W]OHNS HOPKINS
y WHITING SCHOOL
of ENGINEERING

Language Modeling

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2024/

Recap: Self-Supervised Models

= Earlier we define Self-Supervised models as as
predictive models of the world!

“Wings over Kansas is [KESLEL” » % »

“Wings over Kansas is
an aviation website
founded in 1998 by Carl
Chance owned by Chance
Communications, Inc.”

= Q - ~

Ty JOHNS HOPKINS

‘I'!' J W TING SCHOC 5
ENGINEERINC

Language Modeling: Motivation

= Earlier we define Self-Supervised models as as
predictive models of the world!

= Language models are self-supervised, or predictive
models of language.

= How do you formulate? How do you build them?

<)
-

Language Modeling: Chapter Plan

1. Language modeling: definitions and history
2. Language modeling with counting

3. Measuring language modeling quality
4. Language Modeling as a Machine Learning problem

Chapter goal — getting comfortable with the concept of “language modeling.”

=X I -
% JOHNS HOPKINS
o ¢ sco 7

Language Modeling:

Definitions and History

The

The cat

The cat sat

The cat sat on

The cat sat on

?

The cat sat on the mat.

P(mat [The cat sat on the)

ooooooooooooooo

Probability of Upcoming Word

16
16

LMs as a Marginal Distribution

= Directly we train models on “marginals”:

“The cat sat on the IS4’ »

oy JOHNS HOPKINS
‘llf' WHITING SCHOC
ENGINEE

Language
Model

next
word

/”/*\

P(Xe| X1, o Xeo1)

»

context

mat

Prob

==

table-
bed |
desk |

s —
|
|
—

chair

17

LMs as Implicit Joint Distribution over Language

= While language modeling involves learning the marginals, we are
implicitly learning the full/joint distribution of language.

o Remember the chain rule:
P(Xq, ..., X:) = P(X) T2, P(X; | X1, X5 .0, X))

= Language Modeling £ learning prob distribution over language
sequence.

‘rﬁ JOHNS HOPKINS

18

Doing Things with Language Model

* What is the probability of " like Johns Hopkins University”

"“like Hopkins | University Johns”

oy JOHNS HOPKINS
‘llf' WHITING SCHOC
ENGINEE

19

Doing Things with Language Model

* What is the probability of " like Johns Hopkins University”

"“like Hopkins | University Johns”

= | Ms assign a probability to every sentence (or any string of words).

P("l like Johns Hopkins University EOS") =10->

P("like Hopkins | University Johns EOS”) =10-1>

%W JOHNS HOPKINS
‘I'!' W T'ING SCHOC
EN NEE N

20

Doing Things with Language Model (2)

next word context

"

P(X¢| X1, o Xeo1)

= While LMs show "“typicality”, this may be a proxy indicator to other properties:
o Grammaticality, fluency, factuality, etc.

= We can rank sentences.

P("/ like Johns Hopkins University. EOS”) > P("I like John Hopkins University EOS”)
P("/ like Johns Hopkins University. EOS”) > P("University. | Johns EOS Hopkins like”)
P("JHU is located in Baltimore. EOS”) > P(*JHU is located in Virginia. EOS”)

%W JOHNS HOPKINS
‘I’E' W I'ING SCHOOIL
EN NEE

Doing Things with Language Model (3)

next word context

= Can also generate strings! N

P(X¢| X1, oy Xp—1)

= Let's say we start "“Johns Hopkins is ”
= Using this prompt as an initial condition, recursively sample from an LM:

Sample from P(X| Johns Hopkins is) —"located”

Sample from P(X|"Johns Hopkins is located”) —“at”

Sample from P(X| "Johns Hopkins is located at”) —"“the”

Sample from P(X| Johns Hopkins is located at the”) —“state”

Sample from P(X| Johns Hopkins is located at the state”) —"“of”

Sample from P(X| "Johns Hopkins is located at the state of ") —"“Maryland”
Sample from P(X| "Johns Hopkins is located at the state of Maryland”) —“EOS"

N ousw N R

JOHNS HOPKINS
" W NG SCHO(

Why Care About Language Modeling?

= Language Modeling is a subeompenent superset of many tasks:
o Summarization
o Machine translation
o Spelling correction
o Dialogue etc.

= Language Modeling is an effective proxy for language understanding.

o Effective ability to predict forthcoming words requires on understanding of
context/prefix.

T -
oy JOHNS HOPKINS
‘II" B W NG SCHOC 23

You use Language Models every day!

e I'll meet you at the

airport

Q;,y JOHNS HOPKINS
’ WHITING SCHOC
ENGINEERINC

And now the fun starts

Add label
€3 Brian Strope «
to me
May 1 eta

They finally came through with the
contract.

| expect the work to start tomorrow.
Sorry for all the delays.

No worries, Great news, That t
hat's grea
thanks for thanks for at
: news
the update! the updat

Reply Reply all Forward

Can't makeit Addlabel

3 Brian Strope -

May 17 View details

Ugh, | took a turn for the worst last night
| won't be able to make it to the party.
Please have a great time without me.

Oh no! Feel We will Sorry to
better! miss you! hear that
- LN

Reply Reply a For

24

You use Language Models every day!

Google

O, JHU's best X

D

(=

Q. jhu best majors

Q. jhu best essays

Q. jhu best skin

Q. jhu best places to study

©. jmu best freshman year

. best jhu team hero wars

Q. johns hopkins best dressed sale 2021

Q. johns hopkins best programs

©. johns hopkins best hospital in the world

. johns hopkins best neurologist

Google Search I'm Feeling Lucky
‘Q:—F’y JOHNS HOPKINS

WHITING SCHOOLI
of ENGINEERING

Report inappropriate predictions

You use Language Models every day!

B3 JOHNS HOPKINS
- G SCHOC

26

It Can be Misused Too ...

Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Is this a real

science article?

= A lot more about

harms later in the class.

JOHNS HOPKINS
" W NG SCHO(

ENGINEF

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification
of virtual machines and real-time theory. To what extent can
web browsers be constructed to achieve this purpose?

Certainly, the usual methods for the emulation of Smalltalk
that paved the way for the investigation of rasterization do
not apply in this area. In the opinions of many, despite the
fact that conventional wisdom states that this grand challenge
is continuously answered by the study of access points, we
believe that a different solution is necessary. It should be
noted that Rooter runs in Q(loglogn) time. Certainly, the
shortcoming of this type of solution, however, is that compilers
and superpages are mostly incompatible. Despite the fact that
similar methodologies visualize XML, we surmount this issue
without synthesizing distributed archetypes.

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-
dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10] is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we
concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
Q((n + logn)) time [22]. In the end, we conclude.

II. ARCHITECTURE

Our research is principled. Consider the early methodology
by Martin and Smith; our model is similar, but will actually
overcome this grand challenge. Despite the fact that such
a claim at first glance seems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
time algorithm for the refinement of write-ahead logging by
Edward Feigenbaum et al. [15] is impossible; our application
is no different. This may or may not actually hold in reality.
We consider an application consisting of n access points.
Next, the model for our heuristic consists of four independent
components: simulated annealing, active networks, flexible
modalities, and the study of reinforcement learning.

We consider an algorithm consisting of n semaphores.
Any unproven synthesis of introspective methodologies will

https://pdos.csail.mit.edu/archive/scigen/

27

Summary

= Language modeling: building probabilistic distribution over language.

= An accurate distribution of language enables us to solve many important
tasks that involve language communication.

= The remaining question: how do you actually estimate this distribution?

!(;Tﬁ'!y JOHNS HOPKINS

28

Language Modeling

with Counting

LMs as a Marginal Distribution

next
word

P(X¢e| X1, ey Xe—1)

context

= Now the question is, how to estimate this distribution.

‘rﬁ JOHNS HOPKINS

31

P(X¢| X1, ... X¢—1)

How do we estimate these probabilities?
Let’s just count!

P(mat | the cat sat on the) =

Count how often
"the cat sat on the mat”
has appeared in the world (internet)!

count(“the cat sat on the mat”)

count(“the cat sat on the”)

Divide that by, the count of
“the cat sat on the”
in the world (internet)!

32

P(X¢| X1, ... X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(mat | the cat sat on the) ~ count(“the cat sat on the”)

Glogle "the bird sat on the mat" X & @ Q

Q Al [Images [»] Videos { Shopping Q Maps : More Tools

About 1 results (0.22 seconds)

It looks like there aren't many great matches for your
search

33

P(X¢| X1, ... X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(mat | the cat sat on the) ~ count(“the cat sat on the”)

Challenge: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.

34

Language Models: A History

= Shannon (1950): The redundancy and predictability (entropy) of English.

%W JOHNS HOPKINS
‘I'!' I'ING SCHOC
EN NEERINC

Prediction and Entropy of Printed English
By C. E. SHANNON
(ManuscriptReceived Sept. 15, 1950)

A new method of estimating the entropy and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of
experiments in prediction are given, and some properties of an ideal predictor are
developed.

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ... X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its non-descendants, given its parents.

1°t order approximation:
1 element

I_h\
P(mat | the cat sat on the) ® P(mat | the)

36
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ... X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its non-descendants, given its parents.

2" order approximation:
2 elements

I_h\
P(mat | the cat sat on the) ® P(mat | on the)

37
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ... X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its non-descendants, given its parents.

rd : : .

order approximation:

3 pp 3 elements
AL

P(mat | the cat sat on the) = P(mat| sat on the)

38
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ... X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Then, we can use counts of approximate conditional probability.
Using the 3™ order approximation, we can:

count(“sat on the mat”)
count(“on the mat”)

P(mat | the cat sat on the) = P(mat | sat on the) =

39
[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

N-gram Language Models

= Terminology: n-gram is a chunk of n consecutive words:

"\

o unigrams: “cat”, "mat”, "sat”, ...

"\

o bigrams: “the cat”, “cat sat”, “"sat on”, ...
o trigrams: “the cat sat”, “cat sat on”, “sat on the”, ...

"\

o four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, ...

= n-gram language model:

n — 1 elements
A

4 A\
P(th Xl’ =y Xt—l) ~ P(th Xt—n+1: ey Xt—l)

S JOHNS HOPKINS . . .
- NG SCH N [Prediction and Entropy of Printed English, Shanon 1950]

40

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Generation from N-Gram Models

= You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Tryiforyourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 41

Generation from N-Gram Models

= You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

today the
Sparsity problem: not
. company @.153 much granularity in the
get probability bank ~ ©.153 probability distribution
distribution price 0.077
italian ©.039)
emirate 0.039 Otherwise, seems reasonable!

* Tryiforyourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 42

Generation from N-Gram Models

= Now we can sample from this mode:

today the
Sparsity problem: not
. company @.153 much granularity in the
get probability bank ~ ©.153 probability distribution
distribution price 0.077
italian ©.039)
emirate 0.039 Otherwise, seems reasonable!

* Tryiforyourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 43

Generation from N-Gram Models

* Now we can sample from this mode:

condition on this

today the priée

Sparsity problem: not

L of 0.308 much granularity in the
get. prQbal?|I|ty for 0.050 probability distribution
distribution it 0.046
to 0.046 _
is 0.031 Otherwise, seems reasonable!

* Tryiforyourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 44

Generation from N-Gram Models

= Now we can sample from this mode:

condition on this
A

today the brice o‘f _

Sparsity problem: not

N the 0.072 much granularity in the
get probability 18 0.043 probability distribution
distribution oil 0.043
its 9.036 _
gold 0.018 Otherwise, seems reasonable!

* Tryiforyourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 45

N-Gram Models in Practice

= Now we can sample from this mode:

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

But quite incoherent! To improve coherence, one may consider increasing
larger than 3-grams, but that would worsen the sparsity problem!

* Trgforyourselfs https://nlpforhackers.io/language-models/

[adopted from Chris Manning] 46

0.00550% -

0.00500% -

0.00450% -

0.00400% -

0.00350% -

0.00300% -

0.00250% -

0.00200% -

0.00150% -

0.00100% -

0.00050%

Pre-Computed N-Grams Google Books Ngram Viewer

democracy
depression

bomb
terrorism

0.00000% -
180

T T T T T T T T T T
1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

&7 Jorns Hopins Google n-gram viewer https://books.google.com/ngrams/

R Data: http://storage.qgoogleapis.com/books/ngrams/books/datasetsv2.html 47

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

0.001000% -
0.000900% -
0.000800% - The United States is (All)
0.000700% -

0.000600% -

0.000500% -

0.000400% -

0.000300% - The United States are (All)
0.000200% -

0.000100% -

0.000000% - T T T T T T T T
1780 1800 1820 1840 1860 1880 1900 1920 1940

(click on line/label for focus, right click to expand/contract wildcards)

= JOHNS HoPiINs Google n-gram viewer https://books.google.com/ngrams/
J

ity Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html 48

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

6.0000110% - Language models can tell us
something about us ...

0.0000100% —

0.0000090% —
0.0000080% —
0.0000070% —
0.0000060% -
0.0000050% —
0.0000040% —
0.0000030% —
0.0000020% -

women vote (All)
0.0000010% - men vote (All

0.0000000% -t T T T T T T T T
1780 1800 1820 1840 1860 1880 1900 1920 1940

&7 Jorns Hopins Google n-gram viewer https://books.google.com/ngrams/

R Data: http://storage.qgoogleapis.com/books/ngrams/books/datasetsv2.html 49

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

0001205 Language models can tell us
0001105 - something about us ...

0.00100%
0.00090% -
0.00080% -
0.00070% -
0.00060% -

civil war
0.00050% -
0.00040% -. emancipation
0.00030% -
0.00020%

0.00010% -

0.00000% T T T T T T T T T
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

(click on line/label for focus)

7 Jorxs Homns Google n-gram viewer https://books.google.com/ngrams/

R Data: http://storage.qgoogleapis.com/books/ngrams/books/datasetsv2.html 50

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Scaling N-Grams

= Counting n-grams on the web is a computationally non-trivial task.
o What is the cost a naive implementation? &

« Size of the internet: k words
« Size of your string: n words

‘rﬁ JOHNS HOPKINS

51

Scaling N-Grams

= A more effective approach is distributed processing.

O
O
O
O

Split the internet data into m shards poe B
Run your n-gram search on all shards in parallel. uspis wapoing 1 N
. - = . Class,1 - Class,1 .
Then merge their individual results. fina
good,1 | | 9ood.1
= A fancier version of this is el == —
using Map-Reduce framework. e (=Rl il I =
‘ Welcome ,1 - Welcome ,1

Imagine you have m CPUs (say, m =10,000)

@guru99.com

Large Language Models in Machine Translation, 2007
https://github.com/stepthom/CountNGrams/blob/master/src/CountNGrams.java

https://aclanthology.org/D07-1090.pdf

Scaling N-Grams

= We can extend to trigrams, 4-grams, 5-grams, but soon we will hit
is the sparsity limitations.

o Many of these long n-grams will be zeros.

Qi'l" JOHNS HOPKINS

53

Understanding Sparsity: A Thought Experiment

= How common are zero-probabilities? &

= Example: Shakespeare as a text corpus
o The size vocab used by Shakespeare: |V|=29,066
o Shakespeare produced: ~300,000 bigrams
« Out of |V|[”~2= 844 million possible bigrams
« (some of them don’t make sense, but ok!)

= S50, 99.96% of the possible bigrams are never seen (hence, have zero
entries for bigram counts).

S JOHNS HOPKINS _ . .
(14 ITING SCHO [Slide credit: Mohit lyyer] 54

Scaling N-Grams

= Tn general, count-based LMs are insufficient models of language
because language has long-distance dependencies:

"The computer which I had just put into the
machine room on the fifth floor crashed.”

’n:-u' JOHNS HOPKINS
E NEFE N(

55

N-Gram Language Models, A Historical o
nghllght [“Every time | fire a linguist, the performance of L)v'i
¢

ll||

the speech recognizer goes up”!!

LW
e Probabilistic n-gram models of text generation [Jelinek+ 1980’s, ...] 7 \

e Applications: Speech Recognition, Machine Translation ngg;%q%*;

532 PROCEEDINGS OF THE IEEE, VOL. 64, NO. 4, APRIL 1976

Continuous Speech Recognition by Statistical
Methods

FREDERICK JELINEK, FELLOW, IEEE

_Abstract—Statistical methods useful in automatic recognition of con- utterance models used will incorporate more grammatical
:;“::"SJ*C" are described. They 02?0‘:“ md a ‘P“k:' and features, and statistics will have been grafted onto grammatical
ustic PTOCEessSOr. extraction (4 statistical param-
eters, and hypothesis na;ch procedures and likelihood computations of models. Most methods presented here concern modeling of
linguistic decoding. Experimental results are presented that indicate the speaker’s and acoustic processor’s performance and should,
the power of the methods. therefore, be universally useful.
Automatic recoonition aof continnous (Englich) eneech is an
. -
et ~"’H“ﬁ?’{ E‘\NS 56

Summary

Learning a language model ~ learning conditional probabilities over language.
One approach to estimating these probabilities: counting word co-occurrences.

Challenges:
o Word co-occurrences become rare for long sequences. (the sparsity issue)
o But language understanding requires long-range dependencies.

We need a better alternative! &

Next: Measuring quality of language models.

!rﬁ JOHNS HOPKINS

57

How Good are

Language Models?

[slide credit: Arman Cohan]

Large Language Models

= A language model can predict the next word
based on the given context.

X :=The cat is on the

roof P(roof|X)=0.00
tree P(tree|X)=0.01
moon P(moon|X)=0.01
The catis onthe ?? —» LM — < physics P(physics|X)=0.1
the P(the|X)=0.1
protein P(protein|X)=0.3

=y JOHNS HOPKINS
Y- NG SCHOC 59

Large Language Models

[slide credit: Arman Cohan]

X :=The cat is on the

= A language model can predict the next word

based on the given context. roof

tree
moon

—_— physics

sl [R

The catisonthe 77

roof
\ tree
Which LM is better? moon
h
LMZ — fheysms

protein

&3 JOHNS HOPKINS
’ NG SCHO(

!

P(roof|X)=0.00
P(tree|X)=0.01
P(moon|X)=0.01
P(physics|X)=0.1
P(the|X)=0.1
P(protein|X)=0.3

P(roof|X)=0.14
P(tree|X)=0.13
P(moon|X)=0.001
P(physics|X)=0.0
P(the|X)=0.000
P(protein|X)=0.00
60

[slide inspiration: Arman Cohan]

Rank the LMs!

The most challenging part of the NLP: Self-supervised learning class will be able to wrap our minds around the complex
concepts presented in the course. NLP is a broad and constantly evolving field, and self-supervised learning is a
relatively new and advanced technique within it.

ﬁ gpt-3.5-turbo-instruct]

The most challenging part of the NLP: Self-supervised learning class will be reading on Japanese philosophy, which is
not something that’s usually possible with a Fully Funded Program like this. But, regardless of the course, we are certain
it'll change you and the way you approach the world in significant ways.

\(davinci-002]

The most challenging part of the NLP: Self-supervised learning class will be the final concept test on Saturday, June 19th
at 3pm GMT. Since we hired a recent NET programer, whose brain | couldn't even understand at first, | had increased
difficultly finding solution to brain teaser type questions.

babbage-002
)] A>B>C

= o TG
¥ JOHNS HOPKINS 61

WHITING SCHOOIL
of ENGINEERING

[slide inspiration: Arman Cohan]

Ra n k t h e L M S l What is the result of (1+ 9 - 2)*2? The answer is 27.
|

27=T90%

I 1=578%
18 = 5.43%
17=506%
21=370%
What s the result of (1 + 9 - 2)*2? The answer is 10. [S] (TQ‘;gag'/ iii'.ﬁ?ﬁffi?eé’.’l Joff’sklfgfs)
18 =9.30%
16 = 713%
12 = 6:15%
8=600%

What is the result of (1 + 9 - 2)*2? The answer is 16.

16 = 99.71%

8 =016%
=0.06%

4=0.01%
2=001%

Total: -2.26 logprob on 1tokens
(39.04% probability covered in top 5 logits)

davinci-002]

gpt -3.5-turbo-instruct Total: -0.00 logprob on 1tokens
: (99.96% probability covered in top 5 logits)

]OHNSHOPKINS B > A > C 62

WHITING SCHOOIL
of ENGINEERING

Evaluating Language Models

= Does our language model prefer good sentences to bad ones?
o Assign higher probability to “real” or “frequently observed” sentences
o Than “ungrammatical” or “rarely observed” sentences?

= We test the model’s performance on data we haven't seen.

‘rﬁ JOHNS HOPKINS

63

Evaluating Language Models

Setup:

o Train it on a suitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

.. Held-Out Test
Training Data Data Data
Counts / parameters from Hyperparameters Evaluate here
here from here

count(“on the mat”)

Evaluating Language Models: Example

Setup:

o Train it on a suitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

Example:1use abunch of New
York Timesarticlesto builda _ _
bigram probability table shouldassigna high

probability to held-out text!

A good Ianguage model Now I'm going to evaluate the
probability of some heldout

datausingourbigramtable

train eval
—) cOUnt(“on the mat”) ————)

Be Careful About Data Leakage!

Advice from a grandpa‘™’:
- Don't allow test sentences to leak into into training set.
- Otherwise, you will assign it an artificially high probability (==cheating).

Example:|use a bunch of New A good language model Now I’'m going to evaluate the

YorkTimesarticlesto builda hould asei hiah probability of some heldout
bigram probability table AeClEeEEIgE e datausingourbigramtable

probability to held-out text!

eval o
count(“on the mat”))y WS

Evaluating Language Models: Intrinsic vs Extrinsic

o Intrinsic: measure how good we are at modeling language
o Extrinsic: build a new language model, use it for some task (MT,

ASR, etc.)
Google
% Translate
Example:1use abunch of New Now I'm going to evaluate the

bigram probability table extrinsic datausingourbigramtable

eval

eval s
count(“on the mat”) —e—)p WS

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the humber of
words:

1
ppl(Wy, ..., W) = P(Wy, Wy, ..., wy) 7

= A measure of predictive quality of a language model.
= Minimizing perplexity is the same as maximizing probability

=y JOHNS HOPKINS
Y- NG SCHOC 69

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the humber of
words:

1
ppl(Wy, ..., wp) = P(Wy, Wy, ..., wp) 7

= Quiz: let’s suppose we have a sentence wy, ..., w,, and it's fixed. Our model will
correctly guess each word with probability 1/5. What is perplexity of our model?

Intuition: the

1
ppl(Wl, ""Wn) = ((1/5)N) V=5 model is indecisive

among 5 choices.

%a JOHNS HOPKINS
- ¢ scron 70

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the humber of
words:
1

ppl(Wl! ---;Wn) — P(Wl,Wz, ...,Wn)_ﬁ
n 1
P(Wl, W2, ""WTL)

\

n
. n 1 (the chain rule)
I_I P(w;|lw;)
=1

71

Qi'l" JOHNS HOPKINS

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the humber of
words:

n
n 1
l(wyq, ..., wy,) = 1_[
PRI ") P(w;|lws;)

= Perplexity for n-grams:

n
. n 1—[1
o Uni-grams: l(W W) —
pp 1 n 9 P(Wl)

= JOHNS HOPKINS
WO 72

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the humber of

words:

n

ppl(wy, ..., wy,) =

\
= Perplexity for n-grams: n
Bi-grams: —
? J ppl(Wl, e Wn) —
\

Qi'l" JOHNS HOPKINS

n

1_[wlw
L 1P (w;|lw;)
=1

n

1_[W1W

L 1 P(w;|w;—41)
i=1

73

Evaluation Metric for Language Modeling: Perplexity

= Perplexity is the inverse probability of the test set, normalized by the humber of
words:

n
n 1
l(wyq, ..., wy,) = 1_[
PRI ") P(w;|lws;)

= Perplexity for n-grams:

n
. n 1
o Tri-grams: _
ppl(wy, ..., wy,) = ‘ ‘
v L1 P(wi|w;_1,w;3)

= . .
=3 JOHNS HOPKINS
W oo 74

Evaluation Metric for Language Modeling: Perplexity

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ...,w,,) = 27, where H = —=Xi=1loga P(wilwy, ..., wi—q)

Can be interpreted as
cross-entropy between LM prob
and language prob. Why?

Recap: Definition of cross-entropy
between two distributions:

H(p,q) =

Q - -

=y JOHNS HOPKINS

ql”" J N I'ING SCHOC 75
ENi N

Intuition-building Quizzes (1)

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ...,w,,) = 27, where H = —=Xi=1loga P(wilwy, ..., wi—q)

= Quiz: let's suppose we have a sentence wy, ..., w,; and it's fixed. Our model
will correctly guess each word with probability 1/5. What is perplexity of
our model?

H= —% [1082 (%) + .-+ log, (%)] = —log (%) = ppl(D) =5

@ JOHNS HOPKINS

76

Intuition-building Quizzes (2)

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ...,w,,) = 27, where H = —=Xi=1loga P(wilwy, ..., wi—q)

= Quiz: let's we evaluate an exact (!!) model of language, i.e., our model
always knows what exact word should follow a given context. What is the
perplexity of this model?

1
vw € V:P(wi|lwy;_1) =1 = ppl(D) =22"&1 -1

= JOHNS HOPKINS
W oo 77

Intuition-building Quizzes (3)

= In practice, we prefer to use log-probabilities (also known as “logits”)
= We can rewrite perplexity formula in terms of log-probs:

1
ppl(wy, ...,w,,) = 27, where H = —=Xi=1loga P(wilwy, ..., wi—q)

= Quiz: let's we evaluate a confused (!!) model of language, i.e., our model
has no idea what word should follow each context—it always chooses a
uniformly random word. What is the perplexity of this model?

1 1
vw € Vi PWlwy,—p) = 5 = ppl(D) = 272" %82 = ||

= JOHNS HOPKINS
W oo 78

Perplexity: Summary
1
ppl(wy, ..., w,) = 2F, where H = — =Xt logy P(wilwy, ..., wi—q)

= Perplexity is a measure of model’s uncertainty about next word (aka "average
branching factor”).

o The larger the number of vocabulary, the more options there to choose from.
o (the choice of atomic units of language impacts PPL — more on this later)

= Perplexity ranges between 1 and |V/|.

= We prefer LMs with lower perplexity.

ﬁ‘, JOHNS HOPKINS

79

Lower perplexity == Better Model

= Training on 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order

Perplexity 170 109

Lower is Note these evaluations are done on data that
better was not used for “counting.” (no cheating!!)

=X Q -
= JOHNS HOPKINS)
Qf!' J W ,\‘ \\1\:\, \t M«\mw [M0h|t |yyer] 80

TEST PERPLEXITY

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

100
Zaremba et al. (2014) - LSTM (large)
75
Recurrent.highway networks
AWD-LSTM+-+.continuous cache pointer
50 ‘GLWGC_+ AWD-MoS-LSTM + dynamic eval
GPT-2
BERT-Large-CAS
25 GPT=3_(Zero-Shot)
e
0
2015 2016 2017 2018 2019 2020

Other models - Models with lowest Test perplexity

Q@i"" JOHNS HOPKINS

WHITING SCHOOT [Language Modelling on Penn Treebank (Word Level)] 81

ENGINEERINC

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

7
4.2
6 —— L=(D/5.4+1013)0.09 | 56 —— L=(N/8.8+1013)70.076
3.9
4.8
0 5
2 3.6 4.0
- 4
L ol
8 3:3 3.2
=3
3.0
2.4
L = (Crmin/2:3 +108)=0.050
2 : = : ; oKy . . ; g ,
1072 1077 10° 102 107 10! 108 109 10° 107 10°
Compute Dataset Size Parameters

et J()HN\ H()M\Ns .
[Scaling Laws, Jared Kaplan et al.]

How Should One Deal With Zeros?

n
n 1
I(wyq, ..., wy,) =
PP o o I._IP<wi|W<i>
\ 1=1

= If P(w;|lw.;) = 0, ppl would go & !l (division by zero)

=y JOHNS HOPKINS
Ve NG SCHO(83
E NEF N(

!

How Should One Deal With Zeros?

Training set: Test set:

.. denied the allegations

.. denied the reports .. denied the offer
.. denied the claims .. denied the load
. denied the request

@ JOHNS HOPKINS

P(offer| denied the) = o

[Dan Jurafsky]

84

Smoothing: Make All Probs Non-Zero

count(w + “denied the”)

= When we have sparse statistics:

3 allegations, 2 reports, 1 claims, 1 request = 7 total o §
£ 23
= Steal probability mass to generalize better]
2.5 allegations, 1.5 reports, 0.5 claims, 0.5 request, 2 é 2 x g
other = 7 total g2 Mﬂ g 5 5 ..

Redistribute probability mass from
[Silde: Dan Klein] observed n-grams to unobserved ones

By JOHNS HOPKINS
’ W NG SCHO(

!

Summary

!

Language Models (LM): distributions over language

Measuring LM quality: use perplexity on held-out data.

Count-based LMs have limitations.

o Challenge with large N’'s: sparsity problem — many zero counts/probs.

o Challenge with small N’s: lack of long-range dependencies.

Next: Rethinking language modeling as a statistical learning problem.

&3 JOHNS HOPKINS
’ NG SCHO(

86

Beyond Counting:

Language Models as
a Learning Problem

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

blah blah blah blah and our problems turning

context words in window target'word

—, JOHNS HOPKINS
" \ NG SCHOC(

88

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

blah—blar—blar—biak and our problems turning

. Y) . M . . ! _Y_’
discard context words in window of size 4 target word

—, JOHNS HOPKINS
" \ NG SCHOC(

89

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

and our problems turning

. M . . ! _Y_’
context words in window of size 4 target word

JOHNS HOPKINS
4 NG SCHO(

20

A Fixed-Window Neural LM

= Given the embeddings of the context, predict a target word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

= Training this model is basically optimizing its parameters © such that it assigns
high probability to the target word.

1 1 1 1 |

[Trainable parameters

of neural network
table |
f(|ooo||ooo| 000 | — O)mp |

] Probs over vocabulary

mat |

Iookup embeddlngs ant -:|
and our problems turnlng - chair [
context words in window of size 4 target Word

=\ Q -
S JOHNS HOPKINS .
N e scrio [Bengio et al. 2003] 1

A Fixed-Window Neural LM

= It will also lay the foundation for the future models (recurrent nets, transformers, ...)

= But first we need to figure out how to train neural networks!

How do you build [

this f ton? Trainable parametersJ
IS TUNCTION ¢

of neural network mat

table
000 OOO OOO -
f(| | [o90] [ooo] — O)mp |

Iookup embeddlngs ant

our problems turnlng - chair

context words in window of size 4 target word

Neural Networks

for rescue!

‘Q:—F’y JOHNS HOPKINS _
T R [Bengio et al. 2003]

Probs over vocabulary

| 1 1 | |

92

From Counting (N-Gram) to Neural Models

e n-gram models of text generation [Jelinek+ 19807, ...]
e Applications: Speech Recognition, Machine Translation

e "Shallow” statistical/neural language models (2000s) [Bengio+ 1999 & 2001, ...]

NeurlPS 2000 A Neural Probabilistic Language Model

Yoshua Bengio; Réjean Ducharme and Pascal Vincent
Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal
Montréal, Québec, Canada, H3C 3J]7
{bengioy,ducharme,vincentp} @iro.umontreal.ca

Qi'l" JOHNS HOPKINS
’ \ NG SCHO(
ENGINEERIN

93

Summary

Language Modeling (LM), a useful predictive objective for language

Perplexity, a measure of an LM’s predictive ability

N-gram models (~1980 to early 2000's),
o Early instances of LMs

o Difficult to scale to large window sizes

Shallow neural LMs (early and mid-2000’s),
o We will need in coming sessions that one can build these models with neural networks.

o These will be effective predictive models based on feed-forward networks

=X : -
W JOHNS HOPKINS 94

(=]
N

