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Abstract

Knowledge Distillation is a method to train compressed neural networks with fewer
parameters that match the performance of large models. However, Knowledge
Distillation requires users to pre-define the architecture of the smaller model and
requires more GPU memory than direct training of the large model since during
the distillation process, we need to additional store the parameters and gradients of
the small model. In this work, we propose a novel distillation method called self-
teaching for Transformer architecture models that require neither pre-definition
of the student model nor additional GPU memory. We distill the full model into a
sub-component of the full model that only uses the bottom few layers and train the
intermediate hidden representations to match the output of the full model. We show
the effectiveness of our distillation method in fine-tuning BERT-base on GLUE
tasks, fine-tuning T5-large on summarization, as well as distilling a decoder-only
model on Wikitext-103 language modeling. Our results indicate that self-teaching
effectively distills neural networks trained from scratch and publicly available
pre-trained models to a smaller size with a minimal performance drop and does not
require additional compute. We release all of our code for reproducibility1.

1 Introduction

Large language models exhibit extraordinary abilities in natural language understanding [30, 31]
and generation [19]. Studies have shown that language models unlock more ’emergent abilities’
when scaled up to billions of parameters [33]. The increase in parameters poses great demand on
our resources. To compress these large models (i.e. the teacher model) into smaller models (i.e. the
student model) with minimal performance drop, a standard approach is using Knowledge Distillation
(KD) [6]. KD adds an auxiliary loss function that penalizes the KL divergence between the output
probability distribution of the teacher model and the student model for being too large. By enforcing
the output distribution of the teacher and student to be similar, KD effectively distills what the teacher
learns to the student.

Despite the success of KD in compressing pre-trained large language models [24], it requires you
to have additional computational resources to store both the teacher and the student model so that
they can be trained and distilled simultaneously. In a practical scenario, we want to use the largest
possible model that fits in our GPU memory. It becomes important to perform distillation without
requiring additional memory.

One effective way of compressing models without using additional resources is pruning. Unstructured
pruning removes individual parameters that do not contribute [17]. However, the model still needs
to store the weight matrices and perform the full matrix multiplication during inference. Another
line of work prunes individual components [4, 16, 12, 40] to achieve faster training and inference.

1https://github.com/tianjianl/self_supervised_sp23/tree/master/efficient-distillation
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No Additional Copies of Params No Iterative Retraining

Knowledge Distillation [6] ✘ ✔
Iterative Pruning [4] ✔ ✘
Iterative Pruning + Distillation [36, 10] ✘ ✘
Self Teaching (Ours) ✔ ✔

Table 1: An overview of different methods to learn a smaller model with comparable performance.
Our method does not require you to store an additional copy of the model parameters nor requires
iterative estimation and retraining of the model.

However, structured pruning all require careful estimation of parameter importance [13, 14, 44], and
some of the structure pruning methods require iterative pruning to compress to a desired amount of
parameters [4, 12]. We provide a detailed comparison between our method and other state-of-the-art
methods that learns smaller models in Table 1.

In this paper, we explore distilling a large transformer model by pruning individual layers. During
training, we match the output probabilistic distribution of an intermediate layer to the final output
distribution. Moreover, we utilize robust fine-tuning methods [1, 39] to tune the student model after
distillation to close the performance gap even further.

To sum up, our contribution is three-fold:

• We propose a novel distillation framework that neither requires designing the architecture
nor additional RAM to store the weights of the student model.

• We perform experiments on task-specific distillation on fine-tuning BERT [2] small (110M)
and Large (336M) as well as T5-large [22] (1.3B) to verify that our method generalizes
across different model architectures and sizes.

• We further close the performance gap between the student and the teacher model when the
teacher model is large by proposing an optional enhancement of our method.

2 Preliminaries

2.1 Importance Estimation of Parameters

The prominent way to estimate the importance of a single or group of parameters θj in both pruning
and training is measured by the difference in loss before and after θj is zeroed out, we use θj=0 to
denote the set of parameters when θj = 0.

I(θj) = |L(θ)− L(θj=0)| (1)

Approximating L(θj) using a second-order Taylor expansion yields:

L(θj=0) ≈ L(θ)− ∂L(θ)
∂θj

(θj − 0) +
1

2
(θj − 0)⊤

∂2L(θ)
∂θ2j

(θj − 0) (2)

If we view the second-order term as negligible and substituting 2 into 1, we get

I(θj) = |L(θ)− L(θj=0)| ≈
∣∣∣∣���L(θ)−

(
�

��L(θ)− ∂L(θ)
∂θj

(θj − 0)

)∣∣∣∣
=

∣∣∣∣∂L(θ)∂θj
(θj − 0)
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This importance metric was originally proposed to prune convolutional neural networks [17, 18, 28],
which is then extended to Transformer pruning [11, 39, 44]. In this paper, we use this loss-preserving
metric I(θj) as the importance metric of one or a set of parameters.
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2.2 Preliminary Experiments: Deeper Layers are Unimportant

With the importance score of each parameter defined in the previous section, we plot out the averaged
importance of each layer in BERT-large fine-tuned on the MNLI task [34] at 1a and their rank at 1b.
We can see that the deeper layers have relatively low importance compared to the other layers from a
loss-preserving perspective. In figure 1a the purple layer is always at the bottom throughout training
and in figure 1b the purple and red, which correspond to layers 22 and 18 are at the top, meaning that
their importance ranks the lowest during training.

Additionally, we plotted out the importance scores throughout the training of a T5-Large model
trained on the CNN/DM dataset [25] at figure 5 in the appendix. We found that there is no significant
importance difference between the encoder and decoder, but found that the deeper layers of the
encoder and the shallow layers of the decoder are generally more important, which echoes our
previous observations of the middle layers are more important than layers on both ends.
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Figure 1: Importance of Individual Layers of BERT-large (24 layers, 330M parameters)

The observation that deeper layers are generally unimportant motivates our distillation method of
distilling from the full model to the first few layers to achieve model compression without additional
GPU memory.
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Figure 2: Importance scores of individual layers of BERT-large throughout training on the MNLI
dataset. A deeper color corresponds to a higher training iteration.

For a more intuitive view of how unimportant the deeper layers are, we plotted the importance score
throughout training of BERT-large (24 layers) on the MNLI task in figure 2, where a deeper color
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corresponds to a larger training iteration. We observe that the importance of individual layers peaks
around the middle layers (10-15) and plummets after layer 18, which motivates our method to prune
out the deeper layers to construct a student model.

3 Method

We describe our self-teaching method at §3.1 and an optional more fine-grained version of self-
teaching that achieves better performance with more compute in detail at §3.2.

3.1 Self-Teaching

In this section, we describe our self-teaching method in detail. Given a neural network f parameterized
by θ, and an input x, the neural network maps the input to a probability distribution fθ(x) = ŷ. The
standard training objective minimizes the cross-entropy between the output probability distribution
and the ground-truth label y.

LCE(θ) = CE(y, fθ(x)) =
∑
i

yi log ŷi

Where yi and ŷi is the probability for the ith label.

Knowledge Distillation [6] minimizes the KL Divergence between the output of a teacher model f
and the output of a student model g for the same input x, assume g′θ(x) = ẑ:

LKD(θ, θ′) = KL(fθ(x)∥gθ′(x)) =
∑
i

ŷi log
ŷi
ẑi

In our self-teaching method, the student model is composed of the first n layers of the teacher model.
An illustration of our proposed method and a comparison between other distillation pipelines is
available in figure 2. 2a depicts the standard knowledge distillation method. 2b depicts self-distillation,
which is knowledge distillation with the teacher and student model being architecturally identical. 2c
depicts our self-teaching method that jointly minimizes the KL divergence between the final output
and the output of an intermediate layer:

L(θ) = LCE(θ) + α · KLDiv(fθ(x), fn
θ (x))

where fn
θ is the sub-model composed of only the first n layers of fθ.

3.2 Gradual Self-Teaching

Empirically, we find that pruning too many layers from larger models results in a larger performance
drop. We hypothesize that even the unimportant parameters, when aggregated, can contain important
information for the model to make predictions. Therefore, we propose a more fine-grained version of
self-teaching: gradual self-teaching, which iteratively prunes layers from the large model to achieve
minimize the performance drop from pruning too many layers.

Formally, we first pre-define a sequence of student layers s0 > s1 > s2 > ... > sn. Then we first
distill the large model to the first student s0 by jointly minimizing the prediction loss and distillation
loss until convergence

L(θ) = LCE(θ) + αLKD(fθ(x), f
s0
θ (x))

then on the next iteration, we treat the first student s0 as the teacher, and we match the output of
the second student to the teacher fs0

θ . After a student is trained until convergence, we treat it as the
teacher in the next iteration. At iteration t, we train on the following objective to convergence:

Lt(θ) = LCE

(
f
st−1

θ (x)
)
+ αLKD

(
f
st−1

θ (x), fst
θ (x)

)
4 Experiments

We evaluate self-teaching on two different scenarios: task-specific distillation: distilling pre-trained
encoder models and distilling encoder-decoder models trained for machine translation from scratch.
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Figure 3: Illustration of different distillation methods: Self-Distillation is when the Teacher and
student are models with identical structures but different initializations.

4.1 Setup

Distillation of Pre-trained Encoders: We use the Huggingface [35] implementation of BERT [2] and
experiment on two different sizes of BERT: BERT-base (110M parameters) and BERT-large (340M)
parameters. We train task-specific student models on five different tasks in the GLUE benchmark
[30] to verify that self-teaching generalizes across different tasks and model sizes. We report the
detailed hyper-parameter configuration at table 7 in the appendix.

Distillation of Encoder-Decoder Models: We use the official fairseq [20] implementation of
Transformers [29]. We experiment by pruning layers of pruning the same number of layers in both
the encoder and the decoder. We use five different languages (De, Ar, Fa, Es, He) from the IWSLT 14
machine translation dataset and train machine translation models from selected languages to English.

We also experiment on task-specific distillation on T5-large [22], a state-of-the-art encoder-decoder
model with 1.3B parameters. We use the official Huggingface implementation [35] and experiment
with two summarization tasks: CNN/Daily Mail [25], which contains 90k news articles and their
summaries, and WikiLingua [3], which contains over 100k English WikiHow instructions and
summaries.

4.2 Baselines

Table 2 reports the results of fine-tuning BERT-base and BERT-Large on six GLUE tasks. Our
reproduced results are in line with the reported results from [2].

RTE MRPC CoLA SST-2 QNLI QQP

BERT-Base (Ours) 66.4 88.1 55.0 93.0 90.7 90.2
BERT-Base (Reported) 66.4 88.9 52.1 93.5 90.5 89.6

BERT-Large (Ours) 70.1 89.1 61.3 94.2 92.4 91.1
BERT-Large (Reported) 70.1 89.3 60.5 94.9 92.7 91.3

Table 2: Baseline results on the development set fine-tuning of GLUE tasks, reported results are from
[2].

4.3 Distillation of BERT-base

We report the results of distilling BERT-base (110M parameters) with different student layers at Table
3. Self-teaching outperforms DistillBERT by using fewer parameters. Moreover, we highlight that
we do not require additional GPU memory. When only half of the layers are kept after distillation (6
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Model RTE QNLI CoLA MRPC SST-2 QQP Avg.

Full 12 Layers (110M) 66.4 90.7 55.0 88.1 93.0 90.2 80.6
DistillBERT [23] (66M) 59.9 89.2 51.3 87.5 91.3 88.5 78.0
First 9 Layers (66M) 66.0 90.3 54.7 87.7 92.1 89.4 80.0
First 8 Layers (58M) 65.7 89.1 55.2 86.2 91.9 90.2 79.7
First 7 Layers (51M) 63.5 88.1 51.2 85.6 91.3 89.9 78.3
First 6 Layers (44M) 63.2 86.9 43.3 84.5 89.4 87.2 76.0

Table 3: Results of self-teaching on BERT-base. Our method outperforms DistillBERT using the
same amount of parameters.

Model CoLA (Mcc.) RTE (Acc.) MRPC (Acc.)

Full 24 Layers (336M) 61.3 72.6 89.3
First 20 Layers (254M) 58.6 71.1 85.2
First 16 Layers (203M) 60.4 70.0 83.7
First 12 Layers (183M) 54.1 63.9 72.6
First 12 Layers w/o gradual (183M) 31.0 57.4 66.5

Table 4: Results on BERT-large

layers), we see that the average performance drop is 5.7% (80.6 → 76.0). Furthermore, if we constrain
the number of parameters to be the same as DistillBERT [23] (66M), self-teaching outperforms
DistillBERT by 2 points on average on our tested tasks. However, we acknowledge that our method
is doing task-specific distillation while DistillBERT is task-agnostic.

4.4 Gradual Self-Teaching on BERT-large

We empirically observe that directly distilling from the top layer leads to large performance degrada-
tion when the model is larger. Direct self-teaching does not scale well to larger models. To mitigate
this issue, we propose to gradually distill from the top layer to our final layer by defining a distillation
schedule. For example, if the schedule is 24 → 20 → 16 → 12, we first use the entire model as the
teacher and the sub-model composed of the first 20 layers as the student and so on.

We report the results when using a distillation schedule of 24 → 20 → 16 → 12 on BERT-large at
table 4. When we directly train the model to predict from layer 12 and to match the prediction of the
entire model (Direct Self-Teaching), the performance on the development set drops by a very large
margin for the above two tasks (61.3 → 31.0 for CoLA and 72.6 → 53.4 for RTE). However, if we
gradually distill from the entire model to layer 12, the gap between the distilled model and the whole
model closes up.

4.5 Ablation on Distillation Schedule

We show the results of the MRPC task with different distillation schedules in Figure 4. We found
that pruning one layer at a time during the end of the schedule preserves the model better. All of our
gradual distillation schedules outperform simple self-teaching from layer 24 to layer 12.

We found that gradually decreasing the number of pruned layers (the orange line) performs slightly
better than other schedules given a fixed model compression ratio: in this case, cutting the number of
layers in half (24 → 12).

4.6 Self-Teaching on Encoder-Decoder Models

Table 5 reports the results of distilling from T5 large using self-teaching. We only use the middle
chunk (the last 12 layers of the encoder + the first 12 layers of the decoder) during inference after
distillation. We were able to observe that even without a schedule of self-teaching, we can retain over
90% of the performance of the full model across two summarization tasks with different numbers of
training examples.
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Figure 4: Results with Different Distillation Schedules on MRPC

CNN/DM
Rouge-1/Rouge-2/Rouge-L

Wikilingua-English
Rouge-1/Rouge-2/Rouge-L

Full 48 layers (1B) 42.5/20.7/39.8 (100%) 31.3/14.8/26.7 (100%)
12 Encoder, 12 Decoder (517M) 38.8/15.2/34.4 (91.3%) 28.5/9.6/26.2 (91.1%)

Table 5: Results of Self-Teaching on T5-Large on two conditional generation tasks. The number of
training examples is shown next to the task. Cutting the number of layers in half still retains over
90% of the performance with self-teaching.

However, extracting the middle layers of a model can be expensive since it requires additional forward
passes through the model, unlike self-teaching with the bottom few layers that only need one forward
pass.

4.7 Task Agnostic Distillation

In addition to task-specific distillation, we continued to pre-train a GPT-2 Large (774M) [21] with
self-teaching on the wikitext-103 [15] dataset. For comparison, we also continue to pre-train GPT-2
without self-teaching and report the dev perplexity of both models:

Baseline
Full 36 Layers, 774M

Self-Teaching
First 24 Layers, 482M

Dev PPl ↓ 17.41 19.30
Table 6: Results on task-agnostic distillation using self-teaching on GPT-2 Large on language
modeling of the wikitext-103 dataset. Self-Teaching performs by less than two points in dev set
perplexity.

We were able to extend the success of self-teaching beyond task-specific distillation in various natural
language understanding and generation tasks. On language modeling of the wikitext-103 dataset,
self-teaching cuts one-third of the parameters with only less than 2 point increase in dev perplexity.

5 Related Works

Advanced Distillation Techniques. Knowledge Distillation was originally proposed for training a
single model to match the performance of an ensemble of models [6]. Follow-up works apply KD to
train smaller models to achieve faster inference [27, 23]. Another line of work called self-distillation
uses KD as a performance-boosting technique under the scenario when the model architecture of the
teacher and student are identical but with different initializations [5]. Follow-up work regularizes
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the output of the model when being fed a perturbed input from deviating too much from the output
when being fed an original input, which shows large improvement in both vision [41, 42] and text [1].
Recent studies leverage dropout as a way to perturb the inputs and perform self-distillation [37, 9, 39]

The closest to our work is Zhang et al. [43], which penalizes the prediction of the final layer deviating
too much from predictions from the intermediate layers in a convolutional neural network. Our work
differs in that Zhang et al. [43] applies KD to boost the performance of the teacher model, while the
aim of our work is to train a smaller model with minimal resource requirements.

Transformer Compression. Traditional KD matches the output distribution between the teacher
model and the student model, which requires the logits to be probability distributions. Recent works
also proposed to match the probability distribution of attention weights [32] and also minimizing the
mean squared error between intermediate layers [26, 10] for more fine-grained distillation.

Combining Pruning and Distillation. Model pruning removes redundant parameters to learn a
smaller but compact model. Recent studies combine model pruning and distillation to improve the
performance of the student model [7, 8, 38, 36, 10]. The two main paradigms of combining are to
prune and distill sequentially [7, 8] or simultaneously [38, 36, 10]. However, these methods require
iterative estimation of parameter importance and additional memory to store the student model. Both
requirements can be expensive when the teacher model is scaled to a larger size. In contrast, our
method leverages the fact that the deeper layers of transformers are generally less important and
distills within the same model to save time and memory.

6 Conclusion

The burdensome distillation process that either requires additional memory or iterative re-training
hinders the development of smaller models that achieve similar performance to their large counterparts.
In this work, we propose self-teaching: distilling within a model itself for more efficient distillation
of large Transformer models [29].
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A Appendix

A.1 Hyper-parameters

RTE MRPC CoLA SST-2 QNLI QQP

Learning Rate 3e-6, 1e-5 1e-5, 2e-5 3e-6, 3e-6 3e-6, 3e-6 5e-6, 3e-6 3e-6, 3e-6
Max Length 512 512 256 512 256 256
Epochs 10
Batch Size 16

Table 7: Detailed Hyper-parameter configuration for BERT-base and BERT-large experiments

A.2 Importance scores of a Trained model
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Figure 5: Importance of individual layers of T5-large (24 layer encoder + 24 layer decoder, 1.3B
parameters)
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