Self-Supervised Models of
Vision + Language

CSCl 601 471/671
NLP: Self-Supervised Models

https://self-supervised.cs.jhu.edu/sp2023/

JOHNS HOPKINS

UNIVERSILITY



Logistics update

e Werecommended few projects for revision. Due on Monday noon.
o Please talk to us if you need more brainstorming to scope your proposal better.

e Eachteamis assigned to a mentor (we will email you about the assignment).
e Eachteam s responsible to schedule meeting time with their mentor.
e Oursuggestion: meet with them at least once every 10 days.

e Starting next week: no TA/CA office hours.

e We will have external speakers next week!



Attention Is All You Need

e Transformers are eating the world

e SOTA performance across a range of NLP tasks

o ..QA
O ...summarization
O ...paraphrasing

e |[s Attention all you need?
O Everything thus far has been text
O What about other modalities, e.g., images?
O What about multi-modal settings, e.g., captioned images?



Today's Talk

e Resources, datasets, & problems of interest

® Models & architectures

e Challenges & envisioned future



COCO, VQA, CLEVR, oh my

T

(b) Iconic scene images (c) Non-iconic images

e Object detection, segmentation, key-point detection, and captioning
e -~330KImages

[Microsoft COCO: Common Objects in Context, 2014]



https://arxiv.org/abs/1405.0312

COCO, VQA, CLEVR, oh my

Visual Question Answering (2017)

Who is wearing glasses? Where is the child sitting?

man woman arms

Open-ended questions about images
e -~265KImages, at least 3 questions per image, "gold" answers

[VQA: Visual Question Answering, 2015]



https://arxiv.org/abs/1505.00468

COCO, VQA, CLEVR, oh my

CLEVER (2017)

e ‘'strong biases that models can
exploit to correctly answer
questions without reasoning"

e -~100KImages

e -~865K Questions

o  Answers to all train/val questions

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

[CLEVR: A Diagnostic Dataset for Compositional Lanquage and Elementary Visual Reasoning, 2016]



https://arxiv.org/abs/1612.06890

Let's Consider Images — How to Encode?




Let's Consider Images - Vision Transformer
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Let's Consider Images - Vision Transformer

Vision Transformer (ViT)
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[An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2020]
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https://arxiv.org/abs/2010.11929

What about paired image-text — How to Encode?

Basilica of St. John Lateran House with Chimeras — Kiev



Contrastive Language—Image Pre-training (CLIP)

Given a batch of N (image, text) pairs, predict which of the N x N possible (image, text)
pairings across a batch occurred

(1) Contrastive pre-training ) .
image_encoder - ResNet or Vision Transformer

text_encoder - CBOW or Text Transformer

I[n, h, w, c] - minibatch of aligned images
T[n, 1] - minibatch of aligned texts
W_i[d_i, d_e] - learned proj of image to embed
W_t[d_t, d_e] - learned proj of text to embed
t - learned temperature parameter
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[Learning Transferable Visual Models From Natural Lanquage Supervision, 2021]



https://arxiv.org/abs/2103.00020

Contrastive Language—Image Pre-training (CLIP)

Consider classifying photos of dogs vs cats - for each image, check if CLIP predicts text
description “a photo of a dog” or “a photo of a cat” is more likely to be paired with it

(1) Contrastive pre-training (2) Create dataset classifier from label text
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[Learning Transferable Visual Models From Natural Lanquage Supervision, 2021]



https://arxiv.org/abs/2103.00020

What can CLIP do?

CLIP evaluates associations between image-text pairs:

e Image Classification
® Image Searching

e (Controllable Caption Generation

(1) Contrastive pre-training
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What can't CLIP do?

e No generation capabilities

e Prompting/In-Context Learning

0]

Few-shot captioning

(1) Contrastive pre-training
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Text-to-Image
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DALL-E

e First, a text prompt is input into a text encoder that is trained to map the prompt to
a representation space.

[Zero-Shot Text-to-Image Generation, 2021]



https://arxiv.org/pdf/2102.12092.pdf

DALL-E

e First, a text promptis input into a text encoder that is trained to map the prompt to
a representation space.

e Next, a prior maps the text encoding to a corresponding image encoding that
captures the semantic information of the prompt contained in the text encoding.

[Zero-Shot Text-to-Image Generation, 2021]



https://arxiv.org/pdf/2102.12092.pdf

DALL-E

e First, a text promptis input into a text encoder that is trained to map the prompt to
a representation space.

e Next, a prior maps the text encoding to a corresponding image encoding that
captures the semantic information of the prompt contained in the text encoding.

e Finally, an image decoder stochastically generates an image which is a visual
manifestation of this semantic information.

[Zero-Shot Text-to-Image Generation, 2021]



https://arxiv.org/pdf/2102.12092.pdf
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[Zero-Shot Text-to-Image Generation, 2021]



https://arxiv.org/pdf/2102.12092.pdf

Multimodal Prompting

e CLIP addresses ImageNet, but what if we introduce novel images / text / classes?

e DALL-E addresses controllable image generation, but still no ICL

e LLMs are transferrable to new tasks via prompting with examples

e (Can we do the same thing in a multimodal setting, e.qg. vision + language?



Multimodal Few-Shot Learning with Frozen Language Models

e First, consider a pretrained LLM
0 GPT-2-esque (7B)
O Pretrained on C4

e Next, consider a vision encoder

O Inputimages (e.g. WxHxC)
o  Output N tokens
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Figure 2: Gradients through a frozen lan-
guage model’s self attention layers are
used to train the vision encoder.

[Multimodal Few-Shot Learning with Frozen Language Models, 2021]



https://arxiv.org/abs/2106.13884

Multimodal Few-Shot Learning with Frozen Language Models
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Figure 3: Inference-Time interface for Frozen. The figure demonstrates how we can support (a) visual
question answering, (b) outside-knowledge question answering and (c) few-shot image classification
via in-context learning.

[Multimodal Few-Shot Learning with Frozen Language Models, 2021]



https://arxiv.org/abs/2106.13884



https://openai.com/research/gpt-4

User

GPT-4

Can you explain this meme?

Sometimes | just look at pictures of
the earth from space and | marvel at
how beautiful it all is.

This meme is a joke that combines two unrelated things: pictures of the earth from space
and chicken nuggets.

The text of the meme suggests that the image below is a beautiful picture of the earth
from space. However, the image is actually of chicken nuggets arranged to vaguely
resemble a map of the world.

The humor in this meme comes from the unexpected juxtaposition of the text and the
image. The text sets up an expectation of a majestic image of the earth, but the image is
actually something mundane and silly.



User  What is unusual about this image?

Source: Barnorama

GPT-4  The unusual thing about this image is that a man is ironing clothes on an ironing board
attached to the roof of a moving taxi.



Multimodal - RLHF
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[Improving Multimodal Interactive Agents with Reinforcement Learning from Human Feedback, 2022]



https://arxiv.org/abs/2211.11602

Challenges we still face
Models’ quality depend on frequency of patterns




Challenges we still face - The long tail
Most things are infrequent

Popularity

Head

Long Tail

Items



Envisioning the future

More modalities — combinations of video (2D, 3D), text, code, etc.
Large models and more efficient scaling

More breath — more data and more types of data

Interaction with physical world — models with hands and actuators
Better personalization — these agents should serve your €8 needs

Better human-machine teaming
o CoPilot for coding
o CoPilot for writing
o ..
o CoPilot for life!!!



