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Large models are not easily accessible

Model Inference memory
T5-11B 22 GB

OPT-66B 132 GB

BLOOM 176B 350 GB

Raffel et al., 2020, T5. Zhang et al., 2022, OPT., BigScience. 2022, BLOOM.

Fine-tuning memory
176 GB
1,056 GB

2,800 GB


https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2205.01068
https://huggingface.co/bigscience/bloom

Large models are not easily accessible

Model Inference memory Fine-tuning memory
T5-11B 22 GB 176 GB
OPT-66B 132 GB 1,056 GB
BLOOM 176B 352 GB 2,800 GB

* LLM.int8() * 8-bit optimizers
Model Inference memory Fine-tuning memory
T5-11B 11 GB 66 GB
OPT-66B 66 GB 396 GB

BLOOM 176B 176 GB 1,056 GB

Raffel et al., 2020, T5. Zhang et al., 2022, OPT., BigScience. 2022, BLOOM.



https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2205.01068
https://huggingface.co/bigscience/bloom

Overview of my work in this talk

8-Bit Approximations for Parallelism in Deep Learning. Tim Dettmers, /CLR 2015.

8-bit Optimizers via Block-wise Quantization. Tim Dettmers, Mike Lewis, Sam Shleifer, Luke Zettlemoyer,
ICLR 2022 *Spotlight*.

LLM.intS(E 8-bit Matrix Multiplication for Transformers at Scale . Tim Dettmers, Mike Lewis, Younes
Belkada, Luke Zettlemoyer, NeurlPS 2022.

The case for 4-bit precision: k-bit Inference Scaling Laws. Tim Dettmers, Luke Zettlemoyer, in
submission.

Personalize your own ChatGPT on a single GPU. Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke
Zettlemoyer, in progress.
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How does quantization work?
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Quantization as a mapping

Most general form of describe quantization is through a mapping from integers
to float values normalized to the range -1.0 and 1.0.

1 34... FP40 1 2345..
-6-5-4-3 ... -12-8-6-4-3 ...



Quantization as a mapping

Most general form of describe quantization is through a mapping from integers to
float values normalized to the range -1.0 and 1.0.

Int4 O 1 2 3 4 ... FP4 0 1 2 3 4
-/ -6 -5 -4 -3 ... -12 -8 -6 -4 -3 ...
-1 -0.86 -0.71 -0.57 -0.43... -1 -0.67 -0.5 -0.33 -0.25...

The mapping format { index : float value} generalizes to all data types.



Quantization as a mapping

Most general form of describe quantization is through a mapping from integers
to float values normalized to the range -1.0 and 1.0.

Int4 maps -7,-6,...6,7 -> -1.0,-0.86 ... 0.86, 1.0

Given a tensor X of any real data type. We can apply 8-bit quantization as

follows:
1. Normalize X into the range [-1.0, 1.0]

2. Find the closest value in the data type

Step (1) is usually done by dividing by the absolute maximum (absmax) value.



Quantization Example: A non-standard 2-bit data type

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}
Input tensor: [10, -3, 5, 4]

Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]

Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]

Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5] ->
denormalize -> [10, 3, 5, 5]
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Floating point data types (FP8)

sigzn exponent fraction

o[ [Te[s

3 bits for exponent, 4 for fraction:
e Good for large/small numbers
e Bad for precise numbers

olo] 1fo]ofoofo

1 bits for exponent, 6 for fraction:
e Good for precise numbers
e Bad for large/small numbers
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Dynamic exponent quantization

Exponent: 1e-2 Fraction: 0.1 +

o 0.9%9/16 =
Sign *- 0.606
Indicator bit

110110 1]/1]/0][O0]]1
- Te-2 * 0.606 =-6.06e-3

Dynamic exponent and fraction bits:
e Good for small and large numbers

e High precision for small and intermediate numbers

e Bad precision for very large numbers

8-bit Approximations for Parallelism in Deep Learning. Dettmers. 2015.
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https://arxiv.org/abs/1511.04561

8-bit Optimizers



Motivation: Optimizers take up a lot of memory!

Memory depends on seq len, batch
size, and model size

Input Gradients

Memory that only depends on
model size

Main Weights
Adam Buffer 1
Adam Buffer 2

Weights
Gradients
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8-bit optimizers reduce memory consumption by 40%

32-bit to 8-bit

38% mem reduction

Master Weights
Adam Buffer 1
Adam Buffer 2
Master Weights

Adam Buffers
142

Weights

Gradients
Weights
Gradients




What do outliers in quantization look like?
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Putting it together: 8-bit optimizers

Optimizer State

Chunk into blocks

Find block-wise absmax
Normalize with absmax

Find closest 8-bit value

Find corresponding index

Quantization

Updated optimizer states

v

-3.1 0.1 -0.03 1.2

-3.1 0.1 -0.03 1.2

3.1 1.2

-1.0 0.032 -0.025 1.0
-1.0 0.0329 -0.0242 1.0

0 170 80 255

v

Store index values

Index

Lookup values

Denormalize by
absmax

Dequantized
optimizer states

Dequantization

Load Index values

v

0 170 80 255

-1.0 0.0329 -0.0242 1.0

-1.0*3.1 0.0329*3.1 -0.0242*1.2 1.0*1.2

-3.1 0.102 -0.029 1.2

v

Update optimizer states 18



Results: Same accuracy/perplexity as 32-bit!

Optimizer Task Data Model Metric’ Time Mem saved
32-bit AdamW GLUE Multiple RoBERTa-Large 88.9 - Reference
32-bit AdamW GLUE Multiple RoBERTa-Large 88.6 17h 0.0 GB
32-bit Adafactor ~ GLUE Multiple RoBERTa-Large 88.7 24h 1.3GB
8-bit AdamW GLUE Multiple RoBERTa-Large 88.7 15h 20GB
32-bit Momentum CLS ImageNet-1k  ResNet-50 77.1 - Reference
32-bit Momentum CLS ImageNet-1k  ResNet-50 771 118h 0.0 GB
8-bit Momentum CLS ImageNet-1k  ResNet-50 77.2 116 h 0.1GB
32-bit Adam MT WMT 14+16 Transformer 293 - Reference
32-bit Adam MT WMT 14+16 Transformer 29.0 126h 0.0GB
32-bit Adafactor ~ MT WMT 14+16 Transformer 29.0 127h 03GB
8-bit Adam MT WMT 14+16 Transformer 29.1 115h 1.1GB
32-bit Momentum  MoCo v2 ImageNet-1k  ResNet-50 67.5 - Reference
32-bit Momentum  MoCo v2 ImageNet-1k  ResNet-50 67.3 30 days 0.0GB
8-bit Momentum MoCo v2 ImageNet-1k  ResNet-50 67.4 28 days 0.1GB
32-bit Adam LM Multiple Transformer-1.5B 9.0 308 days 0.0 GB
32-bit Adafactor LM Multiple Transformer-1.5B 8.9 316 days 5.6 GB
8-bit Adam LM Multiple Transformer-1.5B 9.0 297 days 8.5GB
32-bit Adam LM Multiple GPT3-Medium 10.62 795 days 0.0GB
32-bit Adafactor LM Multiple GPT3-Medium 10.68 816 days 1.5GB
8-bit Adam LM Multiple GPT3-Medium 10.62 761 days 1.7GB
32-bit Adam Masked-LM  Multiple RoBERTa-Base 3.49 101 days 0.0 GB
32-bit Adafactor ~ Masked-LM  Multiple RoBERTa-Base 3.59 112 days 0.7 GB
8-bit Adam Masked-LM  Multiple RoBERTa-Base 348 94 days 1.1GB

"Metric: GLUE=Mean Accuracy/Correlation. CLS/MoCo = Accuracy. MT=BLEU. LM=Perplexity.
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Ablations on Language Modeling: All components needed!

Parameters  Optimizer Dynamic Block-wise Stable Emb Unstable (%) Perplexity

32-bit Adam 0 16.7
32-bit Adam v 0 16.3
8-bit Adam 90 253.0
8-bit Adam v 50 1944
M 8-bit Adam v 10 18.6
8-bit Adam v v 0 17.7
8-bit Adam v v 0 16.8
8-bit Adam v v v 0 16.4
1.3B 32-bit Adam 0 10.4
1.3B 8-bit Adam v 100 N/A
1.3B 8-bit Adam v v 80 10.9
1.5B 32-bit Adam 0 9.0

1.5B 8-bit Adam v v v 0 9.0




LLM.int8()



Large models such as OPT-175B need more than one computer to be run

8x GPU machine ($)

GPU

GPU

GPU

GPU

Fast networking ($$$)

8x GPU machine ($)

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

OPT-175B requires 350 GB of GPU memory
15 consumer GPUs required for OPT-175B
7 high-end GPUs required ($15k per GPU)



With 8-bit weights we only need a single machine with consumer GPUs

16-bit 8-bit
8x GPU machine ($) 8x GPU machine ($) 8x GPU machine ($)

GPU GPU GPU
GPU GPU GPU
GPU GPU GPU
GPU Fast networking ($$9) GPU GPU
GPU GPU GPU
GPU GPU GPU
GPU GPU GPU

GPU GPU GPU




Using OPT-175B on a single machine via 8-bit weights

With 8-bit weights we can reduce memory usage from 350 GiB to 175 GiB. This
fits into a single machine with 8 consumer GPUs! Does it work?
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The problem with quantizing outliers with large values

Absmax linear quantization with very large outliers:

3.50, 0.10, 0.02, 1.00, 0.30, 0.01, 0.05, 0.10 -> 127, 5, 1, 50, 15, |}, 2, 5

7.50, 0.10, 0.02, 1.00, 0.30, 0.01, 0.05, 0.10 -> 127, 2, 25,6, 1, 2

15.0, 0.10, 0.02, 1.00, 0.30, 0.01, 0.05, 0.10 -> 127, |, ||, 10,3, B |}, -
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Vector-wise quantization

Matrix multiplication is a series of inner products

Use two unique normalization constants for each inner product.
A@B=C:[bxhl@[hxo]->[bxo0]

1. Normalize A and B:
a. absmaxA _vec = A16.absmax(1): [b x h] -> [b]
b. absmaxB_vec = B16.absmax(0): [h x 0] -> [0]

c. A8 =127*A16/absmaxA vec; B8 = 127*B16/absmaxB_vec: [b x h] * [b] -> [b x h]
2. C32=A8 @ B8

3. C16f=C32/(127*127) * (absmaxA_vec @ absmaxB_vec): [b x o] + ([b] @ [0] -> [b x 0])
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Using OPT-175B on a single machine via 8-bit weights

With 8-bit weights we can reduce memory usage from 350 GiB to 175 GiB. This
fits into a single machine with 8 consumer GPUs! Does it work?
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Emergent Features



Finding outlier features in transformer hidden states

Hidden states with dimension [sequence, hidden_dim], outliers are in some hidden
dimension.

You need to look in the right spots. At 2.7B there are 262,144 different hidden
state values and only 960 are outliers (0.3%). Its easy to miss!

Fortunately, it becomes more common and highly systematic with scale.



Sequence

Hidden states in transformers: 125m

dimension

98.5% of the time

0.3, -0.1, 0.4]

[-0.2, 0.5, 0.1]
[0.3,0.9, -0.7]

Hidden/feature
dimension

1.5% of the time
[0.3, -0.1, -3.0]
[-0.2, 0.5, -6.0]
[0.3, 0.9, -7.0]



Hidden states in transformers:

95% of the time
[0.3, -0.1, 0.4]
[-0.2, 0.5, 0.1]
[0.3, 0.9, -0.7]

350m

5% of the time
[0.3, -0.1, 5.0]
[-0.2, 0.5, 6.0]
[0.3, 0.9, 8.0]



Hidden states in transformers: 2.7B

91% of the time 9% of the time
[0.3, -0.1, 0.4] [0.3, -0.1, -16.0]
[-0.2, 0.5, 0.1] [-0.2, 0.5, -10.0]

[0.3, 0.9, -0.7] [0.3, 0.9, -27.0]



Hidden states in transformers: 6.0B

83% of the time 17% of the time
[0.3, -0.1, 0.4] [0.3, -0.1, -15.0]
[-0.2, 0.5, 0.1] [-0.2, 0.5, -17.0]

[0.3, 0.9, -0.7] [0.3, 0.9, -22.0]



Hidden states in transformers: 6.7B. Phase shift!

25% of the time 75% of the time
[0.3, -0.1, 0.4] [0.3, -0.1, -40.0]
[-0.2, 0.5, 0.1] [-0.2, 0.5, -45.0]

[0.3, 0.9, -0.7] [0.3, 0.9, -61.0]



Hidden states in transformers: 13B

~25% of the time ~75% of the time
[0.3, -0.1, 0.4] [0.3, -0.1, -75.0]
[-0.2, 0.5, 0.1] [-0.2, 0.5, -65.0]

[0.3, 0.9, -0.7] [0.3, 0.9, -50.0]



Hidden states in transformers: 66B

~25% of the time ~75% of the time
[0.3, -0.1, 0.4] [0.3, -0.1, -95.0]
[-0.2, 0.5, 0.1] [-0.2, 0.5, -113.0]

[0.3, 0.9, -0.7] [0.3, 0.9, -87.0]



Percentage of layers or tokens affected

Emergent features: sudden vs. smooth emergence
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Emergent features: very large outliers after emergence
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Further Analysis: Outliers are important for performance

Take 6.7B transformer language model.

Attention Top-1 probability (single layer):
- Baseline: 40%
- Remove random dimensions: 39.9%
- Remove outliers: 15%

C4 validation perplexity (all layers)
- Baseline: 14.4 ppl
- Remove random dimensions: 14.4 ppl
- Remove outliers: 44.0 ppl



Mixed precision decomposition

Multiply outlier hidden/features dimensions (0.1%) in 16-bit.
Multiply other hidden/features dimensions (99.9%) in 8-bit.

I I
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No performance degradation with LLM.int8()
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Quantization as a practical tool for memory reduction

Table 2: Different hardware setups and which methods can be run in 16-bit vs. 8-bit precision. We

can see that our 8-bit method makes many models accessible that were not accessible before, in
particular, OPT-175B/BLOOM.

Largest Model that can be run

Class Hardware GPU Memory 8-bit 16-bit
Enterprise 8x A100 80 GB OPT-175B/BLOOM OPT-175B/ BLOOM
Enterprise 8x A100 40 GB OPT-175B / BLOOM OPT-66B
Academic server 8x RTX 3090 24s GB OPT-175B / BLOOM OPT-66B
Academic desktop 4x RTX 3090 24 GB OPT-66B OPT-30B

Paid Cloud Colab Pro 15 GB OPT-13B GPT-J-6B

Free Cloud Colab 12 GB TO/T5-11B GPT-2 1.3B




Bit-level Inference Scaling Laws



Inference cost are mostly loading the bits in the weight matrix!

Moderns GPUs can multiply 200 elements in the Weight matrix

same time it takes to load 1 element from memory.

Inputs

|

Inference costs of
4-bit 60B and 8-bit 30B LLMs similar




Bit-level scaling laws experimental setup overview

35,000 zero-shot experiments (Lambada, Winogrande, PiQA, HellaSwag)
19m to 176B parameters

OPT, BLOOM, BLOOMZ, Pythia/NeoX, GPT-2

3 to 8 bit precision (2-bit -> random performance)

Two quantization concepts: centralization, blocking/grouping

4 data types: Integer, Float, dynamic exponent, quantile quantization



Given a zero-shot accuracy, what is the best k-bit quantization?
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Mean zeroshot accuracy

Does it help to treat outliers separately?
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Comparison with GPTQ
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What does help to improve scaling? Block size

0.70 A blocksize
— 64
: —— 256
s, DE02 : / — 1024
= _
o
> 0.60
O
O
©
B 0.55
& &
2]
o
@ 0.50
N
C
® 0.45
=
0.40
4-bit Pythia
0.35 —

108 10° 1010 101! 1012
Total model bits



What does help to improve scaling? Data types
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Conclusion

8-bit optimizers make the training and fine-tuning more accessible.

LLM.int8() makes large language models more accessible, for example, zeroshot
prompting for OPT-175 on a single node or 65B LLaMA on a single GPU.

Currently, 4-bit precision seems to be best for bit-level scaling of LLM inference.
Improving bit-level scaling laws as a measure to improve inference latency.

k-bit methods work well in a variety settings and scales and can make deep
learning more efficient and more accessible.



