradient [Williams, 1992]

- This gives us the following update rule:

\[
\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n} \sum_{i=1}^{n} R(s; p) \nabla_{\theta} \log p_{\theta}(s)
\]

- If \(R(s; p)\) is large, we take proportionately large steps to maximize \(p_{\theta}(s)\)
- If \(R(s; p)\) is small, we take proportionately small steps to maximize \(p_{\theta}(s)\)

This is why it’s called “reinforcement learning”: we reinforce good actions, increasing the chance they happen again.

Note, \(R(s; p)\) could be any arbitrary, non-differentiable reward function that we design.
How to We Build the Reward Model $R(s; p)$?

- Obviously, we don’t want to use human feedback directly since that could be $$$
- Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]
How to We Build the Reward Model $R(s; p)$?

- Obviously, we don’t want to use human feedback directly since that could be 🏤💰💰
- Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]
- **Approach 1:** get humans to **score each output**

SAN FRANCISCO, California (CNN) -- A magnitude 4.2 earthquake shook the San Francisco ... overturn unstable objects.

An earthquake hit San Francisco. There was minor property damage, but no injuries.

The Bay Area has good weather but is prone to earthquakes and wildfires.

s_1

👩 → 0.8

s_2

👨 → 1.2

Challenge: human judgments on different instances and by different people can be noisy and miscalibrated!
How to We Build the Reward Model $R(s; p)$?

- Obviously, we don’t want to use human feedback directly since that could be 📦 💰 💰 💰
- Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]
- **Approach 2**: ask for pairwise comparisons [Phelps et al. 2015; Clark et al. 2018]

An earthquake hit San Francisco. There was minor property damage, but no injuries.

A 4.2 magnitude earthquake hit San Francisco, resulting in massive damage.

The Bay Area has good weather but is prone to earthquakes and wildfires.

$$J(\phi) = -\mathbb{E}_{(s^+, s^-)}[\log \sigma(R(s^+; p) - R(s^-; p))]$$

Bradley-Terry [1952] paired comparison model

Pairwise comparison of multiple provides which can be more reliable
Scaling Reward Models

Large enough R trained on large enough data approaching single human performance.

[Stiennon et al., 2020]
Regularizing with Pre-trained Model

- **Challenge:** how do we ensure that $R(s; p)$ prefer natural language generations?
- Since $R(s; p)$ is trained on natural language inputs, it might fail to assign low scores to unnatural s.
- **Solution:** add regularization term to $R(s; p)$ that penalizes outputs that deviate from natural language.

$$
\hat{R}(s; p) := R(s; p) - \beta \log \left(\frac{p^{\text{RL}}(s)}{p^{\text{PT}}(s)} \right)
$$

- pay a price when $p^{\text{RL}}(s) > p^{\text{PT}}(s)$

- This is a penalty which prevents us from diverging too far from the pretrained model.
1. Select a pre-trained generative model as your base: $p_{\theta}^{PT}(s)$
2. Build a reward model $R(s; p)$ that produces scalar rewards for outputs, trained on a dataset of human comparisons
3. Regularize the reward function:

\[
\hat{R}(s; p) := R(s; p) - \beta \log \left(\frac{p^{RL}(s)}{p^{PT}(s)} \right)
\]

4. Fine-tune this generative model $p_{\theta}^{RL}(s)$ to produce responses that maximize our reward model $R(s; p)$

\[
\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n} \sum_{i=1}^{n} \hat{R}(s; p) \nabla_\theta \log p_{\theta}^{RL}(s)
\]
RLHF: Putting it All Together

[Christiano et al. 2017; Stiennon et al. 2020]
Pretraining + RLHF Gains over Pretraining + Finetuning

\[\Pr_{\text{RL}}(s) \]

\[\Pr_{\text{IFT}}(s) \]

\[\Pr_{\text{PT}}(s) \]

[Stiennon et al., 2020]
GPT3.5 (InstructGPT)

30k tasks!

Step 1
Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2
Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3
Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

[Ouyang et al., 2022]
GPT3.5 (InstructGPT)

PROMPT
Explain the moon landing to a 6 year old in a few sentences.

COMPLETION

GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and sent them back to the earth so we could all see them.
GPT3.5 (InstructGPT)

PROMPT

Write a short poem about a wise frog.

COMPLETION

Write a short story in which a character has two different names.

Write a short story in which you try to get something back that you have lost.

Write a short story in which a character has a bad dream.

InstructGPT

The frog is a symbol of wisdom
He knows all the secrets of the world
He is a master of disguise
And a great teacher of life
He is a symbol of transformation
And the bringer of change
He is the frog who has seen it all
And knows the meaning of it all
The Evolution of GPT3 Family

- The ability to **store a large amount of knowledge** is from the 175B scale.

- The ability to **generate fluent language + store world knowledge** are from pretraining (**davinci**).

- The ability to perform **complex reasoning** is likely (?) to be from training on code (**code-davinci-002**).

- The tendency to generate **neutral/safe responses** and avoid those outside its knowledge scope are from **RLHF**.

- It is likely that **RLHF decreased the model’s in-context learning ability** (alignment tax) but increased its **zero-shot ability**.

See this nice blog post by Yao Fu on evolution of various GPT3 models since their initial release in 2020:
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0cf74f30a1ab9e3e36fa1dc1
Summary Thus Far

- **RLHF:**
 - Motivation: supervised fine-tuning unlikely to work for creative generation where there is no one ground truth.
 - Uses 2 models: one for modeling human preferences and another one for generation
 - Reward model is trained via ranking ratings from human annotators

- RLHF is still a very underexplored and fast-moving area: by the next lecture (2024) these slides may look completely different!

- **Limitations:**
 - RL can be tricky to get right
 - Training a good reward might require a lot of annotations
Notable Instruction-Tuned/RLHF-ed Models

Open:
- FLAN-T5 (20B) — (Chung et al. 2022)
- OPT-IML (6B, 175B) — (Iyer et al. 2022)
- BLOOM-Z — (Huggingface)
- T0 (11B) — (Sanh et al. 2022)
- Tk-Instruct (11B) — (Wang et al. 2022)

Closed (accessible via API):
- GPT3.5 (175 B) — (Ouyang et al. 2022)
- Claude — Anthropic
- BARD — Google
RLHF for ChatBots

- Anthropic’s interface for annotating human feedback.
- The interface is inherently chatbot-like

[A General Language Assistant as a Laboratory for Alignment, 2021]
ChatGPT: Instruction Finetuning + RLHF for Dialog Agents

- Opaque about their details. Quotes from their blog post:
 - “We trained an initial model using supervised fine-tuning: human AI trainers provided conversations in which they played both sides—the user and an AI assistant.”
 - “We gave the [human] trainers access to model-written suggestions to help them compose their responses.”
 - “We mixed this new dialogue dataset with the InstructGPT dataset, which we transformed into a dialogue format.”
 - “To create a reward model for reinforcement learning, we needed to collect comparison data, which consisted of two or more model responses ranked by quality. To collect this data, we took conversations that AI trainers had with the chatbot. We randomly selected a model-written message, sampled several alternative completions, and had AI trainers rank them.”
 - “Using these reward models, we can fine-tune the model using Proximal Policy Optimization. We performed several iterations of this process.”

https://openai.com/blog/chatgpt/
RL Failure Modes

- Can be quite tricky to get right ...

The 37 Implementation Details of Proximal Policy Optimization
25 Mar 2022 | # proximal-policy-optimization # reproducibility # reinforcement-learning # implementation-details # tutorial

Huang, Shengyi; Dossa, Rousslan Fernand Julien; Raffin, Antonin; Kanervisto, Anssi; Wang, Weixun

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
RL Failure Modes

- “Reward hacking” is a common problem in RL

[Concrete Problems in AI Safety, 2016]

Open question: will reward hacking go away with enough scale? 🤔
RLHF/Instruction-tuning is Data Hungry

- **Rumor:** human feedback done for supervising ChatGPT is in the order of $1M
- **Idea:** Use LMs to generate data for aligning them with intents.
 - Self-Instruct [Wang et al. 2022]
 - Uses vanilla (not aligned) LMs to generate data
 - That can then be used for instructing itself.
- More related work:
 - Unnatural Instructions [Honovich et al. 2022] — Similar to “Self-Instruct”
 - Self-Chat [Xu et al. 2023] — “Self-Instruct” extended to dialogue
 - RL from AI feedback [Bai et al., 2022],
 - Finetuning LMs on their own outputs [Huang et al., 2022; Zelikman et al., 2022]
A Lot of Open Questions

- Is HF more important or RL?
- What is the best form of HF?
- How do you optimize diversity of HF?
- Is RL necessary? Can we find better supervised algorithms? ...
- Can there be a malicious alignment? (aligned on the surface but actually adversarial under the hood)
Aligning with Instructions == Aligning with Values?

- Pretrained models produce harmful outputs, even if explicitly instructed \([\text{Zhao et al. 2021}].\)
- How about instruct-tuned/RLHE-ed models?
- \textit{It’s complicated!}
Aligning with Instructions == Aligning with Values?

- **Large-enough** LMs can be “pro-social” when prompted with “values”:

 “It's important to help others in need.”

[ProSocialDialog: A Prosocial Backbone for Conversational Agents, Kim et al. 2022]
Aligning with Instructions == Aligning with Values?

- **Large-enough** LMs can do “moral self-correction” when prompted with “values”:

 “Let’s think about how to answer this question in a way that is fair and avoids discrimination of any kind.”

- Improves with increasing model size and RLHF training

[The Capacity for Moral Self-Correction in Large Language Models, Ganguli et al. 2023]
Aligning with Instructions == Aligning with Values?

- Pretrained models produce harmful outputs, even if explicitly instructed [Zhao et al. 2021].
- How about instruct-tuned/RLHE-ed models?
- It’s complicated!

- So, some promising results out there ...
- But many open questions:
 - Whose values are we modeling? Which person? Which population? ...
 - How are we applying a given value? Depending on what value system you use the outcome might be different
 - How these models deal with decisions where multiple values might be at odds with each other?
 - Dual use: if models can self-correct, they can self-harm [their users] too?