
Efficient Distillation of Transformers via Self-Teaching

Tianjian Li, Bismarck Odoom
Department of Computer Science,

Johns Hopkins University
Baltimore, MD

{tli104, bodoom1}@jhu.edu

Abstract

Knowledge Distillation is a method to train compressed neural networks with fewer
parameters that match the performance of large models. However, Knowledge
Distillation requires users to pre-define the architecture of the smaller model and
requires more GPU memory than direct training of the large model since during
the distillation process, we need to additional store the parameters and gradients of
the small model. In this work, we propose a novel distillation method called self-
teaching for Transformer architecture models that require neither pre-definition
of the student model nor additional GPU memory. We distill the full model into a
sub-component of the full model that only uses the bottom few layers and train the
intermediate hidden representations to match the output of the full model. We show
the effectiveness of our distillation method in fine-tuning BERT-base on GLUE
tasks, fine-tuning T5-large on summarization, as well as distilling a decoder-only
model on Wikitext-103 language modeling. Our results indicate that self-teaching
effectively distills neural networks trained from scratch and publicly available
pre-trained models to a smaller size with a minimal performance drop and does not
require additional compute. We release all of our code for reproducibility1.

1 Introduction

Large language models exhibit extraordinary abilities in natural language understanding [30, 31]
and generation [19]. Studies have shown that language models unlock more ’emergent abilities’
when scaled up to billions of parameters [33]. The increase in parameters poses great demand on
our resources. To compress these large models (i.e. the teacher model) into smaller models (i.e. the
student model) with minimal performance drop, a standard approach is using Knowledge Distillation
(KD) [6]. KD adds an auxiliary loss function that penalizes the KL divergence between the output
probability distribution of the teacher model and the student model for being too large. By enforcing
the output distribution of the teacher and student to be similar, KD effectively distills what the teacher
learns to the student.

Despite the success of KD in compressing pre-trained large language models [24], it requires you
to have additional computational resources to store both the teacher and the student model so that
they can be trained and distilled simultaneously. In a practical scenario, we want to use the largest
possible model that fits in our GPU memory. It becomes important to perform distillation without
requiring additional memory.

One effective way of compressing models without using additional resources is pruning. Unstructured
pruning removes individual parameters that do not contribute [17]. However, the model still needs
to store the weight matrices and perform the full matrix multiplication during inference. Another
line of work prunes individual components [4, 16, 12, 40] to achieve faster training and inference.

1https://github.com/tianjianl/self_supervised_sp23/tree/master/efficient-distillation

Preprint. Under review.

No Additional Copies of Params No Iterative Retraining

Knowledge Distillation [6] ✘ ✔
Iterative Pruning [4] ✔ ✘
Iterative Pruning + Distillation [36, 10] ✘ ✘
Self Teaching (Ours) ✔ ✔

Table 1: An overview of different methods to learn a smaller model with comparable performance.
Our method does not require you to store an additional copy of the model parameters nor requires
iterative estimation and retraining of the model.

However, structured pruning all require careful estimation of parameter importance [13, 14, 44], and
some of the structure pruning methods require iterative pruning to compress to a desired amount of
parameters [4, 12]. We provide a detailed comparison between our method and other state-of-the-art
methods that learns smaller models in Table 1.

In this paper, we explore distilling a large transformer model by pruning individual layers. During
training, we match the output probabilistic distribution of an intermediate layer to the final output
distribution. Moreover, we utilize robust fine-tuning methods [1, 39] to tune the student model after
distillation to close the performance gap even further.

To sum up, our contribution is three-fold:

• We propose a novel distillation framework that neither requires designing the architecture
nor additional RAM to store the weights of the student model.

• We perform experiments on task-specific distillation on fine-tuning BERT [2] small (110M)
and Large (336M) as well as T5-large [22] (1.3B) to verify that our method generalizes
across different model architectures and sizes.

• We further close the performance gap between the student and the teacher model when the
teacher model is large by proposing an optional enhancement of our method.

2 Preliminaries

2.1 Importance Estimation of Parameters

The prominent way to estimate the importance of a single or group of parameters θj in both pruning
and training is measured by the difference in loss before and after θj is zeroed out, we use θj=0 to
denote the set of parameters when θj = 0.

I(θj) = |L(θ)− L(θj=0)| (1)

Approximating L(θj) using a second-order Taylor expansion yields:

L(θj=0) ≈ L(θ)− ∂L(θ)
∂θj

(θj − 0) +
1

2
(θj − 0)⊤

∂2L(θ)
∂θ2j

(θj − 0) (2)

If we view the second-order term as negligible and substituting 2 into 1, we get

I(θj) = |L(θ)− L(θj=0)| ≈
∣∣∣∣���L(θ)−

(
�

��L(θ)− ∂L(θ)
∂θj

(θj − 0)

)∣∣∣∣
=

∣∣∣∣∂L(θ)∂θj
(θj − 0)

∣∣∣∣
This importance metric was originally proposed to prune convolutional neural networks [17, 18, 28],
which is then extended to Transformer pruning [11, 39, 44]. In this paper, we use this loss-preserving
metric I(θj) as the importance metric of one or a set of parameters.

2

2.2 Preliminary Experiments: Deeper Layers are Unimportant

With the importance score of each parameter defined in the previous section, we plot out the averaged
importance of each layer in BERT-large fine-tuned on the MNLI task [34] at 1a and their rank at 1b.
We can see that the deeper layers have relatively low importance compared to the other layers from a
loss-preserving perspective. In figure 1a the purple layer is always at the bottom throughout training
and in figure 1b the purple and red, which correspond to layers 22 and 18 are at the top, meaning that
their importance ranks the lowest during training.

Additionally, we plotted out the importance scores throughout the training of a T5-Large model
trained on the CNN/DM dataset [25] at figure 5 in the appendix. We found that there is no significant
importance difference between the encoder and decoder, but found that the deeper layers of the
encoder and the shallow layers of the decoder are generally more important, which echoes our
previous observations of the middle layers are more important than layers on both ends.

0 10000 20000 30000 40000 50000 60000
Training Iterations

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Av
er

ag
ed

 Im
po

rta
nc

e

Layer 1
Layer 4
Layer 7
Layer 10
Layer 13
Layer 16
Layer 19
Layer 22

(a) Parameter Importance plot

0 10000 20000 30000 40000 50000 60000
Training Iteration

0

5

10

15

20

25

Ra
nk

Layer 1
Layer 4
Layer 7
Layer 10
Layer 13
Layer 16
Layer 19
Layer 22

(b) Importance Rank

Figure 1: Importance of Individual Layers of BERT-large (24 layers, 330M parameters)

The observation that deeper layers are generally unimportant motivates our distillation method of
distilling from the full model to the first few layers to achieve model compression without additional
GPU memory.

0 5 10 15 20
Layer shallow -> deep

0

1

2

3

4

5

6

Im
po

rta
nc

e

1e 5

Figure 2: Importance scores of individual layers of BERT-large throughout training on the MNLI
dataset. A deeper color corresponds to a higher training iteration.

For a more intuitive view of how unimportant the deeper layers are, we plotted the importance score
throughout training of BERT-large (24 layers) on the MNLI task in figure 2, where a deeper color

3

corresponds to a larger training iteration. We observe that the importance of individual layers peaks
around the middle layers (10-15) and plummets after layer 18, which motivates our method to prune
out the deeper layers to construct a student model.

3 Method

We describe our self-teaching method at §3.1 and an optional more fine-grained version of self-
teaching that achieves better performance with more compute in detail at §3.2.

3.1 Self-Teaching

In this section, we describe our self-teaching method in detail. Given a neural network f parameterized
by θ, and an input x, the neural network maps the input to a probability distribution fθ(x) = ŷ. The
standard training objective minimizes the cross-entropy between the output probability distribution
and the ground-truth label y.

LCE(θ) = CE(y, fθ(x)) =
∑
i

yi log ŷi

Where yi and ŷi is the probability for the ith label.

Knowledge Distillation [6] minimizes the KL Divergence between the output of a teacher model f
and the output of a student model g for the same input x, assume g′θ(x) = ẑ:

LKD(θ, θ′) = KL(fθ(x)∥gθ′(x)) =
∑
i

ŷi log
ŷi
ẑi

In our self-teaching method, the student model is composed of the first n layers of the teacher model.
An illustration of our proposed method and a comparison between other distillation pipelines is
available in figure 2. 2a depicts the standard knowledge distillation method. 2b depicts self-distillation,
which is knowledge distillation with the teacher and student model being architecturally identical. 2c
depicts our self-teaching method that jointly minimizes the KL divergence between the final output
and the output of an intermediate layer:

L(θ) = LCE(θ) + α · KLDiv(fθ(x), fn
θ (x))

where fn
θ is the sub-model composed of only the first n layers of fθ.

3.2 Gradual Self-Teaching

Empirically, we find that pruning too many layers from larger models results in a larger performance
drop. We hypothesize that even the unimportant parameters, when aggregated, can contain important
information for the model to make predictions. Therefore, we propose a more fine-grained version of
self-teaching: gradual self-teaching, which iteratively prunes layers from the large model to achieve
minimize the performance drop from pruning too many layers.

Formally, we first pre-define a sequence of student layers s0 > s1 > s2 > ... > sn. Then we first
distill the large model to the first student s0 by jointly minimizing the prediction loss and distillation
loss until convergence

L(θ) = LCE(θ) + αLKD(fθ(x), f
s0
θ (x))

then on the next iteration, we treat the first student s0 as the teacher, and we match the output of
the second student to the teacher fs0

θ . After a student is trained until convergence, we treat it as the
teacher in the next iteration. At iteration t, we train on the following objective to convergence:

Lt(θ) = LCE

(
f
st−1

θ (x)
)
+ αLKD

(
f
st−1

θ (x), fst
θ (x)

)
4 Experiments

We evaluate self-teaching on two different scenarios: task-specific distillation: distilling pre-trained
encoder models and distilling encoder-decoder models trained for machine translation from scratch.

4

Teacher

Student

CE

KL

(a) Knowledge Distillation [6]

Teacher

Student

CE

KL

Student

(b) Self-Distillation [5]

Teacher

CE

KL

Student

(c) Self-Teaching (Ours)

Figure 3: Illustration of different distillation methods: Self-Distillation is when the Teacher and
student are models with identical structures but different initializations.

4.1 Setup

Distillation of Pre-trained Encoders: We use the Huggingface [35] implementation of BERT [2] and
experiment on two different sizes of BERT: BERT-base (110M parameters) and BERT-large (340M)
parameters. We train task-specific student models on five different tasks in the GLUE benchmark
[30] to verify that self-teaching generalizes across different tasks and model sizes. We report the
detailed hyper-parameter configuration at table 7 in the appendix.

Distillation of Encoder-Decoder Models: We use the official fairseq [20] implementation of
Transformers [29]. We experiment by pruning layers of pruning the same number of layers in both
the encoder and the decoder. We use five different languages (De, Ar, Fa, Es, He) from the IWSLT 14
machine translation dataset and train machine translation models from selected languages to English.

We also experiment on task-specific distillation on T5-large [22], a state-of-the-art encoder-decoder
model with 1.3B parameters. We use the official Huggingface implementation [35] and experiment
with two summarization tasks: CNN/Daily Mail [25], which contains 90k news articles and their
summaries, and WikiLingua [3], which contains over 100k English WikiHow instructions and
summaries.

4.2 Baselines

Table 2 reports the results of fine-tuning BERT-base and BERT-Large on six GLUE tasks. Our
reproduced results are in line with the reported results from [2].

RTE MRPC CoLA SST-2 QNLI QQP

BERT-Base (Ours) 66.4 88.1 55.0 93.0 90.7 90.2
BERT-Base (Reported) 66.4 88.9 52.1 93.5 90.5 89.6

BERT-Large (Ours) 70.1 89.1 61.3 94.2 92.4 91.1
BERT-Large (Reported) 70.1 89.3 60.5 94.9 92.7 91.3

Table 2: Baseline results on the development set fine-tuning of GLUE tasks, reported results are from
[2].

4.3 Distillation of BERT-base

We report the results of distilling BERT-base (110M parameters) with different student layers at Table
3. Self-teaching outperforms DistillBERT by using fewer parameters. Moreover, we highlight that
we do not require additional GPU memory. When only half of the layers are kept after distillation (6

5

Model RTE QNLI CoLA MRPC SST-2 QQP Avg.

Full 12 Layers (110M) 66.4 90.7 55.0 88.1 93.0 90.2 80.6
DistillBERT [23] (66M) 59.9 89.2 51.3 87.5 91.3 88.5 78.0
First 9 Layers (66M) 66.0 90.3 54.7 87.7 92.1 89.4 80.0
First 8 Layers (58M) 65.7 89.1 55.2 86.2 91.9 90.2 79.7
First 7 Layers (51M) 63.5 88.1 51.2 85.6 91.3 89.9 78.3
First 6 Layers (44M) 63.2 86.9 43.3 84.5 89.4 87.2 76.0

Table 3: Results of self-teaching on BERT-base. Our method outperforms DistillBERT using the
same amount of parameters.

Model CoLA (Mcc.) RTE (Acc.) MRPC (Acc.)

Full 24 Layers (336M) 61.3 72.6 89.3
First 20 Layers (254M) 58.6 71.1 85.2
First 16 Layers (203M) 60.4 70.0 83.7
First 12 Layers (183M) 54.1 63.9 72.6
First 12 Layers w/o gradual (183M) 31.0 57.4 66.5

Table 4: Results on BERT-large

layers), we see that the average performance drop is 5.7% (80.6 → 76.0). Furthermore, if we constrain
the number of parameters to be the same as DistillBERT [23] (66M), self-teaching outperforms
DistillBERT by 2 points on average on our tested tasks. However, we acknowledge that our method
is doing task-specific distillation while DistillBERT is task-agnostic.

4.4 Gradual Self-Teaching on BERT-large

We empirically observe that directly distilling from the top layer leads to large performance degrada-
tion when the model is larger. Direct self-teaching does not scale well to larger models. To mitigate
this issue, we propose to gradually distill from the top layer to our final layer by defining a distillation
schedule. For example, if the schedule is 24 → 20 → 16 → 12, we first use the entire model as the
teacher and the sub-model composed of the first 20 layers as the student and so on.

We report the results when using a distillation schedule of 24 → 20 → 16 → 12 on BERT-large at
table 4. When we directly train the model to predict from layer 12 and to match the prediction of the
entire model (Direct Self-Teaching), the performance on the development set drops by a very large
margin for the above two tasks (61.3 → 31.0 for CoLA and 72.6 → 53.4 for RTE). However, if we
gradually distill from the entire model to layer 12, the gap between the distilled model and the whole
model closes up.

4.5 Ablation on Distillation Schedule

We show the results of the MRPC task with different distillation schedules in Figure 4. We found
that pruning one layer at a time during the end of the schedule preserves the model better. All of our
gradual distillation schedules outperform simple self-teaching from layer 24 to layer 12.

We found that gradually decreasing the number of pruned layers (the orange line) performs slightly
better than other schedules given a fixed model compression ratio: in this case, cutting the number of
layers in half (24 → 12).

4.6 Self-Teaching on Encoder-Decoder Models

Table 5 reports the results of distilling from T5 large using self-teaching. We only use the middle
chunk (the last 12 layers of the encoder + the first 12 layers of the decoder) during inference after
distillation. We were able to observe that even without a schedule of self-teaching, we can retain over
90% of the performance of the full model across two summarization tasks with different numbers of
training examples.

6

12141618202224
Intermediate Layers

70

75

80

85

Pe
rfo

rm
an

ce

72.6

75.5

72.673.0
71.3

66.5

24_20_16_12
24_20_16_15_14_13_12
24_21_18_15_12
24_22_20_18_16_14_12
24_18_12
24_12

Figure 4: Results with Different Distillation Schedules on MRPC

CNN/DM
Rouge-1/Rouge-2/Rouge-L

Wikilingua-English
Rouge-1/Rouge-2/Rouge-L

Full 48 layers (1B) 42.5/20.7/39.8 (100%) 31.3/14.8/26.7 (100%)
12 Encoder, 12 Decoder (517M) 38.8/15.2/34.4 (91.3%) 28.5/9.6/26.2 (91.1%)

Table 5: Results of Self-Teaching on T5-Large on two conditional generation tasks. The number of
training examples is shown next to the task. Cutting the number of layers in half still retains over
90% of the performance with self-teaching.

However, extracting the middle layers of a model can be expensive since it requires additional forward
passes through the model, unlike self-teaching with the bottom few layers that only need one forward
pass.

4.7 Task Agnostic Distillation

In addition to task-specific distillation, we continued to pre-train a GPT-2 Large (774M) [21] with
self-teaching on the wikitext-103 [15] dataset. For comparison, we also continue to pre-train GPT-2
without self-teaching and report the dev perplexity of both models:

Baseline
Full 36 Layers, 774M

Self-Teaching
First 24 Layers, 482M

Dev PPl ↓ 17.41 19.30
Table 6: Results on task-agnostic distillation using self-teaching on GPT-2 Large on language
modeling of the wikitext-103 dataset. Self-Teaching performs by less than two points in dev set
perplexity.

We were able to extend the success of self-teaching beyond task-specific distillation in various natural
language understanding and generation tasks. On language modeling of the wikitext-103 dataset,
self-teaching cuts one-third of the parameters with only less than 2 point increase in dev perplexity.

5 Related Works

Advanced Distillation Techniques. Knowledge Distillation was originally proposed for training a
single model to match the performance of an ensemble of models [6]. Follow-up works apply KD to
train smaller models to achieve faster inference [27, 23]. Another line of work called self-distillation
uses KD as a performance-boosting technique under the scenario when the model architecture of the
teacher and student are identical but with different initializations [5]. Follow-up work regularizes

7

the output of the model when being fed a perturbed input from deviating too much from the output
when being fed an original input, which shows large improvement in both vision [41, 42] and text [1].
Recent studies leverage dropout as a way to perturb the inputs and perform self-distillation [37, 9, 39]

The closest to our work is Zhang et al. [43], which penalizes the prediction of the final layer deviating
too much from predictions from the intermediate layers in a convolutional neural network. Our work
differs in that Zhang et al. [43] applies KD to boost the performance of the teacher model, while the
aim of our work is to train a smaller model with minimal resource requirements.

Transformer Compression. Traditional KD matches the output distribution between the teacher
model and the student model, which requires the logits to be probability distributions. Recent works
also proposed to match the probability distribution of attention weights [32] and also minimizing the
mean squared error between intermediate layers [26, 10] for more fine-grained distillation.

Combining Pruning and Distillation. Model pruning removes redundant parameters to learn a
smaller but compact model. Recent studies combine model pruning and distillation to improve the
performance of the student model [7, 8, 38, 36, 10]. The two main paradigms of combining are to
prune and distill sequentially [7, 8] or simultaneously [38, 36, 10]. However, these methods require
iterative estimation of parameter importance and additional memory to store the student model. Both
requirements can be expensive when the teacher model is scaled to a larger size. In contrast, our
method leverages the fact that the deeper layers of transformers are generally less important and
distills within the same model to save time and memory.

6 Conclusion

The burdensome distillation process that either requires additional memory or iterative re-training
hinders the development of smaller models that achieve similar performance to their large counterparts.
In this work, we propose self-teaching: distilling within a model itself for more efficient distillation
of large Transformer models [29].

References
[1] Armen Aghajanyan et al. “Better Fine-Tuning by Reducing Representational Collapse”. In:

International Conference on Learning Representations. 2021. URL: https://openreview.
net/forum?id=OQ08SN70M1V.

[2] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, June
2019, pp. 4171–4186. DOI: 10.18653/v1/N19-1423. URL: https://aclanthology.org/
N19-1423.

[3] Claire Cardie Faisal Ladhak Esin Durmus and Kathleen McKeown. “WikiLingua: A New
Benchmark Dataset for Multilingual Abstractive Summarization”. In: Findings of EMNLP,
2020. 2020.

[4] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks”. In: International Conference on Learning Representations. 2019.
URL: https://openreview.net/forum?id=rJl-b3RcF7.

[5] Tommaso Furlanello et al. “Born Again Neural Networks”. In: Proceedings of the 35th
International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause.
Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 1607–1616. URL:
https://proceedings.mlr.press/v80/furlanello18a.html.

[6] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network.
2015. arXiv: 1503.02531 [stat.ML].

[7] Lu Hou et al. “DynaBERT: Dynamic BERT with Adaptive Width and Depth”. In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates,
Inc., 2020, pp. 9782–9793. URL: https://proceedings.neurips.cc/paper_files/
paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf.

8

https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.mlr.press/v80/furlanello18a.html
https://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf

[8] François Lagunas et al. “Block Pruning For Faster Transformers”. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. Online and Punta Cana,
Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 10619–10629.
DOI: 10.18653/v1/2021.emnlp-main.829. URL: https://aclanthology.org/2021.
emnlp-main.829.

[9] Hyoje Lee et al. Self-Knowledge Distillation via Dropout. 2022. arXiv: 2208.05642 [cs.CV].
[10] Chen Liang et al. “HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Trans-

formers”. In: The Eleventh International Conference on Learning Representations. 2023. URL:
https://openreview.net/forum?id=D7srTrGhAs.

[11] Chen Liang et al. “No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for
Training Large Transformer Models”. In: International Conference on Learning Representa-
tions. 2022. URL: https://openreview.net/forum?id=cuvga_CiVND.

[12] Chen Liang et al. “Super Tickets in Pre-Trained Language Models: From Model Compression
to Improving Generalization”. In: Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Online: Association for Computational Lin-
guistics, Aug. 2021, pp. 6524–6538. DOI: 10.18653/v1/2021.acl- long.510. URL:
https://aclanthology.org/2021.acl-long.510.

[13] Zhuang Liu et al. “Rethinking the Value of Network Pruning”. In: International Confer-
ence on Learning Representations. 2019. URL: https://openreview.net/forum?id=
rJlnB3C5Ym.

[14] Ekdeep Singh Lubana and Robert Dick. “A Gradient Flow Framework For Analyzing Network
Pruning”. In: International Conference on Learning Representations. 2021. URL: https:
//openreview.net/forum?id=rumv7QmLUue.

[15] Stephen Merity et al. Pointer Sentinel Mixture Models. 2016. arXiv: 1609.07843 [cs.CL].
[16] Paul Michel, Omer Levy, and Graham Neubig. “Are Sixteen Heads Really Better than One?”

In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper_files/
paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf.

[17] Pavlo Molchanov et al. “Importance Estimation for Neural Network Pruning”. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 11256–
11264. DOI: 10.1109/CVPR.2019.01152.

[18] Pavlo Molchanov et al. “Pruning Convolutional Neural Networks for Resource Efficient
Inference”. In: International Conference on Learning Representations. 2017. URL: https:
//openreview.net/forum?id=SJGCiw5gl.

[19] Ramesh Nallapati et al. “Abstractive Text Summarization using Sequence-to-sequence RNNs
and Beyond”. In: Proceedings of the 20th SIGNLL Conference on Computational Natural
Language Learning. Berlin, Germany: Association for Computational Linguistics, Aug. 2016,
pp. 280–290. DOI: 10.18653/v1/K16-1028. URL: https://aclanthology.org/K16-
1028.

[20] Myle Ott et al. “fairseq: A Fast, Extensible Toolkit for Sequence Modeling”. In: Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics (Demonstrations). Minneapolis, Minnesota: Association for Compu-
tational Linguistics, June 2019, pp. 48–53. DOI: 10.18653/v1/N19-4009. URL: https:
//aclanthology.org/N19-4009.

[21] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In: (2019).
[22] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer”. In: J. Mach. Learn. Res. 21.1 (Jan. 2020). ISSN: 1532-4435.
[23] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and

lighter”. In: 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @
NeurIPS 2019. 2019. arXiv: 1910.01108. URL: http://arxiv.org/abs/1910.01108.

[24] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter”. In: CoRR abs/1910.01108 (2019). URL: http://arxiv.org/abs/1910.01108.

9

https://doi.org/10.18653/v1/2021.emnlp-main.829
https://aclanthology.org/2021.emnlp-main.829
https://aclanthology.org/2021.emnlp-main.829
https://arxiv.org/abs/2208.05642
https://openreview.net/forum?id=D7srTrGhAs
https://openreview.net/forum?id=cuvga_CiVND
https://doi.org/10.18653/v1/2021.acl-long.510
https://aclanthology.org/2021.acl-long.510
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rumv7QmLUue
https://openreview.net/forum?id=rumv7QmLUue
https://arxiv.org/abs/1609.07843
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://doi.org/10.1109/CVPR.2019.01152
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://doi.org/10.18653/v1/K16-1028
https://aclanthology.org/K16-1028
https://aclanthology.org/K16-1028
https://doi.org/10.18653/v1/N19-4009
https://aclanthology.org/N19-4009
https://aclanthology.org/N19-4009
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108

[25] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To The Point: Summarization with
Pointer-Generator Networks”. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for
Computational Linguistics, July 2017, pp. 1073–1083. DOI: 10.18653/v1/P17-1099. URL:
https://www.aclweb.org/anthology/P17-1099.

[26] Siqi Sun et al. “Patient Knowledge Distillation for BERT Model Compression”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 4323–4332. DOI:
10.18653/v1/D19-1441. URL: https://aclanthology.org/D19-1441.

[27] Raphael Tang et al. “Distilling Task-Specific Knowledge From BERT Into Simple Neural
Networks”. In: ArXiv abs/1903.12136 (2019). URL: http://arxiv.org/abs/1903.12136.

[28] L. Theis et al. “Faster gaze prediction with dense networks and Fisher pruning”.
arXiv:1801.05787. 2018. URL: https://arxiv.org/abs/1801.05787.

[29] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.
URL: https : / / proceedings . neurips . cc / paper _ files / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[30] Alex Wang et al. “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding”. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium: Association for
Computational Linguistics, Nov. 2018, pp. 353–355. DOI: 10.18653/v1/W18-5446. URL:
https://aclanthology.org/W18-5446.

[31] Alex Wang et al. “SuperGLUE: A Stickier Benchmark for General-Purpose Language Under-
standing Systems”. In: arXiv preprint 1905.00537 (2019).

[32] Wenhui Wang et al. “MiniLM: Deep Self-Attention Distillation for Task-Agnostic Com-
pression of Pre-Trained Transformers”. In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 5776–5788.
URL: https : / / proceedings . neurips . cc / paper _ files / paper / 2020 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[33] Jason Wei et al. “Emergent Abilities of Large Language Models”. In: Transactions on Ma-
chine Learning Research (2022). Survey Certification. ISSN: 2835-8856. URL: https://
openreview.net/forum?id=yzkSU5zdwD.

[34] Adina Williams, Nikita Nangia, and Samuel Bowman. “A Broad-Coverage Challenge Corpus
for Sentence Understanding through Inference”. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association for
Computational Linguistics, June 2018, pp. 1112–1122. DOI: 10.18653/v1/N18-1101. URL:
https://aclanthology.org/N18-1101.

[35] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational Linguistics, Oct. 2020, pp. 38–
45. URL: https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[36] Mengzhou Xia, Zexuan Zhong, and Danqi Chen. “Structured Pruning Learns Compact and
Accurate Models”. In: Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 1513–1528. DOI: 10.18653/v1/2022.acl-long.107. URL:
https://aclanthology.org/2022.acl-long.107.

[37] xiaobo liang xiaobo et al. “R-Drop: Regularized Dropout for Neural Networks”. In: Advances
in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates,
Inc., 2021, pp. 10890–10905. URL: https://proceedings.neurips.cc/paper_files/
paper/2021/file/5a66b9200f29ac3fa0ae244cc2a51b39-Paper.pdf.

[38] Dongkuan Xu et al. “Rethinking Network Pruning – under the Pre-train and Fine-tune
Paradigm”. In: Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies. Online: Association
for Computational Linguistics, June 2021, pp. 2376–2382. DOI: 10.18653/v1/2021.naacl-
main.188. URL: https://aclanthology.org/2021.naacl-main.188.

10

https://doi.org/10.18653/v1/P17-1099
https://www.aclweb.org/anthology/P17-1099
https://doi.org/10.18653/v1/D19-1441
https://aclanthology.org/D19-1441
http://arxiv.org/abs/1903.12136
https://arxiv.org/abs/1801.05787
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/W18-5446
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.18653/v1/N18-1101
https://aclanthology.org/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-long.107
https://aclanthology.org/2022.acl-long.107
https://proceedings.neurips.cc/paper_files/paper/2021/file/5a66b9200f29ac3fa0ae244cc2a51b39-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5a66b9200f29ac3fa0ae244cc2a51b39-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.188
https://doi.org/10.18653/v1/2021.naacl-main.188
https://aclanthology.org/2021.naacl-main.188

[39] Haoran Xu, Philipp Koehn, and Kenton Murray. “The Importance of Being Parameters: An
Intra-Distillation Method for Serious Gains”. In: Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022, pp. 170–183. URL: https://aclanthology.
org/2022.emnlp-main.13.

[40] Runxin Xu et al. “S4-Tuning: A Simple Cross-lingual Sub-network Tuning Method”. In: Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Dublin, Ireland: Association for Computational Linguistics, May 2022,
pp. 530–537. DOI: 10.18653/v1/2022.acl-short.58. URL: https://aclanthology.
org/2022.acl-short.58.

[41] Ting-Bing Xu and Cheng-Lin Liu. “Data-Distortion Guided Self-Distillation for Deep Neural
Networks”. In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (July
2019), pp. 5565–5572. DOI: 10.1609/aaai.v33i01.33015565. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/4498.

[42] Sukmin Yun et al. “Regularizing Class-Wise Predictions via Self-Knowledge Distillation”. In:
The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.

[43] Linfeng Zhang et al. “Be Your Own Teacher: Improve the Performance of Convolutional
Neural Networks via Self Distillation”. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). 2019, pp. 3712–3721. DOI: 10.1109/ICCV.2019.00381.

[44] Qingru Zhang et al. “PLATON: Pruning Large Transformer Models with Upper Confidence
Bound of Weight Importance”. In: arXiv preprint arXiv:2206.12562 (2022).

11

https://aclanthology.org/2022.emnlp-main.13
https://aclanthology.org/2022.emnlp-main.13
https://doi.org/10.18653/v1/2022.acl-short.58
https://aclanthology.org/2022.acl-short.58
https://aclanthology.org/2022.acl-short.58
https://doi.org/10.1609/aaai.v33i01.33015565
https://ojs.aaai.org/index.php/AAAI/article/view/4498
https://ojs.aaai.org/index.php/AAAI/article/view/4498
https://doi.org/10.1109/ICCV.2019.00381

A Appendix

A.1 Hyper-parameters

RTE MRPC CoLA SST-2 QNLI QQP

Learning Rate 3e-6, 1e-5 1e-5, 2e-5 3e-6, 3e-6 3e-6, 3e-6 5e-6, 3e-6 3e-6, 3e-6
Max Length 512 512 256 512 256 256
Epochs 10
Batch Size 16

Table 7: Detailed Hyper-parameter configuration for BERT-base and BERT-large experiments

A.2 Importance scores of a Trained model

0 10000 20000 30000 40000 50000
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Im
po

rta
nc

e

1e 5
Encoder Layer 0
Encoder Layer 4
Encoder Layer 8
Encoder Layer 12
Encoder Layer 16
Encoder Layer 20
Decoder Layer 0
Decoder Layer 4
Decoder Layer 8
Decoder Layer 12
Decoder Layer 16
Decoder Layer 20

Figure 5: Importance of individual layers of T5-large (24 layer encoder + 24 layer decoder, 1.3B
parameters)

12

	Introduction
	Preliminaries
	Importance Estimation of Parameters
	Preliminary Experiments: Deeper Layers are Unimportant

	Method
	Self-Teaching
	Gradual Self-Teaching

	Experiments
	Setup
	Baselines
	Distillation of BERT-base
	Gradual Self-Teaching on BERT-large
	Ablation on Distillation Schedule
	Self-Teaching on Encoder-Decoder Models
	Task Agnostic Distillation

	Related Works
	Conclusion
	Appendix
	Hyper-parameters
	Importance scores of a Trained model

