
Neural Networks
CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2024/

2

How was HW1

§ Select that best applies:
1. It was smooth sailing through things I knew; my hamster nearly finished it.
2. it was familiar stuff but I had to learn or refresh a few things.
3. It was like shoveling snow in the middle of a blizzard, it just kept getting worse
4. It was so challenging, it felt like climbing Mount Everest with slippers on.

3

HW2 is released

§ Did you see it?
§ Due Tuesday noon.

o Feels like a long time away? it’s due in 120 hours!

4

“Can I use external libraries?” No, unless specified!

§ Use the basic Python functions (no external libraries), unless explicitly specified.
§ In almost all places, you’re not expected to write more than 3-4 lines of code.

5

“I can’t install ….”

§ Current code is based on 3.6.0.
§ If you use other version, you might need to make minor

changes to Gensim functions. Feel free to consult with
Gensim documentation.
o This is part of any programming experience.

It's part of the job! Don't hate it, embrace it! 🤗

6

Recap: Language Modeling

§ Language Modeling: estimating distributions over language.

§ One approach we previously saw: counting word co-occurrences.
o Pro: easy — just count!
o Con: difficult to scale to longer context due to the sparsity challenge.

§ Another approach:
o Using a learnable function that can estimate word transition probabilities.

• Now: What are these learnable functions and how can we train them.

7

Neural Networks: Chapter Plan

1. Defining neural networks (feedforward nets)
2. Neural nets: brief history
3. Algebra background for training neural nets
4. Training neural networks: analytical backpropagation
5. Backprop in practice

Chapter goal: Get comfortable with thinking, designing and building neural networks
— very powerful modeling tools.

8

Feedforward
Neural Nets

9

Neural Networks

§ What are neural networks?
o Functions that take an input and produce an output.

§ What is inside this box?

NNVideo Caption NNText Image

NNGame
state Action

11

Feedforward networks
§ This is a particular class called “feedforward” networks.

o Cascade neurons together

x0

x1

x2

xP

[Slides: HKUST]

12

Feedforward networks

• Inputs multiplied by initial set of weights

x0

x1

x2

xP

[Slide: HKUST]

13

Feedforward networks

• Intermediate “predictions” computed at first hidden layer

x0

x1

x2

xP

[Slide: HKUST]

14

Feedforward networks

• Intermediate predictions multiplied by second layer of weights
• Predictions are fed forward through the network

x0

x1

x2

xP

[Slide: HKUST]

15

Feedforward networks

• Compute second set of intermediate predictions

x0

x1

x2

xP

[Slide: HKUST]

16

Feedforward networks

• Multiply by final set of weights

x0

x1

x2

xP

[Slide: HKUST]

17

Feedforward networks

• Aggregate all the computations in the output
• e.g. probability of a particular class

x0

x1

x2

xP

[Slide: HKUST]

18

Feedforward networks

• All the intermediate parameters are ought to be learned.

x0

x1

x2

xP W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

[Slide: HKUST]

19

Feedforward Neural Network

§ Neural Networks are functions!
o Function class for approximating real-valued, discrete-valued and vector valued

target functions.
o NN:𝑿 → 𝒀 where 𝑿 = 0,1 !, or ℝ! and 𝒀 = 0,1 ", 0,1 "

• Example: A 2-layer neural network
• The input, hidden and output variables are

represented by nodes
• The links are the weight parameters
• Arrows denote direction of information flow

through the network

20

Neural Network: Making it bigger

Add more layers, or wider layers!

A 2-layer neural network A 3-layer neural network

21

Feedforward Neural Network: The Neurons

§ A mathematical model of neuron is “perceptron”.
§ It consists of a non-linear function that “fires” if

the affine (linear) function of inputs is above a threshold.

§ The bias is the negative of the threshold T in the previous slide

y = 𝜎 𝑏 +&
!"#

$

𝑤!𝑥!

𝜎 𝑧 = #
#%&#$

(sigmoid function)

22

Feedforward Neural Network: The Neurons

§ Sigmoid is a “squashing” function.
o It maps small inputs to zero.
o It maps large inputs to one.

§ The bias is the negative of the threshold T in the previous slide

y = 𝜎 𝑏 +&
!"#

$

𝑤!𝑥!

𝜎 𝑧 = #
#%&#$

(sigmoid function)

23

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Other Activation Functions

F
e
i
-
F
e
i
L
i
&
J
u
s
t
i
n
J
o
h
n
s
o
n
&
S
e

A
p
r
i
l
1
9
,
2
0
1
8

Lectur
e 6 -
23

Does not always
have to be a
squashing function

We will talk about their pro/cons later!

24

Terminology: Multi-Layer Perceptron (MLP)

§ Multi-layer Perceptron (MLP):
o A feedforward network with

perceptrons as its nodes.

§ A feedforward network does not
have to be an MLP.
o But people sometimes use the names

interchangeably! 🤷

§ The original MLP [McCulloch–Pitts] was based
on “threshold” activation.

25

Formally Defining an MLP

• Example: A 2-layer MLP network
• The input, hidden and output variables are represented by nodes
• The links are the weight parameters
• Arrows denote direction of information flow through the network

• 𝑊% ∈ ℝ&×! and𝑊(∈ ℝ"×& are the parameters that need to be learned.

𝑓 𝐱 = 𝑊! 𝑔(𝑊"𝐱) 𝐱 ∈ ℝ#, 𝐲 ∈ ℝ$

𝑔 𝐳 = 𝜎 𝑧" , … , 𝜎 𝑧% (nonlinearity) 𝜎 𝑧& = "
"'(!"

(sigmoid function)

26

Quiz Time (1)

§ What is needed to fully specify a neural
network?

1. Architecture (which input goes through what function etc.)
2. Parameters of the function (the weights)
3. Both

27

Quiz Time (2)

§ Which of the followings has more parameters?

28

Quiz Time (3)

§ Given an input to these models, which of them
take longer to compute an output?

29

Why Add Non-linearity?

• Without non-linearity, the overall model amounts to a linear model.

• A linear function cannot approximate complex tasks.

• Non-linearity adds capacity to the model to approximate
any continuous function to arbitrary accuracy
given sufficiently many hidden units.
• See “universal approximation theorem”

𝑓 𝐱 = 𝑊! 𝑔(𝑊"𝐱) (𝑓 𝐱 = 𝑊!𝑊"𝐱 = 𝑊#𝐱 (a linear function)

drop 𝑔

https://en.wikipedia.org/wiki/Universal_approximation_theorem

30

Universal Approximation

§ An MLP can represent any function, with enough expressivity.

Maiorov & Pinkus. Lower bounds for approximation by MLP neural networks, 1999.

31

Quiz Time

§ What makes neural networks expressive
functions?
1. Activations (non-linearities)
2. Depth (number of hidden layers)
3. Width (number of variables in each hidden layer)
4. All the above

32

Demo time!

§ Link: https://playground.tensorflow.org/

32

https://playground.tensorflow.org/

33

What is a good architecture? Depth vs. Width

§ Architectural parameters of a neural network
affect its capacity to learn.
o Deep vs. wide

34

Depth vs Width on Boolean functions

§ An MLP is a universal Boolean function.
§ A shallow (single hidden layer) is a universal Boolean machine

o But it may require an exponentially large number of units.
§ Deeper networks may require far fewer neurons than shallower

networks to express the same function

35

Depth vs Width on Boolean functions

§ Theorem: There are certain class of functions with 𝑛 inputs
that can be represented with deep neural network with 𝑂(𝑛)
units, whereas it would require 𝑂(2√!) units for a shallow
network.

Hastad, Almost optimal lower bounds for small depth circuits, 1986.
Delalleau & Bengio. Shallow vs. deep sum-product networks, 2011.

36

Summary

§ An MLP is a universal function

§ But can represent a given function only if
o It is sufficiently wide
o It is sufficiently deep
o Depth can be traded off for (sometimes) exponential growth of the width of the

network

§ Optimal width and depth depend on the complexity of the problem.

§ Next: A bit of history.

37

Neural Nets:
Origin and History

38

Artificial Neurons: An Inspiration from Nature

§ A single node in your neural network
o Accept information from multiple inputs
o Transmit information to other neurons

§ A neuron’s function is inspired by its biological counterpart:
o Apply some function on inputs signals
o If output of function over threshold, neuron “fires”

39

Artificial Neurons: Not Quite Analogous to Nature
Biological neurons:

complex connectivity
Neurons in an artificial neural network:
organized based on a highly regular
structure for computational efficiency

Source: Google Brain Map

40

Very Brief History of Neural Networks

1. Single-layer neural networks (1943-1969)
2. Symbolic AI & knowledge engineering (1970-1985)
3. Multi-layer NNs and symbolic learning (1985-1995)
4. Shallow statistical learning/probabilistic models (1995-2010)
5. Deep networks and self-supervised learning (2010-?)

41

Very Brief History of Neural Networks

1. Single-layer neural networks (1943-1969)
2. Symbolic AI & knowledge engineering (1970-1985)
3. Multi-layer NNs and symbolic learning (1985-1995)
4. Shallow statistical learning/probabilistic models (1995-2010)
5. Deep networks and self-supervised learning (2010-?)

42

A Neuron as a Mathematical Model of Computation

§ McCulloch and Pitts (1943) showed how linear threshold units can be used to
compute logical functions

§ An alternative model of computation (comparable to “Turing Machine”)

[A Logical Calculus of Ideas Immanent in Nervous Activity, McCulloch and Pitts 1943]

Notice the step function (threshold)!
Early models didn’t need to be differentiable.

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

43

Perceptron Learning Rule — Imitating Nature’s Learning Process

§ Rosenblatt (1959) developed the Perceptron algorithm —
o An iterative algorithm for learning the weights of a linear threshold unit.

§ A single neuron with a fixed input, it can incrementally change weights and learn to
produce a fixed output using the Perceptron learning rule.

§ Update each weights by: iii xotww)(-+= h

𝑜

t: the target value

[The perceptron: a probabilistic model for information storage and organization in the brain, Rosenblatt 1959]

https://www.ling.upenn.edu/courses/Fall_2007/cogs501/Rosenblatt1958.pdf

44

Quiz (1): Understanding Perceptron Update Rule

§ Suppose the inputs 𝑥* ∈ 0, 1 and 𝜂 = 1. If LTU’s output 𝑜 exactly matches the target
value 𝑡, How would the update rule change the weights?
1. Would increase them
2. Would decrease them
3. Would not change them

iii xotww)(-+= h

𝑜

45

Quiz (2): Understanding Perceptron Update Rule

§ Suppose the inputs 𝑥* ∈ 0, 1 and 𝜂 = 1. If LTU’s output 𝑜 is smaller than the target
value 𝑡, how would the update rule change the weights?
1. Would increase them
2. Would increase the weights for active inputs
3. Would decrease them
4. Would not change them

§ After this update, the new output 𝑜 would be:
1. Larger
2. Smaller
3. Unchanged

iii xotww)(-+= h

𝑜

46

Perceptron: Demise

§ “Perceptrons” (1969) by Minsky and Papert illuminated
few limitations of the perceptron.

§ It showed that:
o Shallow (2-layer) networks are unable to learn or

represent many classification functions (e.g. XOR)
o Only the linearly separable functions are learnable.

§ Also, there was an understanding that deeper networks
were infeasible to train.

§ Result: research on NNs dissipated during the 70’s and early 80’s!

[slide: Ray Mooney]

47

Very Brief History of Neural Networks

1. Single-layer neural networks (1943-1969)
2. Symbolic AI & knowledge engineering (1970-1985)
3. Multi-layer NNs and symbolic learning (1985-1995)
4. Shallow statistical learning/probabilistic models (1995-2010)
5. Deep networks and self-supervised learning (2010-?)

48

Very Brief History of Neural Networks

1. Single-layer neural networks (1943-1969)
2. Symbolic AI & knowledge engineering (1970-1985)
3. Multi-layer NNs and symbolic learning (1985-1995)
4. Shallow statistical learning/probabilistic models (1995-2010)
5. Deep networks and self-supervised learning (2010-?)

49

Neural Networks Resurgence (1986)

§ Interest in NNs revived in the mid 1980’s due to the rise of “connectionism.”
§ Backpropagation algorithm was [re-]introduced for training three-layer NN’s.

o Generalized the iterative “hill climbing” method to approximate networks with
multiple layers, but no convergence guarantees.

what became possible
to train via BP in 1980’s

[Learning representations by back-propagating errors, Rumelhart, Hinton & Williams 1986;
for a broader context, see: http://people.idsia.ch/~juergen/who-invented-backpropagation.html]

what was possible
to train in 1970’s

https://www.nature.com/articles/323533a0.pdf
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

50

Second NN Demise (1995-2010)

§ Generic backpropagation did not generalize that well to training deeper networks.
o Overfitting / underfitting remained an issue.
o Computers were still quite slow

§ Little theoretical justification for underlying methods.
§ Machine learning research moved to graphical/probabilistic models and kernel

methods.

[slide: Ray Mooney]

51

Very Brief History of Neural Networks

1. Single-layer neural networks (1943-1969)
2. Symbolic AI & knowledge engineering (1970-1985)
3. Multi-layer NNs and symbolic learning (1985-1995)
4. Shallow statistical learning/probabilistic models (1995-2010)
5. Deep networks and self-supervised learning (2010-?)

52

Very Brief History of Neural Networks

1. Single-layer neural networks (1943-1969)
2. Symbolic AI & knowledge engineering (1970-1985)
3. Multi-layer NNs and symbolic learning (1985-1995)
4. Shallow statistical learning/probabilistic models (1995-2010)
5. Deep networks and self-supervised learning (2010-?)

53

Deep Learning Revolution (2010…)

§ Various successes with training deep neural works.
o Convolutional neural nets (CNNs) for vision — 2012 AlexNet showed 16% error

reduction on ImageNet benchmark.
o Rise of deep reinforcement learning for games—AlphaGo beat human players.

54

Deep Learning Revolution (2010…)

§ Various successes with training deep neural works.
o Convolutional neural nets (CNNs) for vision — 2012 AlexNet showed 16% error

reduction on ImageNet benchmark.
o Rise of deep reinforcement learning for games—AlphaGo beat human players.

arXiv
papers

per month

Figure credit:
https://twitter.com/MarioKrenn6240/status/1314622995139264517

https://twitter.com/MarioKrenn6240/status/1314622995139264517

55

Deep Learning Revolution (2010…)

§ The success continued enabled by 3 forces:
o Availability of massive [unlabeled] data — the data on Internet.
o Faster computing technologies — specialized hardware (e.g., GPUs)
o Algorithmic innovations — architectures, optimization, etc.

56

Very Brief History of Neural Networks

1. Single-layer neural networks (1943-1969)
2. Symbolic AI & knowledge engineering (1970-1985)
3. Multi-layer NNs and symbolic learning (1985-1995)
4. Shallow statistical learning/probabilistic models (1995-2010)
5. Deep networks and self-supervised learning (2010-?)

57https://en.wikipedia.org/wiki/Big_Bounce

58

How it started How it’s going

[slide: Ray Mooney]

59

Summary

§ Neural networks have been long in the making since 1950s.

§ It’s a remarkable journey of science with many ups and downs.

§ Next: How do you train NNs? We will start with some algebra refreshers.

60

Background for Training NNs
The Refreshers🍹

61

Machine Learning Problems

§ Training data: Given a set of inputs and output labels:
o Inputs: 𝑋 = 𝑥%, … , 𝑥!
o Outputs: 𝑌 = 𝑦%, … , 𝑦!

§ Goal: Find a function 𝑓(𝑥; 𝜃) with parameters 𝜃 that maps inputs in 𝑋 to output to 𝑌
§ Empirical risk: measure the quality of the predictions with a loss function:

𝐽 𝜃 =
1
𝑛>
*+%

!

ℓ(𝑓 𝑥*; 𝜃 , 𝑦*)

62

A Special Case: Linear Regression

§ Training data: Given a set of inputs and output labels:
o Inputs: 𝑋 = 𝑥%, … , 𝑥!
o Outputs: 𝑌 = 𝑦%, … , 𝑦!

§ Goal: Find a linear function 𝑓 𝑥; 𝜃 = 𝜃. 𝑥 that is best predictive of observations
§ Empirical risk: measure the quality of the predictions with a loss function:

𝐽 𝜃 =
1
𝑛>
*+%

!

ℓ(𝜃. 𝑥*, 𝑦*)

What are good choices
for loss function?

63

Quiz: Loss functions

§ Remember the objective function of our learning problem:

𝐽 𝜃 =
1
𝑛
>
*+%

!

ℓ(𝑓 𝑥*; 𝜃 , 𝑦*)

§ Which of the followings is a more reasonable loss function ℓ 𝑧, 𝑤 ?
1. If 𝑧 and 𝑤 are far apart, the loss value should be higher
2. If 𝑧 and 𝑤 are far apart, the loss value should be lower
3. Neither

64

Loss Functions

§ The choice of loss function depends
on the problem

ℓ 𝑦, -𝑦 = 𝑦 − -𝑦 '

ℓ 𝑦, -𝑦 = |𝑦 − -𝑦|

65

Quiz: MSE vs. MAE loss

§ Remember MSE and MAE loss:

1. Which visualization corresponds to which loss?

2. Which loss is more sensitive to outlier data (noisy outputs)?
3. Which loss is more difficult to compute gradients for?

MSE: ℓ 𝑦, -𝑦 = 𝑦 − -𝑦 '

MAE: ℓ 𝑦, -𝑦 = |𝑦 − -𝑦|

66

Loss Functions

§ The choice of loss function depends
on the problem

ℓ 𝑦, -𝑦 = 𝑦 − -𝑦 '

ℓ 𝑦, -𝑦 = |𝑦 − -𝑦|

ℓ 𝑦, -𝑦 = −&
(

)

𝑦(log(4𝑦()

67

Loss Functions: Cross-Entropy

§ A binary classification example: Without loss of generality:
o Gold labels: 𝑦 = [1, 0] (i.e., first class is correct)
o Predictions: E𝑦 = 𝑝, 1 − 𝑝

§ CE loss: ℓ 𝑦, E𝑦 = −1× log 𝑝 − 0× log 1 − 𝑝 = − log 𝑝

§ Question for you:
o If the model prediction is completely accurate, what is the loss?
o If the model prediction is completely off, what is the loss?

ℓ 𝑦, -𝑦 = −&
(

)

𝑦(log(4𝑦()

Summation over the
dimensions of y

68

Machine Learning Problems

§ Training data: Given a set of inputs and output labels:
o Inputs: 𝑋 = 𝑥%, … , 𝑥!
o Outputs: 𝑌 = 𝑦%, … , 𝑦!

§ Goal: Find a function 𝑓(𝑥; 𝜃) with parameters 𝜃 that maps inputs in 𝑋 to output to 𝑌
§ Empirical risk: measure the quality of the predictions with a loss function:

𝐽 𝜃 =
1
𝑛
>
*+%

!

ℓ(𝑓 𝑥*; 𝜃 , 𝑦*)

§ Machine learning as optimization:
argmin

)
𝐽 𝜃 How do you solve this

optimization?

69

Gradient Descent

§ We have a cost function 𝐽 𝜃 we want to minimize
o We can use Gradient Descent algorithm!

§ Idea: for current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in
direction of negative gradient. Repeat.

§ Note: Our objectives may not be
convex like this. But life turns out to be okay!

70

Gradient Descent (1): Intuition

§ Imagine you’re blindfolded
§ Need to walk down a hill
§ You can use your hands

to find the directions
that may be downhill

[slide: Andrej Karpathy]

71

Gradient Descent (2): Intuition

§ In 1-dimension, the derivative of a function:

§ Why step in direction of negative gradient?
o Gradient quantifies how rapidly the

function 𝐿(𝜃) varies when we change
the argument 𝜃* by a tiny amount.

𝜕𝐿
𝜕𝜃*

= lim
%→,

𝐿 𝜃* + ℎ − 𝐿(𝜃*)
ℎ

72

Gradient Descent (3)

§ Update equation (in matrix notation):

§ Update equation (for single parameter):

§ Algorithm:

𝛼 = step size or learning rate

• Iteratively subtract the gradient with respect to the model parameters (𝜃)
• i.e., we’re moving in a direction opposite to the gradient of the loss 𝐿(𝜃)
• I.e., we’re moving towards smaller loss 𝐿(𝜃)

73

Gradient Descent (4)

§ Update equation (in matrix notation):

[demo credit: ICMS YouTube channel]

74

Gradient Descent: Setting the Step Size

§ What is a good value for step size 𝛼?

o If 𝛼 = too small, it may be too slow
o If 𝛼 = too large, it may oscillate

§ It may take trial-and-errors to find the sweet spot.
§ Another trick is to define a “schedule” for gradually reducing the learning rate starting from

a large number.

[figure from: https://www.jeremyjordan.me/nn-learning-rate/]

https://www.jeremyjordan.me/nn-learning-rate/

75

A Typical Machine Learning and Evaluation Protocol

Testing data
𝐷,-., = 𝑥%, 𝑦% , …

Training data
𝐷/0123 = 𝑥%, 𝑦% , …

Held-out validation data
𝐷456 = 𝑥%, 𝑦% , …

Model Hypothesis Class
ℱ = 𝑓%, 𝑓(, 𝑓7, …

Overall training: picking
the best function:𝑓∗

Evaluation on test set:
𝐄 -,/ ~189:8 ℓ(𝑓 𝑥 , 𝑦

Training is to pick the
function given the

observed data.

Testing is t predict the
quality of the best
selected function

Each choice of
parameters in neural
networks correspond
to another function.

76

Summary Thus Far

§ A statistical learning problem can be formulated as an optimization problem.

§ The objective of this optimization consists of:
o Learning data (input/outputs)
o Predictive model architecture (encoding how an input gets mapped to an output)
o Loss function (quantifying quality of predictions)

§ Soon, we will use see how to use Neural Nets as the predictive model.

77

Algebra Refresher

78

Derivatives

§ First let’s get the notation right:

§ The arrow shows functional dependence of 𝑧 on 𝑦,
i.e. given 𝑦, we can calculate 𝑧.
o For example: 𝑧(𝑦) = 2𝑦(

§ The derivative of 𝑧, with respect to 𝑦: 23
2/

𝑧

𝑦
𝜕𝑧
𝜕𝑦

79

Quiz time!

§ If 𝑧(𝑥, 𝑦) = 𝑦?𝑥@ what is the following derivative ABAC ?
1. 23

2/
= 4𝑦4𝑥5

2. 23
2/
= 5𝑦6𝑥6

3. 23
2/
= 20𝑦4𝑥6

4. None of the above

𝑧

𝑦 𝑥

80

Gradient

§ Given a function with 1 output and 𝑛 inputs

§ Its gradient is a vector of partial derivatives with respect to each input

𝑓

𝑥E 𝑥F … 𝑥G𝑓 𝐱 = 𝑓 𝑥E, 𝑥F, … , 𝑥G ∈ ℝ

∇𝑓 𝐱 =

AH
AI.
AH
AI/
⋮
AH
AI0

∈ ℝG
(always assume vectors are

column vectors, i.e., they’re in ℝ!×#)

81

Quiz time!

§ If 𝑧(𝑥, 𝑦) = 𝑦?𝑥@ what is the following gradient ∇𝑧?
1. ∇𝑧(𝑥, 𝑦) = 4𝑦4𝑥5
2. ∇𝑧(𝑥, 𝑦) = (5𝑦6𝑥6, 20𝑦4𝑥6)
3. ∇𝑧(𝑥, 𝑦) = (5𝑦6𝑥6, 4𝑦4𝑥5)
4. None of the above

𝑧

𝑦 𝑥

82

Jacobian Matrix: Generalization of
the Gradient

§ Given a function with m outputs and n inputs

§ It’s Jacobian is an m x n matrix of partial derivatives: 𝐉𝐟 𝐱 &* =
-.#
-/$

𝑓# … 𝑓7

𝑥# 𝑥' … 𝑥)
𝐟 𝐱 = 𝑓# 𝑥#, 𝑥', … , 𝑥) , … , 𝑓7 𝑥#, 𝑥', … , 𝑥) ∈ ℝ7

𝐉𝐟 𝐱 =

𝜕𝑓"
𝜕𝑥"

⋯
𝜕𝑓"
𝜕𝑥#

⋮ ⋱ ⋮
𝜕𝑓1
𝜕𝑥"

⋯
𝜕𝑓1
𝜕𝑥#

∈ ℝ1×#

83

Quiz: Jacobian’s special case (1)

§ Remember Jacobians:

§ When m=1 (scalar-valued function), Jacobian reduces to …?

𝐟 𝐱 = 𝑓# 𝑥#, 𝑥', … , 𝑥) , … , 𝑓7 𝑥#, 𝑥', … , 𝑥) ∈ ℝ7

𝐉𝐟 𝐱 =

<=$
<>$

⋯ <=$
<>%

⋮ ⋱ ⋮
<=&
<>$

⋯ <=&
<>%

∈ ℝ?×! or 𝐉𝐟 𝐱 *@ =
<='
<>(

∇8𝐟 𝐱 (gradient transpose)

84

Quiz: Jacobian’s special case (2)

§ Remember Jacobians:

§ When m=n=1 (single-variable function), Jacobian reduces to …?

𝐟 𝐱 = 𝑓# 𝑥#, 𝑥', … , 𝑥) , … , 𝑓7 𝑥#, 𝑥', … , 𝑥) ∈ ℝ7

𝐉𝐟 𝐱 =

<=$
<>$

⋯ <=$
<>%

⋮ ⋱ ⋮
<=&
<>$

⋯ <=&
<>%

∈ ℝ?×! or 𝐉𝐟 𝐱 *@ =
<='
<>(

the derivative of 𝐟

85

Jacobian for Matrix Inputs

§ Given a function with 𝒎 outputs and 𝒏×𝒑 inputs

§ Jacobian is a m×𝑛×𝑝 tensor (i.e., matrix of matrices) of partial derivatives:

𝐉𝐟 𝐗 &*3 =
𝜕𝑓&
𝜕𝑥*3

§ The Jacobian math holds if you keep adding more dimensions to the input or output.

𝐟 𝐗 = 𝑓# 𝐗 ,… , 𝑓7 𝐗 ∈ ℝ7, where 𝐗 =
𝑥## ⋯ 𝑥#9
⋮ ⋱ ⋮
𝑥)# ⋯ 𝑥)9

∈ ℝ)×9

Why Use Matrix/Tensor Form?

87

Chain Rule

§ Function composition:
𝑧 ∘ 𝑦 𝑥 = 𝑧 𝑦 𝑥 = 𝑧 𝑥

Then:

𝑧

𝑦

𝑥If 𝑧 is a function of 𝑦, and
𝑦 is a function of 𝑥, then
𝑧 is a function of 𝑥, as well.

𝜕𝑧
𝜕𝑥 =

!"
!#

!#
!$

88

Chain Rule for Multivariable Functions

§ Let 𝐱 ∈ ℝT, 𝐠: ℝT → ℝU, 𝐟: ℝU → ℝV

§ Composing them: 𝐟 ∘ 𝐠 𝐱 = 𝐟 𝐠 𝐱 :ℝT → ℝV

The result looks similar to the single-variable setup:

Note, the above statement is a matrix multiplication!
Function 𝐟 ∘ 𝐠 has m outputs and d inputs → Jacobian’s dims:

𝐟

𝐠

𝐱
𝐉𝐟∘𝐠 𝐱 = 𝐉𝐟 𝐠(𝐱) 𝐉𝐠 𝐱

m by d

89

Quiz Time!

Let 𝑥 ∈ ℝ, 𝐲:ℝ → ℝ!, 𝐳: ℝ! → ℝ

What is the Jacobean of 𝑧 ∘ 𝐲 𝑥 = 𝑧(𝑦" 𝑥 ,… , 𝑦! 𝑥)?
1. 𝐉#∘𝐲 𝑥 = 𝐉# 𝐲(𝑥) 𝐉𝐲 𝑥
2. 𝐉#∘𝐲 𝑥 = &#

&'4
, … , &#

&'5

&'4
&(

, … , &'5
&(

)

3. 𝐉#∘𝐲 𝑥 = ∑*+"! &#
&'6

&'6
&(

4. All the above!

𝑧

𝑦E

𝑥

𝑦F 𝑦G…

90

Summary

§ We reviewed lots of background about neural networks!
o Linear algebra foundation
o Gradient descent
o Extending gradients to tensor form: Jacobians

§ Next: training a neural net!

91

Training Neural Networks:
Analytical Backprop

92

Recap: Multi-Layer Perceptron

x0

x1

x2

xP

[Slide: HKUST]

93

Recap: Multi-Layer Perceptron

x0

x1

x2

xP W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

[Slide: HKUST]

94

Training Neural Networks: Setup

§ We are given an architecture though its weights 𝐖.
§ We are given a training data 𝐷 = {(𝐱*, 𝑦*∗)}
§ We are given a loss function ℓ:ℝ×ℝ → (0, 1)

o ℓ 𝑦∗, 𝑦 quantifies distance between an answer 𝑦∗ and prediction y = NN 𝐱;𝐖 — lower is better.
§ Overall objective to optimize: ℒ 𝐷;𝐖 = ∑ 𝐱',D'

∗ ∈F ℓ(NN 𝐱*;𝐖 , 𝑦*∗)
W

ei
gh

ts
 to

 le
ar

n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥#

𝑥*

𝑥+

𝑥,

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

95

Training Neural Networks ~ Optimizing
Parameters

§ We can use gradient descent to
minimizes the loss.

§ At each step, the weight vector is modified
in the direction that produces the steepest
descent along the error surface.

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥#

𝑥*

𝑥+

𝑥,

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

ℒ 𝐷;𝐖

𝐖
𝐖(")𝐖($)𝐖(%)𝐖(&)

96

Training Neural Networks ~ Optimizing
Parameters

It all comes down to effectively computing -ℒ
-8#

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥#

𝑥*

𝑥+

𝑥,

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

ℒ 𝐷;𝐖

𝐖
𝐖(&) 𝐖(%) 𝐖($) 𝐖(")

For each sub-parameter 𝑊! ∈ 𝐖:

𝑊!
(=%#) = 𝑊!

(=) − 𝛼
𝜕ℒ
𝜕𝑊!

97

Training Neural Networks ~ Computing the
Gradients

§ How do you efficiently compute -ℒ
-8#

for all parameters?

§ It’s easy to learn the final layer – it’s just a linear unit.
§ How about the weights in the earlier layers (i.e., before the final layer)?

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

W
ei

gh
ts

 to
 le

ar
n!

𝑥#

𝑥*

𝑥+

𝑥,

𝑦 ∈ ℝ𝐱 = 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ ℝ$

98

Necessity of a Principled Algorithm for
Gradient Computation

§ Depth gives more representational capacity
to neural networks.

§ However, computing gradients for deeper
layers is not trivial and tedious.

§ Even if we have analytical formula for gradient,
if they’re architecture-specific, they must be
repeated for each new architecture.

§ The solution is “Backpropagation” algorithm!

Architecture of the BERT model with over 24 layers and millions
of parameters — we will study get to this model in a few weeks!

99

BP: Required Intuitions
1. Gradient Descent

• Change the weights 𝐖 in the direction of
gradient to minimize the error function.

2. Chain Rule
• Use the chain rule to calculate the weights of the

intermediate weights

3. Dynamic Programming (Memoization)
• Memoize the weight updates to make the

updates faster.

ℒ 𝐷;𝐖

𝐖
𝐖(&) 𝐖(%) 𝐖($) 𝐖(")

𝑥#

𝑥*

𝑥+

𝑥,

100

A Generic Multi-Layer Perceptron

§ Given the following definition:

§ Trainable parameters: 𝐖 = 𝐖J,𝐖%, … ,𝐖K, 𝐮

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖#𝐡#

𝑓0

𝐖.1#𝐡.1#

𝑓.1#

𝐱 = 𝐡, ∈ ℝ$& (input)

𝐡&'" = 𝑓&(𝐖&𝐡&) ∈ ℝ$# (hidden layer 𝑖 , 0 ≤ 𝑖 ≤ 𝐿 − 1)

𝑦 = 𝐮9𝐡: ∈ ℝ (output)

ℒ = ℓ(𝑦, 𝑦∗) ∈ ℝ (loss)

101

A Generic Neural Network: Forward Step
• Given some [initial] values for the parameters, we

can compute the forward pass, layer by layer.

• Forward pass is basically 𝐿 matrix multiplications, each
followed by an activation function.

• Matrix multiplication can be done efficiently with GPUs.
• Therefore, forward pass is somewhat fast.

• Complexity of forward pass is ….

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖#𝐡#

𝑓0

𝐖.1#𝐡.1#

𝑓.1#

linear of depth 𝑂 𝐿 .

102

A Generic Neural Network: Direct Gradients

We want the gradients of ℒ with respect to model parameters.
Use the chain rule to simplify the following term:

∇ℒ 𝐖@A# = 𝐉ℒ 𝐖@A#
8 =

𝐱 = 𝐡0 ∈ ℝ2' (input)

𝐡34# = 𝑓3(𝐖3𝐡3) ∈ ℝ2(

(0 ≤ 𝑖 ≤ 𝐿 − 1)

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝐖.1#𝐡.1#

𝑦

𝑓.1#
𝑦 = 𝐮-𝐡5 ∈ ℝ (output)

ℒ = ℓ(𝑦, 𝑦∗) ∈ ℝ (loss)

𝐖 = 𝐖0,𝐖#, … ,𝐖5 , 𝐮

𝐉ℒ y 𝐉O 𝐡P 𝐉𝐡" 𝐖PRS
T

103

A Generic Neural Network: Direct Gradients

We want the gradients of ℒ with respect to model parameters.
Use the chain rule to simplify the following term:

∇ℒ 𝐖@A' = 𝐉ℒ 𝐖@A'
8 =

𝐱 = 𝐡0 ∈ ℝ2' (input)

𝐡34# = 𝑓3(𝐖3𝐡3) ∈ ℝ2(

(0 ≤ 𝑖 ≤ 𝐿 − 1)

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝐖.1#𝐡.1#

𝑦

𝑓.1#
𝑦 = 𝐮-𝐡5 ∈ ℝ (output)

ℒ = ℓ(𝑦, 𝑦∗) ∈ ℝ (loss)

𝐖 = 𝐖0,𝐖#, … ,𝐖5 , 𝐮

𝐉ℒ y 𝐉O 𝐡P 𝐉𝐡" 𝐡PRS 𝐉𝐡"#$ 𝐖PRU
T

104

A Generic Neural Network: Direct Gradients

We want the gradients of ℒ with respect to model parameters.
Use the chain rule to simplify the following term:

∇ℒ 𝐖@A! = 𝐉ℒ 𝐖@A𝒊
8 =

𝐱 = 𝐡0 ∈ ℝ2' (input)

𝐡34# = 𝑓3(𝐖3𝐡3) ∈ ℝ2(

(0 ≤ 𝑖 ≤ 𝐿 − 1)

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝐖.1#𝐡.1#

𝑦

𝑓.1#
𝑦 = 𝐮-𝐡5 ∈ ℝ (output)

ℒ = ℓ(𝑦, 𝑦∗) ∈ ℝ (loss)

𝐖 = 𝐖0,𝐖#, … ,𝐖5 , 𝐮

𝐉ℒ y 𝐉O 𝐡P 𝐉𝐡" 𝐡PRS … 𝐉𝐡"#𝒊V𝟏 𝐖PR𝒊
T

105

A Generic Neural Network: Direct Gradients

We want the gradients of ℒ with respect to model parameters.

§ ∇ℒ 𝐖51# = 𝐉ℒ 𝐖51#
- = 𝐉ℒ y 𝐉7 𝐡. 𝐉𝐡) 𝐖.1#

-

§ ∇ℒ 𝐖51* = 𝐉ℒ 𝐖51*
-
= 𝐉ℒ y 𝐉7 𝐡. 𝐉𝐡) 𝐡.1# 𝐉𝐡)*+ 𝐖.1*

-

§ …

§ ∇ℒ 𝐖0 = 𝐉ℒ 𝐖51+
- = 𝐉ℒ y 𝐉7 𝐡. 𝐉𝐡) 𝐡.1# …𝐉𝐡+ 𝐖0

-

In total, how many matrix multiplications are done here?
(A) 𝑂 𝐿 (B) 𝑂 𝐿* (C) 𝑂 𝐿+ (C) 𝑂 exp(𝐿)

𝐱 = 𝐡0 ∈ ℝ2' (input)

𝐡34# = 𝑓3(𝐖3𝐡3) ∈ ℝ2(

(0 ≤ 𝑖 ≤ 𝐿 − 1)

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝐖.1#𝐡.1#

𝑦

𝑓.1#
𝑦 = 𝐮-𝐡5 ∈ ℝ (output)

ℒ = ℓ(𝑦, 𝑦∗) ∈ ℝ (loss)

𝐖 = 𝐖0,𝐖#, … ,𝐖5 , 𝐮

4 matrix
multiplications

3 matrix
multiplications

𝐿 + 2matrix
multiplications

Can we do better
than this? 🤔

106

Caching Gradients: The Main Idea

§ Suppose we’re computing.

∇ℒ 𝐖KM% = 𝐉ℒ y 𝐉D 𝐡N 𝐉𝐡9 𝐖NM%
P

§ What can we cache to speed up the gradient computations
of the earlier layer?

∇ℒ 𝐖KM(= 𝐉ℒ y 𝐉D 𝐡N 𝐉𝐡9 𝐡NM% 𝐉𝐡9:$ 𝐖NM(
P

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝐖.1#𝐡.1#

𝑦

𝑓.1#

107

A Generic Neural Network: Gradients
with Caching/Memoization

§ Parameter gradients depend on the gradients of the earlier layers!
§ So, when computing gradients at each layer, we don’t need to start from scratch!
§ I can reuse gradients computed for higher layers for lower layers (i.e., memoization).

In total, how many matrix multiplications are done here when using caching/memoization?
(A) 𝑂 𝐿 (B) 𝑂 𝐿* (C) 𝑂 𝐿+ (C) 𝑂 exp(𝐿)

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝐖.1#𝐡.1#

𝑦

𝑓.1#

Let 𝛿3 denote Jacobian at the output of layer 𝑖:
First layer: 𝛿5 = 𝐉ℒ y 𝐉7 𝐡.

Subsequent layers: 𝛿3 = 𝛿34# 𝐉𝐡(𝐡31# , ∀𝑖:	0 ≤ 𝑖 ≤ 𝐿 − 1

∇ℒ 𝐖51# = 𝐉ℒ y 𝐉7 𝐡. 𝐉𝐡) 𝐖.1#
-

∇ℒ 𝐖51* = 𝐉ℒ y 𝐉7 𝐡. 𝐉𝐡) 𝐡.1# 𝐉𝐡)*+ 𝐖.1*
-

…

∇ℒ 𝐖0 = 𝐉ℒ y 𝐉7 𝐡. 𝐉𝐡) 𝐡.1# …𝐉𝐡+ 𝐖0
-

= 𝛿5 𝐉𝐡) 𝐖.1#
-

= 𝛿51# 𝐉𝐡)*+ 𝐖.1*
-

= 𝛿# 𝐉𝐡+ 𝐖0
-

108

Gradient: Local Grad + Upstream Grad

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝐖.1#𝐡.1#

𝑦

𝑓.1#

Let 𝛿& denote Jacobian at the output of layer 𝑖:
𝛿& = 𝐉ℒ y 𝐉< 𝐡= 𝐉𝐡' 𝐡=?" … 𝐉𝐡# 𝐡&?"

𝛿& = 𝛿&'" 𝐉𝐡# 𝐡&?"

∇ℒ 𝐖@A! = 𝛿@A!%# 𝐉𝐡Q#RST 𝐖DA!
8

Upstream gradient ~ We lookup
from the layer above.

§ Gradients at each layer computed by

Local
Gradient

109

A Generic Neural Network: Backward Step

§ Backward step computes the gradients starting from the end to the
beginning, layer by layer.

§ Start by computing local gradients: 𝐉𝐡%&'() 𝐖)*+

§ Use then to compute upstream gradients 𝛿,, then 𝛿,*-, then 𝛿,*., ….

§ Use these to compute global gradients: ∇ℒ 𝐖+

§ Computational cost as a function of depth:
o With memoization, gradient computation is a linear function of depth L

• (same cost as the forward process!!)
o Without memorization, gradients computation would grow quadratic with L

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖#𝐡#

𝑓0

𝐖.1#𝐡.1#

𝑓.1#

110

A Generic Neural Network: Back Propagation

Initialize network parameters with random values
Loop until convergence

Loop over training instances
i. Forward step:

Start from the input and compute all the layers till the end (loss ℒ)

ii. Backward step:
Compute local gradients, starting from the last layer
Compute upstream gradients 𝛿3 values, starting from the last layer
Use 𝛿3 values to compute global gradients ∇ℒ 𝐖3 at each layer

iii.Gradient update:
Update each parameter: 𝐖3

(<4#) ← 𝐖3
(<) − 𝛼 ∇ℒ 𝐖3

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖#𝐡#

𝑓0

𝐖.1#𝐡.1#

𝑓.1#
In practice, this step is done
over batches of instances!

111

Summary

§ Backpropagation: an algorithm for training neural networks.

§ Using Dynamic Programming for efficient computation of gradients.

§ Next: Backprop in real practice.

112

Backprop via
Computation Graph

113

Computation Graph: Example
§ In reality, neural networks are not as regular as the previous example …

114

Backprop in General Computation Graph

§ What if the network does not have a regular structure? Same idea!

1. Sort the nodes in topological order (what depends on what)
o Cost: Linear in the number of nodes/edges. …

…

Inputs

Single scalar output

115

Backprop in General Computation Graph

§ What if the network does not have a regular structure? Same idea!

1. Sort the nodes in topological order (what depends on what)
2. Forward-Propagation:

o Visit nodes in topological sort order and
compute value of node given predecessors

o Cost: Linear in the number of node/edges

…

…

Inputs

Single scalar output

116

Backprop in General Computation Graph

§ What if the network does not have a regular structure? Same idea!

1. Sort the nodes in topological order (what depends on what)
2. Forward-Propagation:

o Visit nodes in topological sort order and
compute value of node given predecessors

3. Backward-Propagation:
o Compute local gradients
o Visit nodes in reverse order and

compute global gradients using gradients of successors
o Cost: Linear in the number of nodes/edges.

…

…

Inputs

Single scalar output

117

A Generic Example

f

Lecture 4 -118

Figure from Andrej Karpathy

“local gradient”

f

Figure from Andrej Karpathy

“local gradient”

Upstream
gradient

f

Figure from Andrej Karpathy

“local gradient”

Global or
downstream

gradients
f

Figure from Andrej Karpathy

Upstream
gradient

“local gradient”

f

Figure from Andrej Karpathy

Global or
downstream

gradients

Upstream
gradient

“local gradient”

f

Figure from Andrej Karpathy

Global or
downstream

gradients

Upstream
gradient

124

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

125

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

126

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

127

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

128

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

129

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

130

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

131

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

Chain rule:

Upstream
gradient

Local
gradient

132

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

Chain rule:

Upstream
gradient

Local
gradient

133

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

134

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

Chain rule:

Upstream
gradient

Local
gradient

135

Computation Graph: An Example

§ Evaluated at: x = -2, y = 5, z = -4
§ Start with local gradients!

[Slide: Stanford CS231N]

Chain rule:

Upstream
gradient

Local
gradient

136

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Want: 2H
2-T

, 2H
2-U

, 2H
2-V

, 2H
2-W

In what order should
we process the
forward step?

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

137

Computation Graph: An Example

In what order should
we process the
forward step?

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

5

4

9

3

27

2

25

138

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Want: 2H
2-T

, 2H
2-U

, 2H
2-V

, 2H
2-W

In what order should
we process the
backward step?

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

9

3

27

2

25

139

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

In what order should
we process the
backward step?

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

9

3

27

2

25

140

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

𝑎 = 9

3

𝑏 = 27

2

25 Introduce intermediate
variable names

141

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

𝑎 = 9

3

𝑏 = 27

2

25

1

−1

AH
AIR

= AH
AIR

× AH
AH

UL

U: Upstream grad
L: Local grad

𝑓 = 𝑏 −𝑥?

= −1 ×1 = −1

142

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

𝑎 = 9

3

𝑏 = 27

2

25

1

−1

1

AH
AIR

= AH
AIR

× AH
AH = −1 ×1 = −1

UL

AH
Al =

AH
Al×

AH
AH

UL

U: Upstream grad
L: Local grad

𝑓 = 𝑏 −𝑥?

= 1×1 = 1

143

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

𝑎 = 9

3

𝑏 = 27

2

25

1

−1

1

AH
AIS

= Al
AIS

× AH
Al =

UL

U: Upstream grad
L: Local grad

𝑏 = 𝑎× 𝑥m

𝑎×1 = 9

9

144

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

𝑎 = 9

3

𝑏 = 27

2

25

1

−1

1

AH
AIS

= Al
AIS

× AH
Al =

UL

AH
An =

Al
An×

AH
Al

UL

U: Upstream grad
L: Local grad

𝑏 = 𝑎× 𝑥m

= 𝑥m×1 = 3

𝑎×1 = 9

9

3

145

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

𝑎 = 9

3

𝑏 = 27

2

25

1

−1

1

AH
AI/

= An
AI/

× AH
An =

UL

U: Upstream grad
L: Local grad

𝑎 = 𝑥E + 𝑥F

1×3 = 3

9

3

3

146

Computation Graph: An Example
𝑓 𝑥#, 𝑥', 𝑥4, 𝑥6, 𝑥5 = 𝑥# + 𝑥' 𝑥4 − 𝑥6

Evaluated at: 𝑥#, 𝑥', 𝑥4, 𝑥6 = (5, 4, 3, 2)

5

4

𝑎 = 9

3

𝑏 = 27

2

25

1

−1

1

AH
AI/

= An
AI/

× AH
An =

UL

AH
AI.

= An
AI.

× AH
An =

UL

U: Upstream grad
L: Local grad

𝑎 = 𝑥E× 𝑥F

1×3 = 3

1×3 = 3

9

3

3

3

147

Backprop via Computation Graph

§ What if the network does not have a regular structure? Same idea!

1. Sort the nodes in topological order (what depends on what)
2. Forward-Propagation:

o Visit nodes in topological sort order and
compute value of node given predecessors

3. Backward-Propagation:
o Compute local gradients
o Visit nodes in reverse order and

compute global gradients using gradients of successors

…

…

Inputs

Single scalar output

148

Demo Time!

§ https://teachablemachine.withgoogle.com/

https://teachablemachine.withgoogle.com/

149

Summary

§ Computation graphs: directed graph where the nodes correspond to mathematical
operations.
o A way of expressing mathematical operations.

§ This allows general-purpose implementation of Backprop to any form of networks
(not just multilayer perceptron).
o This is why n practice you don’t need to worry about implementing Backprop!!

§ Next: Implementing Backprop yourself + industrial software libraries.

150

Backprop via
Automatic Differentiation

151

Backward propagation

§ The computation graph makes it easy to backpropagate all the way
§ We implement this into the library so that the library does this for us!

[Slide credit: Arman Cohan]

[Slide credit: Arman Cohan]

[Slide credit: Arman Cohan]

The computational graph
should be directed and
acyclic.

We start calling backward in
order

[Slide credit: Arman Cohan]

156

Auto-diff in PyTorch

157

PyTorch’s Implementation: Forward/Backward API

§ PyTorch has implementation of forward/backward operations for various operators.
§ Example: multiplication operator

158

PyTorch Operators

§ PyTorch’s lower-level functions translate
activities to graphics processor via
libraries like OpenGL

159

Example Activation Functions

160

Check out PyTorch Documentations

§ This is the main library the vast majority of the community uses.
§ It contains hundreds of mathematical operations with “backward()” function to allow

automatic gradient computation on computation graph.

§ See: https://pytorch.org/docs/stable/index.html

https://pytorch.org/docs/stable/index.html

161

Backprop in PyTorch

x = torch.tensor(-2.0, requires_grad=True)
y = torch.tensor(5.0, requires_grad=True)
z = torch.tensor(-4.0, requires_grad=True)

f = (x+y)*z # Define the computation graph

f.backward() # PyTorch’s internal backward gradient computation

print('Gradients after backpropagation:', x.grad, y.grad, z.grad)

Want:

162

Why Learn All These Details About Backprop?

§ Modern deep learning frameworks compute gradients for you!

§ But why take a class on compilers or systems when they are implemented for
you?
o Understanding what is going on under the hood is useful!

§ Backpropagation doesn’t always work perfectly out of the box
o Understanding why is crucial for debugging and improving models

163

Summary

§ Modern deep learning libraries such as PyTorch implement a vast library of
operations to allow automatic and efficient Backprop.

§ We will make extensive use of PyTorch in this class (yay!)

§ Next: We will discuss a few practical considerations regarding training NNs.

164

Practical considerations
for training neural nets

165

Batching

§ GPUs are fast with
Tensor operations

§ Rather than visiting
instances in sequentially ,
batch them together
for faster training and
inference.

166

Batches of Data: Example

§ The case of natural language:

o Each word is mapped to a vector ℝ"

o Then, each sentence of length is mapped to

o A batch of sentences (size 𝑏) is mapped to

a matrix ℝℓ×"

a tensor ℝℓ×"×Y

167

Batches of Data, In Practice

§ PyTorch makes it easy to batch data.
o All its functionalities are designed around batched process.
o For example, you can create any tensor of any dimension.

https://pytorch.org/docs/stable/generated/torch.rand.html

168

Batches of Data, In Practice

§ Avoid loops, use tensors.

import torch

def matmul(A, B):
C = torch.zeros_like(A)
for i in range(A.size(0)):
for j in range(B.size(1)):
for k in range(A.size(1)):
C[i, j] += A[i, k] * B[k, j]

return C

Example usage:
A = torch.randn(10, 10)
B = torch.randn(10, 10)
C = matmul(A, B)

import torch

Example usage:
A = torch.randn(10, 10)
B = torch.randn(10, 10)
C = torch.matmul(A, B)

169

Normalize Your Data!

§ We do not like very large numbers.
o Large numbers lead to numerical problems (e.g., overflow) and lead to NaNs 😭

§ We prefer if our data is distributed around zero.

170

Normalize Your Data!

§ We do not like very large numbers.
o Large numbers lead to numerical problems (e.g., overflow) and lead to NaNs 😭

§ We prefer if our data is distributed around zero.

https://developers.google.com/machine-
learning/clustering/prepare-data

https://developers.google.com/machine-learning/clustering/prepare-data
https://developers.google.com/machine-learning/clustering/prepare-data

171

Non-Zero-Centered Data

§ If data is always positive (i.e., ∀𝑖: 𝑥* > 0), all the dimensions of ∇𝒘ℒ would have the
same sign (all positive or all negative, same sign as upstream).

𝑓 = 𝒘o𝒙 + 𝒃 ⇒ Aℒ
ApT

= Aℒ
AH

AH
ApT

= upstream × 𝑥q

feasible direction
for gradients

Impossible directions
for gradients

A hypothetical
training trajectory

start

goal

The weight vector needs more
updates to be trained.

Solution:
(i) Inter-leave normalization operators to normalize data around zero.
(ii) Choose activation functions that that are centered around zero.

172

Normalization: Layer, Batch, …

§ Normalization of values standardizes the ranges of values
§ Prevents value disparities
§ Stabilizes and speeds up training

[Ba et al. “Layer Normalization”]

See PyTorch documentations: https://pytorch.org/docs/stable/nn.html#normalization-layers

https://arxiv.org/pdf/1607.06450.pdf
https://pytorch.org/docs/stable/nn.html

173

Activation Functions

§ How do you choose what activation function to use?
§ In general, it is problem-specific and might require trial-and-error.
§ Here are some tips about popular action functions.

174

Activation Functions : Sigmoid

§ Squashes numbers to range [0,1]
§ Historically popular, interpretation as

“firing rate” of a neuron

§ Key limitation: Saturated neurons “kill” the gradients
§ Whenever |x| > 5, the gradients are basically zero.

sigmoid
gate

xIf all the gradients flowing back
will be zero and weights will
never change.

[dance figure: https://www.imaginary.org/gallery/maths-dance-moves]

https://www.imaginary.org/gallery/maths-dance-moves

175

Activation Functions : Tanh

§ Symmetric around [-1, 1]
§ Still saturates |x| > 3 and “kill” the gradients
§ Zero-centered — faster optimization (why?)

[dance figure: https://www.imaginary.org/gallery/maths-dance-moves]

[LeCun et al., 1991]

https://www.imaginary.org/gallery/maths-dance-moves

176

Activation Functions : ReLU

§ Computationally efficient
§ In practice, converges faster than

sigmoid/tanh in practice
§ Does not saturate (in +region) — will die less!

[dance figure: https://www.imaginary.org/gallery/maths-dance-moves]

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

https://www.imaginary.org/gallery/maths-dance-moves

177

Activation Functions : Leaky ReLU

§ Does not saturate — will not die.
§ Computationally efficient
§ In practice it converges faster than

sigmoid/tanh in practice

§ Other parametrized variants:
o Parametric Rectifier (PReLU):

o Maxout:

§ Provide more flexibility, though at the cost of more learnable parameters.
o For example, Maxout doubles the number of parameters.

[dance figure: https://www.imaginary.org/gallery/maths-dance-moves]

[Goodfellow et al., 2013]

[He et al., 2015]

https://www.imaginary.org/gallery/maths-dance-moves

178

Choose Activations: In Practice

§ In general, it is problem-specific and might require trial-and-error.

§ A useful recipe:
1. Generally, ReLU is a good activation to start with.
2. Time/compute permitting, you can try other activations to

squeeze out more performance.

179

Exploding/Vanishing Gradients

§ If many numbers |x| > 1 get multiplied, the result will become too big.
§ NaN gradients --> no learning!

§ If many numbers |x| < 1 get multiplied, the result will become too small.
§ Zero gradients -> no learning!

180

Exploding/Vanishing Gradients

§ Remember gradient computation at layer 𝐿 − 𝑘:

§ This matrix multiplication could quickly approach
o ∞, if the matrix elements are a large — exploding gradients.
o 0, if the matrix elements are small — vanishing gradients.
o ∞/0 gradients would kill learning (no flow of information).

§ For those interested, convergences of matrix powers is determined
by its largest eigenvalue (HW, extra credit).

∇ℒ 𝐖KM[= 𝐉ℓ y 𝐉D 𝐡N 𝐉𝐡9 𝐡NM% 𝐉𝐡9:$ 𝐖NM(… 𝐉𝐡>:?@$ 𝐖KM[
P

𝐱

+

𝐮-𝐡.

⋮ ⋮ ⋮

𝑦

𝐖𝟎𝐱

𝐖#𝐡#

𝑓0

𝐖.1#𝐡.1#

𝑓.1#

O(k)-many matrix multiplication

181

Residual Connections/Blocks

§ Create direct “information highways” between layers.

§ Shown to diminish vanishing/exploding gradients
§ Early in the training, there are fewer layers to propagate through.

o The network would restore the skipped layers, as it learns richer features.
o It is also shown to make the

optimization objective smoother.

[Fun fact: the paper (He et al. 2015)
introducing residual layers is the most
cited paper of century!!]

[Li et al. “Visualizing the Loss Landscape of Neural Nets”]

https://arxiv.org/abs/1512.03385

182

Weight Initialization

§ Initializing all weights with a fixed constant (e.g., 0’s) is a very bad idea! (why?)

§ If the neurons start with the same weights, then all the neurons will follow the same
gradient, and will always end up doing the same thing as one another.

§ Effective initialization is one that breaks such ”symmetries” in the weight space.

x0

x1

x2

xP

183

Weight Initialization

§ Better idea: initialize weights with random Gaussian noise.

§ There are fancier initializations (Xavier, Kaiming, etc.) that we won’t get into.

[read more here: https://pytorch.org/docs/stable/nn.init.html]

x = torch.tensor.empty(3, 5)
nn.init.normal_(w)

https://pytorch.org/docs/stable/nn.init.html

184

Over-training Prevention

§ Running too many epochs and/or a NN with many hidden layers may lead to an
overfit network

§ Keep a held-out validation set and evaluate accuracy after every epoch
§ Early stopping: maintain weights for best performing network on the validation set

and return it when performance decreases significantly beyond that.

185

Dropout Training

§ In each forward pass, randomly set some neurons to zero

§ Probability of dropping is a hyperparameter; 0.5 is common
§ Dropout is implicitly an ensemble (average) of model that share parameters.

o Each binary mask is one model
o For example, a layer with 4096 units

has 24096 ~ 101233 possible masks!
o Only ~ 1082 atoms in the universe ...

[Hinton et al, 2012; Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014]

186

Dropout During Test Time

§ The issue for the test time:
o Dropout adds randomization. L
o Each dropout mask would lead to a slightly different outcome.

§ In ideal world, we would like to “average out” the outcome across
all the possible random masks:
o Not feasible.
o Remember the example: a layer with 4096 units has 24096 ~ 101233 possible masks!
o Only ~ 1082 atoms in the universe ...

187

Dropout During Test Time (2)

§ The alternative is to not apply dropout.
§ Without dropout, the input values to each neuron would be higher than what was

seen during the training (mismatch between train/test).
§ Example: imagine we apply dropout (p=0.5) to the following model:

o Training time: 𝐸 𝑎 = %
\ 𝑤%𝑥% + 𝑤(𝑥(+ %

\ 0 + 0
+ %
\
0 + 𝑤(𝑥(+ %

\
𝑤%𝑥% + 0 = %

(
𝑤%𝑥% + 𝑤(𝑥(

o Test time: 𝐸 𝑎 = 𝑤%𝑥% + 𝑤(𝑥(

§ Solution: scale the values proportional to dropout probability.
o Can be applied in either testing (scaling down) or training (scaling up).
o A very common interview question! J

a

x y

w1 w2

188

Dropout in Practice

Just call the PyTorch function!

It automatically
- activates the dropout for training.

- deactivatives it during evaluations and
scales the values according to its parameter.

dropout = nn.Dropout(p=0.2)
x = torch.randn(20, 16)
y = dropout(x)

See PyTorch documentations https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

training step
...
model.train()
...

evaluate model:
...
model.eval()
...

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

189

The Only Time You Want to Overfit: The First
Tryout

§ A model with buggy implementation (e.g., incorrect gradient calculations or updates)
cannot learn anything.

§ Therefore, a good and easy sanity check is to see if you can overfit few examples.
o This is really the first test you should do, before any hyperparameter tuning.

§ Try to train to 100% training accuracy/performance on a small sample (<30) of
training data and monitor the training loss trends.
o Does it down? If not, something must be wrong.
o Try checking the learning rate or modifying the initialization.
o If those don’t help, check the gradients.

• If they’re NaN or Inf, might indicate exploding gradients.
• If they’re zeros, might indicate vanishing gradients.

190

Additional Comments on Training

§ No guarantee of convergence; neural networks form non-convex
functions with multiple local minima

§ In practice, many large networks can be trained on large data.

§ Many steps (tens of thousands) may be needed for adequate
training.

§ May be tricky to set learning rate or number of hidden units/layers.

§ To avoid local minima: several trials with different random initial
weights with majority or voting techniques

191

Intuition about Neural Net Representations

192

Intuition about Neural Net Representations

[Zeiler & Fergus 2013; Yosinski et al. 2015]

https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/abs/1506.06579

193

Summary

§ Feed-forward network architecture
o But many of the concepts here hold for any architecture.

§ We learned Backprop, a general-purpose algorithm for efficient training of NNs.
o Recursively (and hence efficiently) apply the chain-rule along computation graph.
o The most important algorithm in neural networks! 🎉

§ Lots of empirical tricks for training neural networks:
o Things to be careful about: over-fitting, activations, exploding/vanishing gradients, …

