HSE
Yandex Research UNIVERSITY

Decentralized Deep Learning

Running Large Neural Networks Together

Max Ryabinin
Senior Research Scientist, Yandex

PhD Student, HSE University

Talk outline

) Motivation and key challenges
) Decentralized training
» Specialized architectures
» General data-parallel training
* Pipeline-parallel training

) Decentralized inference of pretrained models

The state of deep learning in 2023

1000
4 GPT-3
. - (175B) o
) Large-scale training becomes more popular £
é Megatron-LM -
S (8.38) pre
) Scaling laws promise continued gains g A
;;, 1 ° ESPT—Z)
agugs U /’ 1.5B
) Larger models have emergent abilities 7 y
. . X BERT-Large
(e.g. in-context learning) g L 3a0M)
= ELMo
(94M)
0.01
2018 2019 2020

iImg: arxiv.org/abs/2201.11990

Turing-NLG
(17.2B)

2021

2022

http://arxiv.org/abs/2201.11990

Implications of scaling

Y Some models cost hundreds of
thousands to train — or more!

) GPT-3 training costs millions of $

) Hard to train for an average researcher
and advance the field

11 0{33B Mararaatetsrsniaagbetork

img: jalammar.github.io/illustrated-bert

http://jalammar.github.io/illustrated-bert/

Solution: share the effort

e FOldmg@home -\ﬁ{) Collaboration has worked
= (listribqté'dcomputing B I n c In other sciences
®

. Academic
“ " Torrents @

Y Let's use idle volunteer
resources for DL as well!

Challenges of volunteer deep learning

) Node failures: PC turns off, Internet gets disabled, ...
) Communication over Internet: magnitudes slower than clusters

) Heterogeneous hardware: different GPUs, connection speeds etc.

Existing approaches for distributed DL

Training Size Throuahout Scalabilit Fault Worker Network Network
method limit gnp Y tolerance hot-join bandwidth latency
Data parallel Worker High Medium Full Yes High Low
: . Only .
Asynchronous Worker High High Yes Medium Any
workers
Model parallel System Medium Low No No High Low
. Only
Federated Worker Low High Yes Low Any
workers
Desired System High High Full Yes Low Any

Talk outline

) Motivation and key challenges
) Decentralized training
» Specialized architectures
» General data-parallel training
* Pipeline-parallel training

) Decentralized inference of pretrained models

Learning@home (NeurlPS’20)

Towards Crowdsourced Training of Large Neural Networks
using Decentralized Mixture-of-Experts

Workers

®@=6E

Neighbors

Experts
@ sclected

() others

DMoE (Decentralized Mixture-of-Experts)

Training over the Internet

Q Trainer process

Available expert
(unused)

Expert selected
Data transfsr by gating function

Failed expert
(e.g. disconnected)

11

Moshpit SGD (NeurlPS’21)

Communication-Efficient Decentralized Training
on Heterogeneous Unreliable Devices

) How to average the gating function/embeddings?
) We propose a new algorithm for decentralized AllReduce-like averaging
) Main idea: average in smaller non-overlapping groups

Y Communication-efficient and fault-tolerant, useful even on its own

12

Moshpit All-Reduce: core idea

13

Experiments

e
NN

o 75% - e SShuE
Q o~ ol ” /# B
=
5
% _____
(- 50%'
)
=
< | M |4y L
2
"g‘ _____
. 25%+
o,
@) —
=

0% -

L i, W

AR-SGD, homog.
AD-PSGD, homog.
SGP, homog.

Moshpit SGD, homog.
AD-PSGD, heterog.
SGP, heterog.

Moshpit SGD, heterog.

Oh 4h 8h 12h

16h 20h 24h 28h

32h

Training time (hours)

Training loss

[—
-

o0

AN

vast.ai+spot

—-—-= AR-SGD, homog.
— Moshpit SGD, heterog.

\ $21~24
\.\ (p3.24xlarge)

'N.
\-~
.
—n~
'—-_0,-&.*--.*-_.*

-

Oh

60h 90h 120h 150h

Time (hours)

30h

180h

14

Analysis TL;DR

) The averaging converges exponentially quickly

Theorem 3.2. Consider a modification of Moshpit All-Reduce that works as follows: at each iteration

k > 1, 1) peers are randomly split in r disjoint groups of sizes MY, ..., MY in such a way that
2;1]Wf = N and]\/j[f > 1foralli=1,...,r and 2) peers from each group compute their group
average via All-Reduce. Let 01, . .., 0N be the input vectors of this procedure and 01 ;... 6% be the
outputs after T iterations. Also, let = % Ziil 0; Then,
] o 1 r=1 1 &
E|—) [|6] —0|*| = | — Y ||6; —9|]>. 5
N 2110 =0l (N Nz) N 2 10:=0] (5)
) For Moshpit SGD — equivalent results to Local SGD
Theorem 3.4 (Non-convex case). Let f1 = ... = fn = f, function f be L-smooth and bounded
fr()m below by f., and Assumptions 3.1 and 3.2 hold with A N =01 VE[||V£(6%)?] + L*yzégv 9)

Opv.1 € [0,1/2), 6py 2 > 0. Then there exists such choice 0f7 that E |||V f(05.)11?] < e* after K
iterations ()f Moshpit SGD, where K equals

O(LAg 1+T\/1_2(5 + p’L ot /len \/(1_25'13’0,1)(5gq+(7—_1)02))
pv,1)

Ao = f(0°) — f(0%) and 0F . is chosen uniformly from {0°,01,. .. 0%~} defined in As. 3.2.

Again, if 0,1 < 1/3, Nppin = Q(N), (5p,v 5 = O(9°/Nuin), and 562“] = O((7 — 1)o), then the above
theorem recovers the state-of-the-art results in the non-convex case for Local-SGD [64, 63].

DeDLOC (NeurlPS’21)

(Distributed Deep Learning in Open Collaborations)

) How to scale decentralized training to real-life scenarios?
) Propose an averaging algorithm that dynamically adapts to network conditions

) Recovers reqular distributed methods in special cases

Equal bandwidth All-Reduce One fast peer Parameter Server | Heterogeneous Hybrid
Iu' \\\: N: / ;\5 ~. - ./. \ ~ . .
KPR e LA N . ioN -
< \ / ‘ fo- /
‘* S N —> - >

Q
Y
Sl X .
~el \ .
-~ Xy '
~. Ly !
Sl Y '
~ N
~. .
Sel N
Y

16

DeDLOC (NeurlPS’21)

(Distributed Deep Learning in Open Collaborations)

) For training, adopt large-batch SGD

) Accumulate batches on peers, synchronize when target size is reached

Pl

-O-0-0-0-C-0-0-0

P2

—O0—0-0-0C-0—

P3

~O-0-0-C-0-0-0-

P4

O—X

)

-O-C-0-0-0-0-0-0-00—

—O0—0—0—0—0C—0—

-0-0-0-C-0-0-0-0-0—

—

PS OO~

)

Learn more: huggingface.co/blog/collaborative-training

17

http://huggingface.co/blog/collaborative-training

saha]BERT: the first collaboratively-trained LM

) We enlist the help of ~40 volunteers from the Bengali community

) Pretrain ALBERT-large, results competitive to SoTA trained on clusters

) Participants used their servers and even Colab/Kaggle instances!

Training loss

Collaboration
Baseline (8xV100)

Model Wikiann F1 =~ NCC Accuracy
sahajBERT 95.45 4+ 0.53 91.97 + 0.47
XLM-R 96.48 +0.22 90.05 £ 0.38
IndicBERT 02.52 4+ 0.45 74.46 += 1.91
bnRoBERTa 82.32 4+ 0.67 80.94 = 0.45

Time elapsed, days

18

Secure Distributed Training at Scale (ICML’22)

) What if some peers are malicious/faulty?
) Can we train the model in such a way that no one peer can break it?

) Hint: use cryptography :)

19

from hivemind import *

) We develop a library for decentralized deep learning over the Internet
) Supports bypassing NAT, asynchronous training, data compression

) Data-parallel parts are tested in several practical projects

) Easy to use in standard PyTorch (just change ~2 lines of code!)

) Integrated into PyTorch Lightning, used for Stable Diffusion finetuning

learning-at-home/hivemind

Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

pytorch deep-learning machine-learning distributed-systems dht neural-networks asyncio

asynchronous-programming volunteer-computing hivemind distributed-training mixture-of-experts

‘f}' 1.2k @ Python MIT license Updated last week 13 issues need help

20

SWARM Parallelism (ICML’23)

Training Large Models Can Be Surprisingly Communication-Efficient

¢ X =

> H OW Ca n We tra i n I a rg e m Od e | S e O(n®) computation O(n?) communicgtisotjll e
over the Internet? (A— \

) Key observation: with the growth in the
hidden dimension size, compute costs

grow faster than communication costs! 832ms

6000ms - — CpUC : 1158ms -
) This observation can make training large mungeeomos) [-
models feasible for speeds <5600Mb/s

(especially if we compress activations) R m

base xxlarge gpt-3 ours
768 units 4096 units 12288 units 4096 units
1 layer 1 layer 1 layer 12 layers

21

SWARM Parallelism (ICML’23)

Training Large Models Can Be Surprisingly Communication-Efficient

We can use this fact for communication efficiency
and create dynamically rebalanced pipelines for fault tolerance!

Pipe]ine stages STAGE 1 STAGE 2
SWARM SWARM
1 23
g T4
Workers M — - -4
Alive Dead [X .)
— T4
Activation links S NS I _ -T4 — '
Normal —— i
Failure =—» | . _——
. - . state | ’ - T4
Load balancing T4 - e
< T4 — X T4
..... i .@ A device switches stage

STAGE 3
SWARM

~A100

How to make it efficient?

) Server-side load balancing
* |f some servers disconnect, other servers close the gap
) Client-side routing

 Clients choose servers with maximal throughput

23

Talk outline

) Motivation and key challenges
) Decentralized training
» Specialized architectures
» General data-parallel training
* Pipeline-parallel training

) Decentralized inference of pretrained models

24

Petals: Collaborative Inference and Fine-tuning of Large Models

(NeurlPS22 "Broadening Research Collaborations” workshop, Best Paper Honorable Mention)

) We develop a system for running and
fine-tuning LLMs over volunteer devices

) Instead of just getting model predictions,
you can inspect its hidden states

) Possible to join the public swarm (serving
BLOOM at the moment) or start your own

petals.ml

% Petals

Easy way to run 100B+ language models without high-end GPUs.
Up to 10x faster than offloading

Run inference or fine-tune large language models like BLOOM-176B by joining compute
resources with people all over the Internet.

Petals allows to load and serve a small part of the model, then team up with people serving the
other parts to run inference or fine-tuning.

Inference runs at = 1 sec per step (token) — 10x faster than possible with offloading, enough
for chatbots and other interactive apps. Parallel inference reaches hundreds of tokens/sec.

Beyond classic language model APIs — you can employ any fine-tuning and sampling methods
by executing custom paths through the model or accessing its hidden states. This combines
the comforts of an API with the flexibility of PyTorch.

Try now in Colab

If you'd like to follow Petals development or share your feedback,

Docs on GitHub]

join our Discord or subscribe via email:

Subscribe

Leave your email

This project is a part of the BigScience research workshop.
BigScience

25

https://petals.ml/

Many 100B+ language models were released

a BigScience initiative

Meta Al is sharing OPT-175B, the first

175-billion-parameter language model to
be made available to the broader Al

176B params - 59 languages - Open-access research commun 'tY-

’m_,,, GLM-130B yandex/YaLM-100B O

An Open Bilingual Pre-Trained Model Pretrained language model with 100B parameters

Hard to use without multiple high-end accelerators!

26

Still, LLM.cuda() requires

3X or

NVIDIA RTX 3090 (24 GB)

3X

NVIDIA A100 (80 GB)

27

Option 1: Offloading

Load weights from RAM/disk

on demand

Too slow

for interactive inference

predict this

several layers

- (Transformer’s decoder)

condition on this

28

Option 2: Hosted APls

Easy to use

Not flexible

Cost money

- Hosted inference API C

» Text Generation Groups v

Um "whatpu" € um pequeno animal peludo nativo da Tanzania. Um exemplo de
uma frase que usa a palavra whatpu é: Estdvamos a viajar por Africa e vimos uns
whatpus muito queridos. Fazer um "farduddle" significa saltar para cima e para
baixo muito rapido. Um exemplo de uma frase que usa a palavra farduddle é:

/

sampling @ greedy (D BLOOM prompting tips

Switch to "greedy" for more accurate completion e.g. math/history/translations (but
which may be repetitive/less inventive)

Compute ®+Enter 0.2

29

Existing solutions have limitations

) Option 1. Offloading to RAM/SSD
* Inference is too slow for interactive apps
» 5.5 seconds/token in the fastest RAM offloading setup (needs 100+ GB RAM)
» 22 seconds/token in the fastest SSD offloading setup

) Option 2. Hosted APIs
* No way to use custom fine-tuning and sampling methods
* No way to look at the block outputs and token probabilities

* Might be expensive

30

Our approach

) Some participants (called servers) load BLOOM blocks to their GPUs

and allow others to do forward and backward passes

BLOOM layers, part 1/3 BLOOM layers, part 2/3 BLOOM layers, part 3/3

31

Our approach

) Some participants (called servers) load BLOOM blocks to their GPUs

and allow others to do forward and backward passes

) Other participants (called clients) perform forward/backward passes
through the whole model by sending requests to servers

BLOOM layers, part 1/3 BLOOM layers, part 2/3

Clients |4 I I Y I al ol ol o] &

BLOOM layers, part 3/3

32

Fast single-batch inference

-
Offloading:

~ 5 '2 O sec/token

sends hundreds of GiBs
over GPU bus

Petals:

~ 1 sec/token

sends MiBs
over the Internet

33

Each user can finetune the LLM for their own task

Low-rank adapters Trainable prompts
h

2N (" Reparameterization (Optional) |- OPUMIZAIOR___
L vV CLS] Amazing movie |
Pretrained : e((CLS]) e(Amazing) e(moive) e(l) |
Weights |y vy ' ¥ R
—— Layer]l Prompts : ; N
W € Rdxd Layer2 Prompts : e i i
Layerl\i i;rompts |l o _____ | | Y i

Hu et al. "LoRA: Low-rank adaptation of large language models." arXiv:2106.09685.

Liu et al. "P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and
tasks." arXiv:2110.07602. 34

Petals In practice

) ‘ .

import torch

from transformers import BloomTokenizerFast
from petals.client 1mport DistributedBloomForCausalLM

MODEL NAME = "bigscience/bloom-petals”

tokenizer = BloomTokenizerFast.from pretrained(MODEL_NAME)
model = DistributedBloomForCausallLM.from_pretrained(MODEL_NAME)

inputs = tokenizer("A cat in French is \
remote_outputs model.generate(inputs, max_new_tokens=3)
print(tokenizer.decode(remote outputs[0]))
Output: A cat in French 1s "chat",

, return_tensors="pt")["input_ids"]

tinyurl.com/petals-colab

35

https://tinyurl.com/petals-colab

% Petals chat

Welcome! This chatbot runs BLOOMZ-176B over the
Petals network. Please do not enter sensitive data and
follow the model's terms of use. The chat history is
recorded.

-
A human talks to a powerful Al that

follows the human's instructions.

-

[Human: Hi!

[Al: Hi! How can | help you?]

Human:

chat.petals.ml

36

http://chat.petals.ml/

Conclusion

) Decentralized DL is a viable alternative to clusters
» Open-source libraries allow easy adaptation from standard setups
* Also useful for preemptible/spot instances (3x smaller cost)

) Ongoing challenges: data security, volunteer incentives, scheduling

) Curious to hear your thoughts on this line of research!

37

Other projects

BOB paid for Charlie's college education. He is very generous.
Bob paid for Charlie's college education. He is very grateful.

| o a BigScience initiative
Je suis siire que ce monument est dans mon guide, il est incontournable.

(I am sure this monument is in my guide, it is a must-see.)

Je suis siire que ce monument est dans mon guide, il est complet.

(I am sure this monument is in my guide, it is complete.)

Estimate Reverse KL

PIRISBEICEVWRBZ DT fco BOIBBLIBD > TeD BT,
(The professor gave the student a bad grade because he did not study.)

Ensemble Proxy Dirichlet Model R T [CBEVWREZE DT e RIBBRIE ST S,

(The professor gave the student a bad grade because he was strict.)

Hlyka crena mioTBy. OHa Oblna FOJIO/HA.

(The pike ate the roach. It was hungry.) 1768 params 59 Ianguages open-access
llyka cvena [iOBBY Ona Oblia BKyCHa.
(The pike ate the roach. It was delicious.)

Scaling Ensemble Distribution It's All in the Heads: Using BLOOM: A 176B-Parameter Open-Access

Distillation to Many Classes Attention Heads as a Baseline for Multilingual Language Model
with Proxy Targets Cross-Lingual Transfer in (as the Engineering and Scaling group chair
(with Andrey Malinin, Mark Gales) Commonsense Reasoning at BigScience)

(with Alexey Tikhonov)

38

Thank you!

Max Ryabinin
Senior Research Scientist, Yandex

PhD Student, HSE University

54 mryabinin0@gmail.com

& mryab.qgithub.io

http://mryab.github.io

