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Abstract

Large language models (LLMs) have seen recent spikes of popularity due to
increasing quantities of training data and powerful compute. However, LLMs
continue to hallucinate and are by no means memory efficient. We attempt to
mitigate these issues through domain-specific knowledge distillation. Domain
specific distillation requires reducing both the parameter size and vocabulary
alterations while fine tuning to restricted domains of knowledge, such as law,
medicine, math, or computer science, which allows models to perform more
accurately in domain-specific answering tasks than domain-agnostic distillation.
Through careful distillation, we propose a mixture-of-experts (MoE) of smaller
and more efficient domain-specific and domain-agnostic models that in aggregate
perform similarly to a larger model on domain-specific tasks.

1 Introduction & Motivation

Large language models (LLMs) have caught on in popularity in the recent years as their capabilities
have developed, especially with the release of ChatGPT and the announcement of GPT4 (OpenAI,
2023). As demand for more accessible and personalized LLMs increase, we foresee issues with
the large memory footprint of LLMs. We wish to experiment with model distillation as a way to
take advantage of the weights of existing LLMs to lower the overall memory footprint. Knowledge
distillation is the process of training a smaller model student on the input-output pairs of the larger
teacher model. By using fine-tuned domain-specific models as teacher models, higher accuracies are
achieved in domain-specific tasks. (Yao et al., 2021). We hypothesize that when these domain-specific
student models are mixed together, a model with an overall smaller memory footprint but with higher
domain-specific accuracy can be constructed.

In this work, a mixture-of-experts model is built by stacking distilled BERT models for Multiple
Choice Question Answering fine-tuned for the domains of arithmetic, science, and medicine. A
mixture-of-experts model was chosen as it has been shown to achieve up to 1000x more improvements
on model capacity (Shazeer et al., 2017), making it an appealing method when combining smaller
models. Mixture-of-expert ensembles also take into account multiple experts, which allows for a
more well-rounded response. We also aim to investigate whether multiple experts can help with
answering questions across different domains.
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We introduce SEEK, a stacked ensemble of expert knowledge for multiple choice question answering.
We show that smaller specialized learners in aggregate can perform nearly as well as larger fine-tuned
teacher models can. Rather than exponentially increasing model size based on exponential scaling
laws, we have a model that can grow linearly in size across domains. The sections of this paper are as
follows: In section 2 we outline current related works in knowledge distillation and mixture-of-experts.
In sections 3 and 4 we expand on the importance of knowledge distillation and mixture-of-experts as
a valid path for compressed knowledge. In section 5 we introduce SEEK, followed by experiments
and ablation studies in section 6. Results are outlined in section 7.

2 Related Work

Knowledge Distillation Knowledge distillation continues to be an active field of research. Distill-
Bert (Sanh et al., 2020), one of the most utilized distilled networks demonstrated that first fine-tuning
teacher models on the target task increased performance compared to first distilling and then fine-
tuning student models. Many others, including Adapt-and-Distill (Yao et al., 2021), Domain-specific
knowledge distillation (Howell et al., 2022), and Knowledge Distillation Transfer Sets (Peris et al.,
2022), have shown that distilling models using domain-specific knowledge can improve performance
in downstream tasks. Many works of knowledge distillation continue to focus on the computational
efficiency of smaller models and application to on-the-edge device computing rather than expert
knowledge retention.

Model Compression Techniques Model compression techniques have grown in popularity as large
language models are frequently exceeding hundreds of billions of parameters. Model compression is
typically divided into two sub-categories: quantization and pruning. Many, including Gupta et al.,
2015, have explored quantization in an effort to reduce the memory footprint of large models. It’s been
shown that with little reductions in performance, moving from 32-bit to 16, and 8 bit models can result
in significant boosts in efficiency. With similar motivations, Wang, et al., 2021 present structured
pruning as a technique to reduce redundant model parameters. While not entirely orthogonal, in this
paper we demonstrate that similar strides towards model efficiency can be achieved through expert
routing to distilled domain-specific models while retaining similar and/or better performance on
specific downstream tasks.

Expert Routing Machine learning models are inherently limited by their parameter counts, and
consequently their capacity to absorb information. Mixture-of-Experts, a technique where subsets
of a network are activated conditioned on the given example have proven useful in enabling much
larger parameters without the computational overhead of computing inference over the entire set of
weights. A trainable Sparsely-Gated Mixture-of-Experts layer is introduced that learns to attend over
the sub-networks (Shazeer et al., 2017). GShard (Lepikhin et al., 2020) shows that similar layers can
be scaled up to MoE Transformers with 600 billion parameters. Switch Transformer (Fedus et al.,
2021) grows this to trillions of parameters by only routing to 1 sub-network. More recently, Zhou et
al., 2022 describes the effect of expert choice routing, where each expert picks top-k tokens instead
of conditioning expert assignment from based on input tokens. It was noted that this method achieves
better load balancing across experts and better training efficiency compared to previous methods.
Inspired by this, we plan to develop an attention mechanism across the ensemble of student models,
attending to each model’s strengths ad hoc.

3 Expert Knowledge Distillation

Domain-specific knowledge distillation is a technique in machine learning that involves transferring
knowledge from a larger or more complex model, often referred to as the teacher model, to a smaller
or simpler model, referred to as the student model, which is specialized to perform well on a specific
domain or task. The process of knowledge transfer involves training the teacher model on a large
dataset covering multiple domains or tasks and using it to generate soft targets or labels that contain
additional information beyond the ground truth labels.

The soft targets, which typically include the probabilities associated with each label, are then used to
train the student model on a smaller dataset specific to the target domain or task. The student model is
trained to mimic the behavior of the teacher model in generating soft targets, as well as in producing
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accurate predictions on the specific domain or task. This allows the student model to learn from the
knowledge of the larger teacher model, without requiring access to the entire training dataset used to
train the teacher model. Moreover, it has been shown that effective knowledge distillation outperforms
finetuning smaller models since soft targets have more entropy than single labels, effectively allowing
smaller models to learn more complex parameters than they could otherwise.

Domain-specific knowledge distillation is particularly useful in scenarios where the larger teacher
model is too resource-intensive to be deployed in a real-world application or where the smaller student
model is required to operate with limited computational resources. By distilling the knowledge of the
teacher model into the student model, the resulting model can be both smaller and more accurate,
making it well-suited for deployment in real-world applications with limited computational resources.

Student models can be well initialized by selecting a subset of attention layers from the teacher model
for use in the student. This works in part due to the residual connections between attention layers,
resulting in modest modifications between multiple layer (Sanh, et al., 2020).

SEEK’s expert models are formed by distilling fine-tuned teacher models on each of the specific
domains. The data used for distillation is consistent with that for fine-tuning. The largest reduction in
model parameters is made by reducing attention layers. Our expert models contain 6 attention layers
compared to the 12 in teacher models, approximately halving each expert to 66 million parameters
from the 109 million in standard BERT models.

Figure 1: List of expert datasets with examples of questions and answers

Expert Datasets Four datasets were used to fine tune models in this experiment.

• Aqua_Rat: The first dataset used was the AquaRat dataset, a math dataset that is a su-
perset of the MathQ dataset. It consists of 100,000 algebraic word problems (Ling et al.,
2017).These questions had 5 multiple choice selections, so all questions that had the fifth
choice as the correct choice were filtered out to fit our superset.

• Ai2Arc: The second dataset was Ai2Arc, a collection of 7,787 grade school level multiple
choice science questions (Clark et al., 2018).

• MedMCQA: MedMCQA is a corpus of multiple choice questions that are reflective of
medical school entrance examinations. MedMCQA has more than 194k AIIMS and NEET
PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects (Pal et
al., 2022). The dataset also consists of expert reasoning for correct answers, making it
a interesting task for future open-domain quesiton answering. Some of the questions in
MedMCQA were multiple-select, which we filtered out before using for our models.

• SciQ: The fourth dataset used was SciQ, a crowdsourced dataset of a wide span of science
exam questions about Physics, Chemistry and Biology. All 3,679 questions were multiple
choice with four answer options (Welbl et al., 2017).
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Distillation Loss To train our student model, we use a weighted combination of Kullback-Leibler
Divergence and cross entropy loss across our teacher output and ground truth, respectively.

L(x;W ) = α(KLdiv(ys, yt)) + (1− α)(CE(ys, y))

To distill our student models, alpha was kept at 0.9. Previous works (Sanh et al., 2020), have also
experimented with soft targets over model parameters themselves adding L2 loss for comparable
attention layers between the student and teacher.

4 Mixture of Experts Layer

In most Mixture-of-Expert (MoE) models, input data is first fed into a gating network, which takes as
input a data point and outputs a set of probabilities over the experts. A wide variety of gating networks
exist, ranging from simple feed-forward neural networks taking in the input to more complex models
that consider the interactions between input features. Sparsely gated MoEs enable much larger models
as only subsets of the network are trained simultaneously. Typically the top k experts scored by the
gating mechanism are selected.

Each expert is a sub-model that specializes in a particular aspect of the problem. The experts do not
need to be homogeneous, but should receive and produce the same structures in vector space. Each
expert receives a subset of the input data and produces its own output. The outputs of the experts
are then combined to produce the final output. During training, the gating network learns to allocate
the input data to the appropriate experts, and the experts learn to produce accurate outputs for their
assigned data points. It has been shown that MoE models can learn to specialize each of their experts.
There are several ways to combine the outputs of the experts. The most common approach is to use
a weighted sum, where the weights are determined by the gating network probabilities, however
non-linear combinations can also be learned via a neural network.

MoE has several advantages over single-model approaches. First, it allows the model to capture
complex, multi-modal distributions in the input data by learning a mixture of models. Second, it
can handle non-stationary data distributions by adapting the gating network probabilities as the data
changes. Finally, it can improve the overall accuracy and robustness of the model by combining the
strengths of multiple models for inference.

Figure 2: Our Mixture of Experts (MoE) architecture, which utilizes Top-K Gating to dispatch the
input to the correct expert(s). The output is a weighted sum of these experts, which is then used as
the label for multiple choice question answering.
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5 A Stacked Ensemble for Expert Knowledge

Fine-tuned Teacher Models Four standard size BERT models are used as teacher models, covering
three specific domains and one semi-domain-agnostic dataset. They are the BERT base model1,
SciBERT2, MathBERT3, and OntoMedQA4. All of the pretrained models were fine-tuned on in-
domain multiple choice questions, using ai2_arc , sciq, aqua_rat, and MedMCQA, respectively. These
large models for multiple choice question answering serve as the teacher models for distillation.

Table 1: List of pretrained models and accuracies on domain-specific datasets after fine-tuning

Model Dataset Finetuned Accuracy
MathBert aqua_rat 0.3684

BERT-base ai2_arc 0.5121
OntoMedQA medmcqa 0.3008

SciBert sciq .754

Student Models To create the student model, we initialize another BertForMultipleChoice model
with half (6) of the amount of hidden layers. Reducing attention layers is the most effective way
to reduce parameter counts. We then copied the weights of every other hidden layer in the teacher
model. We then trained the student models on the domain-specific datasets again, trying to match
the answer of the teacher model using soft targets of the answer classes as well as the ground truth
answer provided from our dataset. An alpha value of 0.9 was used to balance the importance of the
two optimization tasks.

Mixture of Experts Similar to Shazeer et al., 2017, the MoE network proposed here consist of
n = 4 expert models E1, . . . , En with a sparse gating network G that produces a sparse probability
distribution over the experts given input x. Top k = 2 experts are chosen. In order to reduce the size of
the gating network, input data is parsed in the following ways. xe, denoting Question-answer pairs of
the form [question + answer A, question + answer B, question + answer C, question + answer D]
are sent to each of the selected experts. A summary of the question and answers, xg, is given
to the gating network as [Question+AnswerA,AnswerB,AnswerC,AnswerD]. The embed-
dings of xg are encoded by a BERT model and fed to a feed forward network to produce conditional
probabilities over the top k experts. Specifically, a softmax gating function, a trivial choice for
non-sparse gating, is augmented with trainable weights and random Gaussian noise. The feature-
extraction portion of the network is not backpropagated over during training, and thus training times
are rather efficient. It is expected, however, that a smaller encoding model can be used while retaining
similar performance.

G(x) = Softmax
(
TopK

(
xgWgate +N (µ, σ2) · Softplus(xgWnoise

))
(1)

That is the conditional probability that a value is in the top k given random noise is computed during
training, providing a differentiable loss that is also capable of helping to balance the load of experts.
Details of this loss are discussed in appendix A of Shazeer, et al. 2017, however it can be summarized
as the square of the coefficient of variation of the load vector. At inference, no noise is given, the
prediction is deterministic and losses cannot be back propagated.

Furthermore, a weighted sum of the expert outputs is chosen as a aggregator. Therefore the output of
the MoE can be described as:

y =

n∑
i=1

G(x)iEi(x) (2)

The authors Shazeer et al. 2017 note that if the number of experts is very large, the branching factor
can be reduced by stacking multiple MoE gating networks, creating an hierarchical MoE. Due to the
specific architecture of chosen domain-specific experts here, we found this to not be necessary.

1https://huggingface.co/bertbaseuncased
2https://huggingface.co/allenai/scibert_scivocab_uncased
3https://huggingface.co/tbs17/MathBERT
4https://huggingface.co/sahillihas/OntoMedQA
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In our implementation, we pass the question into a Hugging Face Pipeline instead of the model
directly. This allows us to standardize the data to the format mentioned above and abstract model
vocabulary and technical niches into the pipeline. The pipeline takes in the input from the dispatcher,
then preprocesses the data to fit the model, and the model’s inference is called. This also makes
attaching other experts in the future much easier.

6 Experiments

Experiments

Evaluation Strategy To evaluate our ensemble model, we combined 800 multiple choice questions.
200 questions were selected from each test split, or a portion of the validation split if the test splits
did not contain ground truth answers. Accuracy was used as the evaluation metric. The distribution
of questions are balanced across the datasets.

Experiments An ensemble of finetuned teacher models is first evaluated as a baseline. As outlined
in Table 2, an accuracy of 44% accuracy was achieved on our evaluation bench-set. To directly
compare, an ensemble of distilled student models is evaluated. 44% accuracy is achieved with only
68.9% of the parameters. It is important to note that a significant portion of model parameters
originates from the BERT encoder described above (109 million).

Ablation Studies Further ablation studies over the MoE experts is performed. We examined leave
one out ensembles, in which a single expert is removed from the ensemble. This allows us to evaluate
the impact a particular expert has in overall performance. We show robustness between experts with
similar domains.

7 Results & Discussion

Table 2: Results of various MoE ensembles, including various leaveoneout experiments. Model
parameters are provided to compare accuracy loss with parameter count.

Model Training Accuracy Testing Accuracy Model Parameters (M)
Teacher Models 82% 44% 548.3
Distilled Student Models 84% 40% 378.2
Leave-One-Out (Arc) 67% 35% 311.3
Leave-One-Out (Medical) 67% 37% 311.3
Leave-One-Out (Science) 84% 40% 311.3
Leave-One-Out (Math) 67% 35% 311.3

Though the ensemble of student models is 4% worse on testing data, it is 170.1 million parameters
less. While it is unfortunate that the student models perform worse than the teacher models, this was
to be expected since the models are much smaller. Note that just BERT (BERT-based-uncased) show
an accuracy of 23% on our test dataset, which is no different from just random chance. Thus, we are
able to still be better than a base BERT, but no better than a teacher.

While the goal of this paper is not to propose a new metric, to further quantify our results, we propose
one simple method. The metric will be the accuracy divided by the log of the number of parameters.
This metric will reward accuracy but punish the number of parameters, while taking into account the
exponential scaling laws of large-language models (Kaplan et al., 2020). This way, we are measuring
the accuracy versus the potential knowledge available from the model size.

score =
accuracy

log(#Params)

From the size-adjusted scores (Table 3), we can see that our student models do perform worse. This
is most likely due to a loss of information during distillation.
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Table 3: Size-adjusted scores

Model Training Score Testing Score Model Parameters (M)
Teacher Models 9.38 5.03 548.3
Distilled Student Models 9.79 4.66 378.2
Leave-One-Out (Arc) 7.89 4.12 311.3
Leave-One-Out (Medical) 7.89 4.36 311.3
Leave-One-Out (Science) 9.89 4.71 311.3
Leave-One-Out (Math) 7.89 4.12 311.3

Figure 3: Expert Routing Maps for SEEK

In Figures 3 and 4 we illustrate expert routing maps between question sources (the datasets they
origionate from) and the experts that they are routed to. We show that for most datasets, there exists a
one-to-one correspondence. In the case that two experts cover similar domains, it has been shown
that one predominately takes over. This can be seen where Arc (grade-school science questions) is
preferred over SciQ models.

Figure 4: Leave-One-Out Ablation: Routing between sources and experts are visualized.

A) SEEK without Aqua-Rat expert. B) SEEK without Ai2-Arc expert. C) SEEK without MedMCQA
expert. Note that more weight is put on the science expert instead. D) SEEK with SciQ expert.
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8 Conclusion & Future Work

We introduced SEEK, a modular domain-specific mixture of expert models for multiple choice
question answering. We demonstrated that smaller specialized learners in aggregate can retain similar
performance while drastically reducing parameter counts. However, the performance is worse, even
when adjusted for the log-size of the models. However, since the model is smaller (70% of its teacher
size), the computational cost will also be much less. Thus, it may be important to quantify how much
of an accuracy drop is permissible after distillation and ensembling the models.

The results above show that the pipeline laid out for this paper is effective at distilling then routing
to a mixture of experts. Unsurprisingly, experts were able to handle questions from other similar
sources in routing. This was shown in our ablation studies. Further exploration is necessary in the
fine-tuning of various hyperparameters, especially those related to distillation, like the alpha value in
the combined loss, and the fraction of layers copied.

It is expected that future work and more precise training experiments can yield even larger gains in
the accuracy vs parameter trade off. Experiments on other models, whether other fine-tuned expert
models or different model types, would allow this type of distill-and-ensemble work to apply to
general question-answering and reasoning past basic multiple choice questions. For example, the
GPT or T5 could yield more interesting results. However, due to compute and time limitations, we
were only able to use BERT.
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