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How was HW1

= Select that best applies:
1. It was smooth sailing through things I knew; my hamster nearly finished it.
2. it was familiar stuff but I had to learn or refresh a few things.
3. It was like shoveling snow in the middle of a blizzard, it just kept getting worse
4. It was so challenging, it felt like climbing Mount Everest with slippers on.
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HW2 is released

= Did you see it?

= Due Tuesday noon.
o Feels like a long time away? it's due in 120 hours!
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“Can I use external libraries?” No, unless specified!

= Use the basic Python functions (no external libraries), unless explicitly specified.
= In almost all places, you're not expected to write more than 3-4 lines of code.

[ 1 # a function that resturns the top k™ most- similar words to- input word"
def my most similar(input_word, k):
words = embeddings.vocab.keys() # list of words covered by this word embedding
input _word emd = embeddings[input_ word]

### START CODE HERE ###
### END CODE HERE ###

return top k most similar words

my most similar('cat', 10)
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“I can‘tinstall ....”

» Current code is based on 3.6.0.

= If you use other version, you might need to make minor
changes to Gensim functions. Feel free to consult with

Gensim documentation.

o This is part of any programming experience.
It's part of the job! Don't hate it, embrace it! &

!(;Tﬁ'!y JOHNS HOPKINS



Recap: Language Modeling

= Language Modeling: estimating distributions over language.

= One approach we previously saw: counting word co-occurrences.

o Pro: easy — just count!
o Con: difficult to scale to longer context due to the sparsity challenge.

= Another approach:
o Using a learnable function that can estimate word transition probabilities.

« Now: What are these learnable functions and how can we train them.
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Neural Networks: Chapter Plan

1. Defining neural networks (feedforward nets)

2. Neural nets: brief history

3. Algebra background for training neural nets

4. Training neural networks: analytical backpropagation
5. Backprop in practice

Chapter goal: Get comfortable with thinking, designing and building neural networks
— very powerful modeling tools.
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Feedforward

Neural Nets




Neural Networks

= What are neural networks?
o Functions that take an input and produce an output.

Video Caption Text Image

Game

state Action

= What is inside this box?
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How Neural Networks work?
Neurons:
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Feedforward networks

= This is a particular class called “feedforward” networks.

o Cascade neurons together
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Feedforward networks

 Inputs multiplied by initial set of weights
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Feedforward networks

« Intermediate “predictions” computed at first hidden layer
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Feedforward networks

 Intermediate predictions multiplied by second layer of weights
* Predictions are fed forward through the network
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Feedforward networks

« Compute second set of intermediate predictions
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Feedforward networks

« Multiply by final set of weights
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Feedforward networks

- Aggregate all the computations in the output
 e.g. probability of a particular class

o
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Feedforward networks

« All the intermediate parameters are ought to be learned.
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Feedforward Neural Network

= Neural Networks are functions!
o Function class for approximating real-valued, discrete-valued and vector valued
target functions.

o NN:X - Y where X =[0,1]*, or R® and Y = [0,1]¢,{0,1}¢

« Example: A 2-layer neural network
« The input, hidden and output variables are
represented by nodes
« The links are the weight parameters

« Arrows denote direction of information flow
through the network

output layer
input layer
hidden layer

= o S,
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Neural Network: Making it bigger

Add more layers, or wider layers!

A 2-layer neural network

output laver
input layer
hidden layer
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A 3-layer neural network
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Feedforward Neural Network: The Neurons

= A mathematical model of neuron is “perceptron”.
= [t consists of a hon-linear function that “fires” if

the affine (linear) function of inputs is above a threshold. el output layer
X1
N X,
y = a<b+ZWixl-> X3
i=1 4
o(z) = 1+l—x (sigmoid function)

XN
= The bias is the negative of the threshold T in the previous slide

= JOHNS HOPKINS
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Feedforward Neural Network: The Neurons

= Sigmoid is a “squashing” function.
o It maps small inputs to zero.
o It maps large inputs to one.

X1
N %,
y = a<b+ZWixl-> X3
i=1
o(z) = 1+l—x (sigmoid function)

XN

= The bias is the negative of the threshold T in the previous slide

= JOHNS HOPKINS
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Does not always

Other Activation Functions havetobea
squashing function

Sigmoid | Leaky ReL U m
o max(0.1z, x)

J(CC) — 1fe-= ;
tanh / Maxout
tanh(z) o mas(efe bl

] 1, W5 T + 2)
RelLU —M -

T x>0

maX(O, CU) 710 ) {a(em -1) z<0 a—rd

We will talk about their pro/cons later!
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Terminology: Multi-Layer Perceptron (MLP)

= Multi-layer Perceptron (MLP):

o A feedforward network with
perceptrons as its nodes.

= A feedforward network does not output layer
have to be an MLP. input layer

o But people sometimes use the names hidden layer
interchangeably! ¥

= The original MLP [McCulloch-Pitts] was based
on “threshold” activation.

oy JOHNS HOPKINS
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Formally Defining an MLP

output layer
input layer
hidden layer

« Example: A 2-layer MLP network
« The input, hidden and output variables are represented by nodes
« The links are the weight parameters
« Arrows denote direction of information flow through the network

f&X) =W, g(Wix) ¢ R", y € R?

g(z) = [0(zy), ...,a(zy)] (nonlinearity)  a(z;) = (sigmoid function)

1+e~X

« W; € R and W, € R are the parameters that need to be learned.

=y JOHNS HOPKINS
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Quiz Time (1)

= What is needed to fully specify a neural

network?
1. Architecture (which input goes through what function etc.)

2. Parameters of the function (the weights)
3. Both

’@,‘.} JOHNS HOPKINS
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Quiz Time (2)

= Which of the followings has more parameters?

X
i

4
\
X

)
®

output layer
output layer

input layer input layer
hidden layer hidden layer 1 hidden layer 2
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Quiz Time (3)

= Given an input to these models, which of them
take longer to compute an output?

%

AN
.

<

(=0
.%f.‘%\yli\
OM‘ (
output layer ‘ output layer
input layer input layer

Za\ o 2
hidden layer hidden layer 1 hidden layer 2

X
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Why Add Non-linearity?

output layer
input layer
hidden layer

« Without non-linearity, the overall model amounts to a linear model.

fx) =W, g(W;x) f(x) = W,W,x = W5x (alinear function) e .
[ J
[ ]

drop g ° :o: °
- - - . ._
A linear function cannot approximate complex tasks. X e %% Le
[ J [ J
Y [ J

« Non-linearity adds capacity to the model to approximate

any continuous function to arbitrary accuracy b s with.
given sufficiently many hidden units. linear classifier

See “universal approximation theorem”

I,HJ()HI\S H()I‘I\I\IS -


https://en.wikipedia.org/wiki/Universal_approximation_theorem

Universal Approximation

= An MLP can represent any function, with enough expressivity.

AN

\

== N OKTNS . . . .
QYOS HOMN Maiorov & Pinkus. Lower bounds for approximation by MLP neural networks, 1999. 30



Quiz Time

= What makes neural networks expressive

functions?
1. Activations (non-linearities)
2. Depth (number of hidden layers)
3. Width (number of variables in each hidden layer)
4. All the above

<]
-
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Demo timel!

= Link: https://playground.tensorflow.org/

Q@i.-,y JOHNS HOPKINS
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https://playground.tensorflow.org/

? Depth vs. Width

d architecture

IS a goo

What

affect its capacity to learn.

= Architectural parameters of a neural network
o Deep vs. wide

AN

33

JOHNS HOPKINS
" W NG SCHO(



Depth vs Width on Boolean functions

= An MLP is a universal Boolean function.

= A shallow (single hidden layer) is a universal Boolean machine
o But it may require an exponentially large number of units.

= Deeper networks may require far fewer neurons than shallower
networks to express the same function
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Depth vs Width on Boolean functions

= Theorem: There are certain class of functions with n inputs
that can be represented with deep neural network with 0(n)

units, whereas it would require 0(2‘/") units for a shallow
network.

Hastad, Almost optimal lower bounds for small depth circuits, 1986.
Delalleau & Bengio. Shallow vs. deep sum-product networks, 2011.

—, JOHNS HOPKINS
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Summary

An MLP is a universal function

But can represent a given function only if
o It is sufficiently wide
o It is sufficiently deep

o Depth can be traded off for (sometimes) exponential growth of the width of the
network

Optimal width and depth depend on the complexity of the problem.

= Next: A bit of history.

@ JOHNS HOPKINS
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Neural Nets:
Origin and History




Artificial Neurons: An Inspiration from Nature

= A single node in your neural network
o Accept information from multiple inputs
o Transmit information to other neurons nfpuflayer

input layer

= A neuron’s function is inspired by its biological counterpart: hidden layer
o Apply some function on inputs signals
o If output of function over threshold, neuron “fires”

impulses carried X wy
toward cell body Smenm—
branches WOT
dendrites . ' of axon
\ cell body I (Z i b)

y output axon
terminal

activation
function

nucleus

impulses carried

' Y away from cell bod
cell body ¢ o 38



Artificial Neurons: Not Quite Analogous to Nature

Biological neurons:
complex connectivity

l»“" "

Source: Google Brain Map
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Neurons in an artificial neural network:
organized based on a highly regular
structure for computational efficiency
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. output layer

hidden layer 1 hidden layer 2

input layer
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Very Brief History of Neural Networks

Single-layer neural networks (1943-1969)

Symbolic AI & knowledge engineering (1970-1985)
Multi-layer NNs and symbolic learning (1985-1995)

Shallow statistical learning/probabilistic models (1995-2010)
Deep networks and self-supervised learning (2010-?)

A i
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Very Brief History of Neural Networks

Single-layer neural networks (1943-1969)

Symbolic AI & knowledge engineering (1970-1985)
Multi-layer NNs and symbolic learning (1985-1995)

Shallow statistical learning/probabilistic models (1995-2010)

Deep networks and self-supervised learning (2010-?)

A wN R
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A Neuron as a Mathematical Model of Computation

= McCulloch and Pitts (1943) showed how linear threshold units can be used to
compute logical functions

Xo= 1 The “bias”, a constant term that does
0

o g a !
W Wy | g eendonany nputvale
1 f‘%ye{(),l} (0,11) (1,1) w ’

. T4+ x0 =
OR function _ Tl ro ) L # mers0
2 "o y net = 2 W, X; o =sgn(net) = .
T+ xy = Z‘l > 1 (0,0) (1.oy *f i=0 =1 if net<0
= Notice the step function (threshold)!
Early models didn‘t need to be differentiable.

= An alternative model of computation (comparable to “Turing Machine”)

—, JOHNS HOPKINS
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[A Logical Calculus of Ideas Immanent in Nervous Activity, McCulloch and Pitts 1943]



https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

Perceptl‘on Lea I‘ning Ru Ie — Imitating Nature’s Learning Process

= Rosenblatt (1959) developed the Perceptron algorithm —

o An iterative algorithm for learning the weights of a linear threshold unit.
Input Weight

T o—»@“ Activation Output
Function
T2 ( ) Sum —

o

= A single neuron with a fixed input, it can incrementally change weights and learn to
produce a fixed output using the Perceptron learning rule.

= Update each weights by: W, =w, + 77(1 — 0) X

t: the target value
=y u J()Hl\% H()I KINS

of{The perceptron: a probabilistic model for information storage and organization in the brain, Rosenblatt 1959] 43



https://www.ling.upenn.edu/courses/Fall_2007/cogs501/Rosenblatt1958.pdf

QUiZ (1): Understanding Perceptron Update Rule

= Suppose the inputs x; € {0,1} and n = 1. If LTU’s output o exactly matches the target
value t, How would the update rule change the weights?

1. Would increase them
2. Would decrease them
3. Would not change them

w,=w, +1n(t—-o)x,

xlo—b@“ Activation Output
Function

L2 Sum

© '@ ’ _{.IZ_,

=X . .
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QUiZ (2): Understanding Perceptron Update Rule

= Suppose the inputs x; € {0,1} and n = 1. If LTU’s output o is smaller than the target
value t, how would the update rule change the weights?

1. Would increase them

2. Would increase the weights for active inputs

3. Would decrease them
4. Would not change them

= After this update, the new output o would be:

1. Larger
2. Smaller
3. Unchanged

ﬁ‘, JOHNS HOPKINS

w,=w, +1n(t—-o)x,

xlo—b@“ Activation Output
Function

L2 Sum
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Perceptron: Demise

Perceptrons

= “Perceptrons” (1969) by Minsky and Papert illuminated
few limitations of the perceptron.
= It showed that:

o Shallow (2-layer) networks are unable to learn or
represent many classification functions (e.g. XOR)

o Only the linearly separable functions are learnable.

= Also, there was an understanding that deeper networks
were infeasible to train.

Result: research on NNs dissipated during the 70’s and early 80’s!

()HI\S H()I l\I\IS
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Very Brief History of Neural Networks

Single-layer neural networks (1943-1969)

Symbolic AI & knowledge engineering (1970-1985)
Multi-layer NNs and symbolic learning (1985-1995)

Shallow statistical learning/probabilistic models (1995-2010)
Deep networks and self-supervised learning (2010-?)
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Very Brief History of Neural Networks

Single-layer neural networks (1943-1969)

Symbolic AI & knowledge engineering (1970-1985)
Multi-layer NNs and symbolic learning (1985-1995)
Shallow statistical learning/probabilistic models (1995-2010)
Deep networks and self-supervised learning (2010-?)
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Neural Networks Resurgence (1986)

= Interest in NNs revived in the mid 1980’s due to the rise of “connectionism.”

= Backpropagation algorithm was [re-]introduced for training three-layer NN's.

o Generalized the iterative “hill climbing” method to approximate networks with
multiple layers, but no convergence guarantees.

what was possible what became possible
to trainin 1970’s to train via BP in 1980's

P77
N

output layer

&

output layer

input layer input layer
hidden layer hidden layer 1 hidden layer 2

[Learning representations by back-propagating errors, Rumelhart, Hinton & Williams 1986;
for a broader context, see: http://people.idsia.ch/~juergen/who-invented-backpropagation.html]

oy JOHNS HOPKINS
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https://www.nature.com/articles/323533a0.pdf
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Second NN Demise (1995-2010)

= Generic backpropagation did not generalize that well to training deeper networks.
o Overfitting / underfitting remained an issue.
o Computers were still quite slow

= Little theoretical justification for underlying methods.

= Machine learning research moved to graphical/probabilistic models and kernel
methods.

By JOHNS HOPKINS .
A ITING SCHOC [slide: Ray Mooney]
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Very Brief History of Neural Networks

Single-layer neural networks (1943-1969)

Symbolic AI & knowledge engineering (1970-1985)
Multi-layer NNs and symbolic learning (1985-1995)

Shallow statistical learning/probabilistic models (1995-2010)
Deep networks and self-supervised learning (2010-?)
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Very Brief History of Neural Networks

Single-layer neural networks (1943-1969)

Symbolic AI & knowledge engineering (1970-1985)
Multi-layer NNs and symbolic learning (1985-1995)

Shallow statistical learning/probabilistic models (1995-2010)
Deep networks and self-supervised learning (2010-?)
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Deep Learning Revolution (2010...)

= Various successes with training deep neural works.

o Convolutional neural nets (CNNs) for vision — 2012 AlexNet showed 16% error
reduction on ImageNet benchmark.

o Rise of deep reinforcement learning for games—AlphaGo beat human players.
i 2012 Imageﬂet CM“@“S{C
A (top-5 error)

34.5%

29.6%
30%+ 26.2% 27.0% 2%1% °

'Uv\iv. Amstercdam

XRCE/INRIA

Team Name
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Deep Learning Revolution (2010...)

= Various successes with training deep neural works.

o Convolutional neural nets (CNNs) for vision — 2012 AlexNet showed 16% error
reduction on ImageNet benchmark.

o Rise of deep reinforcement learning for games—AlphaGo beat human players.

ML+AI arXiv papers per month

arXiv 4000
pepranp1eorr?th BEED
2000/
1000@
Figure credit: .

https://twitter.com/MarioKrenn6240/status/1314622995139264517

1994.01 2007.01 2020.09
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https://twitter.com/MarioKrenn6240/status/1314622995139264517

Deep Learning Revolution (2010...)

= The success continued enabled by 3 forces:
o Availability of massive [unlabeled] data — the data on Internet.
o Faster computing technologies — specialized hardware (e.g., GPUs)
o Algorithmic innovations — architectures, optimization, etc. Output

Probabilities

Annual Size of the Global Datasphere
£ 17528 )
s _H\ ((Add & Norm J«~
Add & Norm Multi-Head
Attention
Forward Nx
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
At At 4
. J \ —
Positional & A Positional
Encoding Encoding
Input Output
Embedding Embedding
Qm;,y JOHNS HOPKINS i i :
A () WHITING SCHOOI Inputs Outputs 5

ENGINEERINC (shifted right)



Very Brief History of Neural Networks

Single-layer neural networks (1943-1969)

Symbolic AI & knowledge engineering (1970-1985)
Multi-layer NNs and symbolic learning (1985-1995)

Shallow statistical learning/probabilistic models (1995-2010)
Deep networks and self-supervised learning (2010-?)
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How it started How it's going

I
Hidden Hidden Hidden Hidden Hidden Hidden Hidden
X~=1 The “bias”, a constant term that does
0 / not depend on any input value
Wo
Output
[ 3
@ H.
d 1 if net=0
net= ) w," X, o =sgn(net) = .
2 L - -1 if net<0
i=0
Q;,-,y JOHNS HOPKINS . 58
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Summary

= Neural networks have been long in the making since 1950s.
= It's a remarkable journey of science with many ups and downs.

= Next: How do you train NNs? We will start with some algebra refreshers.

@ JOHNS HOPKINS
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Background for Tralnlng NNSs

The Refreshers ¥




Machine Learning Problems

= Training data: Given a set of inputs and output labels:
o Inputs: X = (x4, ..., x,)
o Outputs: Y = (yy, ..., yn)
= Goal: Find a function f(x; 8) with parameters 8 that maps inputs in X to outputto Y

= Empirical risk: measure the quality of the predictions with a loss function:

1 n
J©) == > e(F (x5 6), 70
i=1

ﬁ‘, JOHNS HOPKINS

61



A Special Case: Linear Regression

= Training data: Given a set of inputs and output labels:

o Inputs: X = (x4, ..., x,)

o Outputs: Y = (y4, ..., Vn)
= Goal: Find a linear function f(x; 0) = 6.x that is best predictive of observations
= Empirical risk: measure the quality of the predictions with a loss function:

1 n
1©) = EZ £6. x5, )

[

What are good choices i
for loss function? B
=15

—, JOHNS HOPKINS .15 -10 -05 00 05 10 15
’ NG SCHOC
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Quiz: Loss functions
= Remember the objective function of our learning problem:
1 n
1®) = EZ £(f Cxi:0),1)

= Which of the followings is a more reasonable loss function £(z, w)?
1. If zand w are far apart, the loss value should be higher
2. If zand w are far apart, the loss value should be lower
3. Neither

ﬁ‘, JOHNS HOPKINS
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Loss Functions

= The choice of loss function depends
on the problem

£, y) =

I
N\
2

I
<
\—/

N

|

<
|

=

£(y,y) =

=

r‘l,u J()HI\S H()I’I\I\IS

Regression

Error (MSE)

Error (MAE)

Mean Squared

Mean Absolute

Root Mean

(RMSE)

— Squared Error

p

(MBE)

Mean Bias Error

— Huber Loss (HL)

Binary
Classification

Likelihood Loss
(LHL

Binary Cross
Entropy (BCE)

Hing Loss and
'— Squared Hing
Loss (HL and SHL)

J

Multinomial

Classification

Categorical Cross
Entropy (CCE)

Kullback Leibler
Divergence (KLD)

"




Quiz: MSE vs. MAE loss

MSE: 2(y,9) = (y — 9)*

= Remember MSE and MAE loss: ~ ~
MAE: ¢(y,9) = |y — JI

1. Which visualization corresponds to which loss?

£iy, ) £,y
A A

- o
> ¥ } > ¥

T
¥ ¥

2. Which loss is more sensitive to outlier data (noisy outputs)?
3. Which loss is more difficult to compute gradients for?

aw JOHNS HOPKINS
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LOSS Fu I‘ICtiOHS Regression Binary Multinomial
Classification Classification
= The choice of loss function depends o i ik e Lo R e
on the problem

) — _ 52 Mean Absolute Binary Cross Kullback Leibler
f(y’ y) - (y y) | Error (MAE) | Entropy (BCE) | Divergence (KLD)

—B( A) ~ Root Mean | Hing Loss and

= —_ — Squared Error '— Squared Hing

y, y |y yl (RMSE) Loss (HL and SHL)

Mean Bias Error

£0,9) = = ) yjlogs) "
]_ -

— Huber Loss (HL)

Qi'l" JOHNS HOPKINS
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Loss Functions: Cross-Entropy

o Gold labels: y = [1, 0] (i.e., first class is correct)

o Predictions: y = [p,1 — p]
Summation over the
= CE loss: #(y, ) = —1xlogp — 0xlog(1 —p) = —logp dimensions of y

= Question for you:
o If the model prediction is completely accurate, what is the loss?
o If the model prediction is completely off, what is the loss?

n
= A binary classification example: Without loss of generality:  £(y, ) = — Z yjlog()’/}-)
j

ﬁ‘, JOHNS HOPKINS
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Machine Learning Problems

Training data: Given a set of inputs and output labels:
o Inputs: X = (x4, ..., x,)
o Outputs: Y = (yy, ..., yn)

Goal: Find a function f(x; 8) with parameters 6 that maps inputs in X to output to Y
Empirical risk: measure the quality 011; the predictions with a loss function:

1
J©) == > e(F (x5 0),7)

=1
Machine learning as optimization:
: How do you solve this
arg;nln] (0) { optimization? J

ﬁ‘, JOHNS HOPKINS
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Gradient Descent

= We have a cost function J(6) we wantto minimize
o We can use Gradient Descent algorithm!

= |dea: for current value of 6, calculate gradient of /(6) , then take small step in

direction of negative gradient. Repeat. Cost
A

Learning step

Minimum

= Note: Our objectives may not be
convex like this. But life turns out to be okay!

B
Random 9

initial value

D>

= .

oy JOHNS HOPKINS

‘II" J W NG SCHOC 69
ENGINEERIN



Gradient Descent (1): Intuition

= Imagine you're blindfolded
= Need to walk down a hill

= You can use your hands
to find the directions
that may be downhill

Qi,., JOHNS HOPKINS
v WHITING SCHOOL
of ENGINEERING

[slide: Andrej Karpathy] 70



Gradient Descent (2): Intuition

dL L(8; + h) — L(6;
= In 1-dimension, the derivative of a function: Y }lir% (4 })l (6))
j -

= Why step in direction of negative gradient? ,

o Gradient quantifies how rapidly the
function L(0) varies when we change
the argument 6, by a tiny amount.

tangent line

slope= f'(x)

N YJHNS )P S
QII!" Jou H( \l I‘\[\] 71



Gradient Descent (3)

a = step size or learning rate

= Update equation (in matrix notation):

gnew _ gotd _ & Ve (6)

= Update equation (for single parameter):

new __ pold
gnew — ge

890ld J(e)

* lteratively subtract the gradient with respect to the model parameters (6)
* i.e.,, we're movingin a direction opposite to the gradient of the loss L(6)
* l.e., we're moving towards smaller loss L(8)

= Algorithm:
while True:
theta grad = evaluate_gradient(J,corpus,theta)
theta = theta - alpha * theta grad

—, JOHNS HOPKINS
" \ NG SCHOC(
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Gradient Descent (4)

= Update equation (in matrix notation):

pnew — Qold . &V@J(@)

Q@i.-,y JOHNS HOPKINS
v WHITING SCHOOL
of ENGINEERING

[demo credit: ICMS YouTube channel]
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Gradient Descent: Setting the Step Size

new _ pold
= What is a good value for step size a? 0 =0 aVy J(Q)
o If ¢ = too small, it may be too slow e oR ®) |
o If @ = too large, it may oscillate \

‘.\.‘-\\\\ /’/ / ‘.\"\\\\ /,/“ ‘(\ l\\\ /r
\w./ \ NG

\,,4_‘/ g
7] 6
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the minimum point which lead to divergent
minimum point behaviors
It may take trial-and-errors to find the sweet spot.

Another trick is to define a “schedule” for gradually reducing the learning rate starting from
a large number.

—, JOHNS HOPKINS
" \ NG SCHOC(

ENGINEERIN(

[figure from: https://www.jeremyjordan.me/nn-learning-rate/]
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A Typical Machine Learning and Evaluation Protocol

— @@ 0=

Training data

~Drrain = 101,71, -}

— @@ 0=

Held-out validation data

Do = 0, -3

— @ 0=

Testing data

Model Hypothesis Class
F={f.fafs -}

l

Overall training: picking
the best function:f*

Each choice of

parameters in neural
networks correspond
to anotherfunction.J

~

l

Training is to pick the\
function given the

observed data.

i = Lo bl

Evaluation on test set:
E(xy) ~Dtest[(£(f(x); y)]

Testing is t predict the
quality of the best
selected function

J
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Summary Thus Far

= A statistical learning problem can be formulated as an optimization problem.

= The objective of this optimization consists of:
o Learning data (input/outputs)
o Predictive model architecture (encoding how an input gets mapped to an output)
o Loss function (quantifying quality of predictions)

= Soon, we will use see how to use Neural Nets as the predictive model.

@ JOHNS HOPKINS
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Algebra Refresher
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Derivatives

= First let’s get the notation right:

= The arrow shows functional dependence of z on y,
i.e. given y, we can calculate z.
o For example: z(y) = 2y?

0z

= The derivative of z, with respect to y: ay

!rﬁ JOHNS HOPKINS
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Quiz time!

= If z(x,y) = y*x> what is the following derivative

9Z _ 4.,3.5

1. oy 4y°x
9z _ . 4,4 Z

2 oy S5y*x
0z _ 3.4

3. 3y 20y°x

4

None of the above y

‘rﬁ JOHNS HOPKINS

9z 5
ay
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Gradient

= Given a function with 1 output and n inputs

f&X) = f(x1, %2, ..., %y) ER

X1 X2 e Xp

= |ts gradient is a vector of partial derivatives with respect to each input

Vi) =

ﬁ‘, JOHNS HOPKINS

- Of 1
x;
of

dx,

or

L0 X, -

e R"

(always assume vectors are
column vectors, i.e., they're in R™"*1)

80



Quiz time!

= If z(x, y) = y*x° what is the following gradient vz?
1. Vz(x,y) = 4y3x>
2. Vz(x,y) = (5y*x*, 20y3x%)
3. Vz(x,y) = (5y*x* 4y3x>) Z
4. None of the above

‘rﬁ JOHNS HOPKINS
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Jacobian Matrix: Generalization of fi o  fm
the Gradient

= Given a function with m outputs and n inputs

X1 X> e Xn
f(x) = [f1(xqy, %0, ooy X00), o) frn (X1, X2, vy, X)) ] € R™

. : . L dfi
= It's Jacobian is an m x n matrix of partial derivatives: (]f(x))l_j — 9i

_axj
Oh | Of
0xq 0xy,
]f(X) = e R™*"
| 0xq dx,,

!rﬁ JOHNS HOPKINS
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Quiz: Jacobian’s special case (1)

= Remember Jacobians:

f(x) = [f1(x1, %0, oo, X)) oeey f (X1, X2, o, X)) ] € R™
of ... %A
0x1 axn af
Ji(x) =] ;e R™ or (]f(X)) :
Ofm ... Ofm
0x1 0xn

= When m=1 (scalar-valued function), Jacobian reduces to ...?

VIf(x) (gradient transpose)

Qi'l" JOHNS HOPKINS
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Quiz: Jacobian’s special case (2)

= Remember Jacobians:

f(x) = [f1(x1, %0, oo, X)) oeey f (X1, X2, o, X)) ] € R™
of ... %A
0x1 axn af
Ji(x) =] ;e R™ or (]f(X)) :
Ofm ... Ofm
0x1 0xn

= When m=n=1 (single-variable function), Jacobian reduces to ...?

the derivative of f

Qi'l" JOHNS HOPKINS
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Jacobian for Matrix Inputs

= Given a function with m outputs and nXp inputs X171 v X1p

fX) = [AX),..., fn(X)] € R™, whereX=| { ™ i |€R"™P
xnl cee xnp

= Jacobianis a mXnXp tensor (i.e., matrix of matrices) of partial derivatives:

ofi

ijk " Qxjy,

(J: (X))

= The Jacobian math holds if you keep adding more dimensions to the input or output.

!rﬁ JOHNS HOPKINS
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3

u

Why Use Matrix/Tensor Form?

Y

i f
In essence, matrix form (multi-variate calculus) is just an extension of single-variable

calculus. | : : S ;
: 0] h
#
]
Two reasons: y .
© Compact derivations: with matrix form calculations we can compute a concise
statements. B

2

© Implementing algorithms in matrix form is much faster.
0 . GPUs are optimized for VERY FAST matrix/tensor operations.



Chain Rule

= Function composition:

zoy(x) =z(y(x)) = z(x)

If z is a function of y, and
y is a function of x, then

z is a function of x, as well.

Then: 0z 9z dy
0x 9y 9x

‘rﬁ JOHNS HOPKINS
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Chain Rule for Multivariable Functions

= Let x € RY, g: RY - R", f: R* > R™ f
= Composing them: fo g(x) = f(g(x)): R - R™ o
The result looks similar to the single-variable setup: X

]fog(x) — ]f(g(x)) ]g(x)

Note, the above statement is a matrix multiplication!
Function f o g has m outputs and d inputs - Jacobian’s dims: m by d

@ JOHNS HOPKINS
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Quiz Time!

letx eR, y:R—- R", z: R" > R Y2 ( Yn

X

What is the Jacobean of z o y(x) = z(y;(x), ..., y,(x))?
1. ], y(x) = ]Z(Y(x)) ]y(x)

2. ]2 y(x) = a ag ][c’)yl, 6yn
oYi

3 ]Z y(x) — 1 1
4. All the above!

ayl dx

=\
‘IIH HI[\J .



Summary

= We reviewed lots of background about neural networks!
o Linear algebra foundation
o Gradient descent
o Extending gradients to tensor form: Jacobians

= Next: training a neural net!

@ JOHNS HOPKINS
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Training Neural Networks:

Analytical Backprop




Recap: Multi-Layer Perceptron

\\
\\

r“i,lr HNS HOPKINS
W [Slide: HKUST]
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Recap: Multi-Layer Perceptron

S 8 8

_C.
—
(o]

<2
@)
-+
wn
-+

-~
2
=

S
Ve
Ve

I= I=
| - | -
(q0) (0]

< Q
@) (@)
+ +—
n 0
+ +J
e =
=) =)
= =

= - .
gy JOHNS HOPKINS )
W e [Slide: HKUST]
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Training Neural Networks: Setup

We are given an architecture though its weights w.
We are given a training data D = {(x;,y;)}

We are given a loss function ¢£: RxR — (0, 1)
o €(y*,vy) quantifies distance between an answer y* and prediction y = NN(x; W) — lower is better.

Overall objective to optimize: L(D; W) =X, L(NN(x; W), y{)

Vi )ED

X = (X1, X2, X3,%4) € R*

aw JOHNS HOPKINS
Qlly J WHITING SCHOC 94
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Training Neural Networks ~ Optimizing
Parameters

= We can use gradient descent to L(D; W)
minimizes the loss.

= At each step, the weight vector is modified
in the direction that produces the steepest
descent along the error surface.

> W

w(3) w(z) w(l) W(O)

X = (x1,%2,X3,%4) € R*

=X Q - o

Ty JOHNS HOPKINS
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Training Neural Networks ~ Optimizing
Parameters

A

For each sub-parameter W; € W: L(D; W)

0L
(t+1) _ 4, ()
W W T aGy,

It all comes down to effectively computing aavi-

X = (xq1, %5, Xx3,%4) € R*

= . N

aw JOHNS HOPKINS

QY JOHINS HOP 9%
EN NEE



Training Neural Networks ~ Computing the
Gradients

oL
an'
= [t's easy to learn the final layer — it's just a linear unit.

= How about the weights in the earlier layers (i.e., before the final layer)?

= How do you efficiently compute for all parameters?

X = (xq1, %5, Xx3,%4) € R*

miﬂ" JOHNS HOPKINS
4 WHITING SCHOC
ENGINEE
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Necessity of a Principled Algorithm for
Gradient Computation

je suis étudiant
je | suis | étudiant | [EOS]

= Depth gives more representational capacity

Decoder Layer

Softmax
to neural networks. [:f:] Class
Linear P
() ) (Add & Norm J*~
. . Encoder Layer [Encoder Layers] \—>[ Decoder LayerE] F(’):r(\elvegrd
= However, computing gradients for deeper Class : 1 Ly 1 ]
layers is not trivial and tedious. — — —
I Fg:::r 4 I [En ode; Laye 4] ¥)[ Decode; Layer 4 ]< Attention
= Even if we have analytical formula for gradient, ~= e =t I——I“:&Hd
if they’re architecture-specific, they must be (o sarwrz] | {omomioea] || (i
repeated for each new architecture. o) e (e
s o
= The solution is “Backpropagation” algorithm! (e
1 | am | a |student [BOS] | Aje A | suis | étudiant

I am a student je suis étudiant

ﬁ ‘ [ Architecture of the BERT model with over 24 layers and millions ]

aw JOHNS HOPKINS . . .
@ NG scitox of parameters — we will study get to this model in a few weeks!

!




L(D; W)

>

BP: Required Intuitions

1. Gradient Descent

« Change the weights W in the direction of
gradient to minimize the error function.

2. Chain Rule

 Use the chain rule to calculate the weights of the
intermediate weights

3. Dynamic Programming (Memoization)

« Memoize the weight updates to make the
updates faster.

@ JOHNS HOPKINS
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A Generic Multi-Layer Perceptron

= Given the following definition:

-

x = h, € R% (input) A Wil
h;;; = f;(W;h;) € R% (hiddenlayeri, 0 <i <L —1)
y=u'h, €R (output)
L=2%(y,y") €ER (loss)

\

= Trainable parameters: W = {W,,W,, ..., W, u}

/

<)
-



A Generic Neural Network: Forward Step

 Given some [initial] values for the parameters, we
can compute the forward pass, layer by layer.

« Forward pass is basically L matrix multiplications, each
followed by an activation function.

 Matrix multiplication can be done efficiently with GPUs.
» Therefore, forward pass is somewhat fast.

« Complexity of forward pass is .... linear of depth O(L).

ﬁ‘, JOHNS HOPKINS



A Generic Neural Network: Direct Gradients _

x = hy € R% (input) y=uTh, € R (output)
his1 = f,(W;h)) € R% L=¢@y)€ER (oss) fi1
(O S l S L - 1) W = {Wo, Wl’ ...,WL, U} WL_th_l

We want the gradients of L with respect to model parameters.
Use the chain rule to simplify the following term:

V(W) = (L (W,_p)' =

T
(12 Jy () T, (W)




A Generic Neural Network: Direct Gradients

x = hy € R% (input) y=uTh, € R (output)
his1 = f,(W;h)) € R% L=¢@y)€ER (oss) fi1
(O S l S L - 1) W = {Wo,wl, ...,WL, U} WL_th 1

We want the gradients of L with respect to model parameters.
Use the chain rule to simplify the following term:

Vo(Wisp) = (Jo(W,_p)' =

(1:6) Ty (00) Ty (g ) Ty, (W)




A Generic Neural Network: Direct Gradients

x = hy € R% (input) y=uTh, € R (output)
his1 = f,(W;h)) € R% L=¢@y)€ER (oss) fi1
(O S l S L - 1) W = {Wo, Wl’ ...,WL, U} WL_th_l

We want the gradients of L with respect to model parameters.
Use the chain rule to simplify the following term:

V(W) = (IL(WL—i))T =

(1:6) Ty (00 T (B) o T po1 (Wis))




A Generic Neural Network: Direct Gradients

x = hy € R% (input) y=uTh, € R (output)
h,,, = f,(W;h;) € R% L=2(y,y)€R (loss) fr-1
(OSLSL_l) W={WO,W1,...,WL,U}

We want the gradients of L with respect to model parameters.

£ VW) = (e W) = (120D 1y 00) T, (Wes) 4 3 atrix ]

multiplications

f VW) = (W) = (1250 Ty (h) T, (), (Wi ) 4 4 matrix ]

multiplications

£ e(Wo) = (1L (W,-9)" = (1) Ty () Ty (o) Ty, (Wo)) 4L+2matrix}

multiplications

In total, how many matrix multiplications are done here?
(A) 0(L) (B) 0(L?) (C) o(2%) (C) O(exp(L)

Can we do better
than this? &




Caching Gradients: The Main Idea

= Suppose we're computing.
T
Ve (W,—1) = (J.6) Ty (hy) T, (W)

= What can we cache to speed up the gradient computations
of the earlier layer?

VeWo—2) = () Ty (o) Yoy (By) Ty, (Wi

@ JOHNS HOPKINS



A Generic Neural Network: Gradients

with Caching/Memoization
T
VeW,1) = (1:0) Iy () T, (We)) = (8, i, (W)

T T
VoW, ) = (12600 Iy () T, (i) Ty, (Wi ) = (6,1 T, (Wio))

Ve Wo) = (1) Ty () Ty (Bis) o, (Wo)) = (61 T, (W)

* Parameter gradients depend on the gradients of the earlier layers!
= So, when computing gradients at each layer, we don't need to start from scratch!
* |canreuse gradients computed for higher layers for lower layers (i.e., memoization).

Let §; denote Jacobian at the output of layer i:
First layer: 6, =J:(y) J, (hy)
Subsequent layers: §; = 6,41 Jn,(h;—1),Vi;:0<i<L-1

In total, how many matrix multiplications are done here when using caching/memoization?
(A) O(L) (B) 0(2*) (© o* (C) O(exp(L))

‘rﬁ JOHNS HOPKINS




Gradient: Local Grad + Upstream Grad

= Gradients at each layer computed by

V(W) = (5L—i+1 ]hL_iH(WL—i))T

Upstream gradient ~ We lookup Local
from the layer above. Gradient

{ Let §; denote Jacobian at the output of layer i: J

6; =1 () Jy(hy) Jp (W) - Jy; (hy—q)
6; = 6iy1 Jn;(hy_q)

ﬁ‘, JOHNS HOPKINS



= Backward step computes the gradients starting from the end to the
beginning, layer by layer.

= Start by computing local gradients: Jy,, ... (Wi_;)
= Use then to compute upstream gradients §;, then §,_4, then 6,_,, ....

= Use these to compute global gradients: V;(W;)

= Computational cost as a function of depth:
o With memoization, gradient computation is a linear function of depth L
(same cost as the forward process!!)
o Without memorization, gradients computation would grow quadratic with L

ﬁ‘, JOHNS HOPKINS



Initialize network parameters with random values
Loop until convergence % In practice, this step is done ]

Loop over training instances over batches of instances!

I. Forward step:
Start from the input and compute all the layers till the end (loss £)

ii. Backward step:
Compute local gradients, starting from the last layer
Compute upstream gradients §; values, starting from the last layer
Use 6; values to compute global gradients V.(W;) at each layer

lil. Gradient update:
Update each parameter: W™*V « W'® — ¢ v, (W)

By JOHNS HOPKINS
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Summary

= Backpropagation: an algorithm for training neural networks.
= Using Dynamic Programming for efficient computation of gradients.

= Next: Backprop in real practice.

&) JOHNS HOPKINS
¥ I HOPK 111



Backprop via
Computation Graph




Computation Graph: Example

= In reality, neural networks are not as regular as the previous example ...

: m &a‘_’ =

‘«
—_—
[LM “.

—
A
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Backprop in General Computation Graph

output
2

Single sc

= What if the network does not have a regular structure? Same idea!

1. Sort the nodes in topological order (what depends on what)
o Cost: Linear in the number of nodes/edges.

Topologically
sorted graph

6 ii%%é@

Unsorted graph

Inputs

- -
aw JOHNS HOPKINS
Q JOHNS HOP 114



Backprop in General Computation Graph

output
2

Single sc

= What if the network does not have a regular structure? Same idea!

1. Sort the nodes in topological order (what depends on what)

2. Forward-Propagation:

o Visit nodes in topological sort order and
compute value of node given predecessors

o Cost: Linear in the number of node/edges

Inputs

- -
aw JOHNS HOPKINS
Q JOHNS HOP 115



Backprop in General Computation Graph

output
2

Single sc

= What if the network does not have a regular structure? Same idea!

1. Sort the nodes in topological order (what depends on what)

2. Forward-Propagation:
o Visit nodes in topological sort order and
compute value of node given predecessors
3. Backward-Propagation:
o Compute local gradients

o Visit nodes in reverse order and
compute global gradients using gradients of successors

o Cost: Linear in the number of nodes/edges.

Inputs

§ Jouns Horans e
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A Generic Example
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Figure from Andrej Karpathy




“local gradient”

f

Figure from Andrej Karpathy



“local gradient”

<

f

Figure from Andrej Karpathy

oL
0z

Upstream
gradient



L

“local gradient”

X o
Global or Q’@f Oz Z
downstream f -
gradients 8L
% 0z
Upstream

gradient

Figure from Andrej Karpathy



“local gradient”

X o
o >
Globalor = @> Z
downstream -
gradients 8L

Y 0z
97
/%Za Upstream
/ gradient

Figure from Andrej Karpathy



“local gradient”

<
Globalor ™~ Q% <
downstream -
gradients AL
Y 0z
4;%‘, Upstream
/ gradient

Figure from Andrej Karpathy



Computation Graph: An Example

fl@,y,2) = (z +y)z 3@
g )AL
= Evaluated at: x=-2,y=5,z=-4 78

= Start with local gradients!

12

&4 JOHNS HOPKINS
QI'"'J WHITING SCHOL [Slide: Stanford CS231N] 124



Computation Graph: An Example

% a2
fl@,y,2) = (z +y)z DQ
g )AL

= Evaluated at: x=-2,y=5,z2=-4 1.8 £ 12
= Start with local gradients!

_ o . 0q =

of _ _ of _
f=gqz q %3 — 4

miﬂ" JOHNS HOPKINS
4 WHITING SCHOC
ENGINEERINC

[Slide: Stanford CS231N]
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Computation Graph: An Example

X 2
f(z,y,2) = (z +y)z DO
g A8
= Evaluated at: x=-2,y=5,z=-4 y.5 f 12
= Start with local gradients!
d d g
of
of of .
f =% 3 = %; 5 —q Z
126

&5 JOHNS HOPKINS
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Computation Graph: An Example

% =2
flz,y,2) = (z +y)z D@
42
= Evaluated at: x=-2,y=5,z=-4 A £ 12
= Start with local gradients!
o G e
g=x+Yy ngl,@qzl 3 —
of
of of 8z
f=gqz 9 ~ o 4 2

&5 JOHNS HOPKINS
Q'M S ENCINEERN [Slide: Stanford CS231N] 127



Computation Graph: An Example

% =2
f(z,y,2) = (z + y)z DQ
42
= Evaluated at: x=-2,y=5,z=-4 ¥ £ 12
= Start with local gradients!
Bq Bq z 4
15 + _— ]_ — T 1 3
of
of of B
f — gz a_q — %, iy — g aq
128

m;,l,r JOHNS HOPKINS
" WHITING SCHOC
ENGINEERINC
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Computation Graph: An Example

fz,y,2) = (z + y)z

= Evaluated at: x=-2,y=5,z=-4
= Start with local gradients!

_ o . Oq
of of
f=gqz 9 ~ o 4

129
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Computation Graph: An Example

fz,y,2) = (z + y)z

= Evaluated at: x=-2,y=5,z=-4
= Start with local gradients!

_ o . Oq
of of
f=gqz 9 ~ o 4

130
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Computation Graph: An Example

fz,y,2) = (z + y)z

= Evaluated at: x=-2,y=5,z=-4
= Start with local gradients!

_ g _ . Oq
1=2+Y 5 =Ly =1 . ~
Chainrule: oFf
_ & _ . 0 of _ Of o dy
f_qz aq_z’(?z_q a:%%
~

b\
. Upstream  Local
@O [Slide: Stanford C5231N] gradient  gradient 131



Computation Graph: An Example

fz,y,2) = (z + y)z

= Evaluated at: x=-2,y=5,z=-4
= Start with local gradients!

_ g _ . Oq
1=2+Y 5 =Ly =1 . ~
Chainrule: oFf
_ & _ . 0 of _ Of o dy
f_qz aq_z’(?z_q a:%%
~

b\
. Upstream  Local
@O [Slide: Stanford C5231N] gradient  gradient 132



Computation Graph: An Example

fz,y,2) = (z + y)z

= Evaluated at: x=-2,y=5,z=-4
= Start with local gradients!

_ o . Oq
of of
f=gqz 9 ~ o 4

133
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Computation Graph: An Example

fz,y,2) = (z + y)z

= Evaluated at: x=-2,y=5,z=-4
= Start with local gradients!

_ 9 , 0q
a5  _ oF of of 0Oq Oz
— gz B = 2y o — s, Fe K RS
f=q XA 0. — 1 Ox dq Ox
A N

Upstream  Local
By JOHNS HOPKINS . .
Qlﬂ' J()EHTJ;\Y\‘ \(t‘?\‘l[\\l“\‘l\ﬁ [Slide: Stanford CS231N] grad|ent grad|ent 134



Computation Graph: An Example

fz,y,2) = (z + y)z

= Evaluated at: x=-2,y=5,z=-4
= Start with local gradients!

_ 9 , 0q
a5  _ oF of of 0Oq oz
— gz B = 2y o — s, Fe K RS
f=q XA 0. — 1 Ox dq Ox
A N

Upstream  Local
By JOHNS HOPKINS . .
Qlﬂ' J()EHTJ;\Y\‘ \(t‘?\‘l[\\l“\‘l\ﬁ [Slide: Stanford CS231N] grad|ent grad|ent 135



Computation Graph: An Example

f(xl,XZ,X3,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

af odf of Of

axl’ axz, 0x3’ 6x4

Want:

-~

we process the

g forward step?

In what order should\

J
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Computation Graph: An Example

f(xl,xz,X3,X4, xS) — (xl + xZ)xS — Xg
Evaluated at: (xq, x5, x3,x4) = (5, 4, 3 2)

Inses

" In what order should )
we process the
?
g forward step* P
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Computation Graph: An Example

f(xl,XZ,X3,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

af odf of Of

axl’ axz, axg, 6x4

Want:

-~

we process the

g backward step?

In what order should\

J
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Computation Graph: An Example

f(xl,xz,X3,X4, xS) — (xl + xZ)xS — Xg
Evaluated at: (xq, x5, x3,x4) = (5, 4, 3 2)

Ies e

" In what order should )
we process the
?
g backward step: P
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Computation Graph: An Example

f(xl,xz,X3,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

Seee

Introduce intermediate
variable names

140



U: Upstream grad
L: Local grad

Computation Graph: An Example

f(xl,xz,X3,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

f=b—x4
.L. U

O _OF L _ o ayed —
-'ax4_ax4xaf_( 1)x1 = -1
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U: Upstream grad
L: Local grad

Computation Graph: An Example

f(xl,XZ,Xg,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

f=b—x4
.L. U

of _9f of _ . _
ax4_6x4xaf_( 1)x1 =-1

: L U

‘ | L I | |

df _ of  of _ _
ab_abxaf =1xX1=1
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U: Upstream grad
L: Local grad

Computation Graph: An Example

f(xl,xz,X3,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

b=a><x3

L U

9 _9b O _ gx1=
_0X3 dx; 0b
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U: Upstream grad
L: Local grad

Computation Graph: An Example

f(xl,XZ,Xg,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

b=a><x3
L U
oF _9b OF _ ax1 =9
=.:ax3 dx; 0b
:\'-a 'aLb' ';'
‘ f— —f —x3X1—3
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U: Upstream grad
L: Local grad

Computation Graph: An Example

f(xl,xz,X3,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

a=xq+ Xy
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U: Upstream grad
L: Local grad

Computation Graph: An Example

f(xl,XZ,Xg,X4, xS) — (xl + xZ)xS — X3
Evaluated at: (xq, x5, x3,x4) = (5,4, 3, 2)

Cl:xlxe

L U
of _9a 9 _ 1x3=3
dx, dx, Jda

L U
a—fzaa)(afz 1x3 =3

dxq dx; OJda
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Backprop via Computation Graph

Single scalar output

= What if the network does not have a regular structure? Same idea!

1. Sort the nodes in topological order (what depends on what)

2. Forward-Propagation:
o Visit nodes in topological sort order and
compute value of node given predecessors
3. Backward-Propagation:
o Compute local gradients

o Visit nodes in reverse order and
compute global gradients using gradients of successors

Inputs

T -
=y JOHNS HOPKINS
@& X o H( o 147



Demo Timel!

= https://teachablemachine.withgoogle.com/

Class 1

Add Image Samples:

C &
Webcam Upload .
Training
Train Model
Class 2
Advanced

Add Image Samples:

C &

Webcam Upload

Add a class

Q@;ﬁ JOHNS HOPKINS
’ WHITING SCHOOI
of ENGINEERING

Preview 4 Export Model

You must train a model on the left
before you can preview it here.

148


https://teachablemachine.withgoogle.com/

Summary

= Computation graphs: directed graph where the nodes correspond to mathematical
operations.

o A way of expressing mathematical operations.

= This allows general-purpose implementation of Backprop to any form of networks
(not just multilayer perceptron).

o This is why n practice you don't need to worry about implementing Backprop!! (=

= Next: Implementing Backprop yourself + industrial software libraries.

’@,‘.} JOHNS HOPKINS
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Backprop via

Automatic Differentiation




Backward propagation

= The computation graph makes it easy to backpropagate all the way
= We implement this into the library so that the library does this for us!

= : ;
= JOHNS HOPKINS
'-qllf,’ J T \ 151



ef __init__ (self, value):
self.value = value

def __add__(self, other):
pass

def _ mul__(self, other):
pass

Tensor(1)
Tensor(2)
a+b

[Slide credit: Arman Cohan]



v class Tensor:
% def __init__(self, value, children=(), _op=None, label=''):
self.value = value
self.grad = 0.0
self._prev = set(children)
self._op = _op
self.label = label

__add__(self, other):
out = Tensor(self.value + other.value, children=(self, other), _op='+")
return out

__mul__(self, other):
out = Tensor(self.value *x other.value, children=(self, other), _op='x")
return out

[Slide credit: Arman Cohan]



class Tensor:
def __init__(self, value, children=(), _op=None, label=""):

self.value = value
self.grad = 0.0
self._backward = lambda: None
self._prev = set(children)
self._op = _op
self.label = label

__mul__(self, other):
out = Tensor(self.value x other.value, children=(self, other), _op="x")

def _backward():
self.grad += other.value * out.grad
other.grad += self.value x out.grad

out._backward = _backward
return out

[Slide credit: Arman Cohan]



def backward(self):
netowork = []

visited = set()
The computational graph def build_netowork(node):
should be directed and if node not in visited:

acyclic. visited.add(node)

for child in node._prev:
build_netowork(child)
netowork.append(node)
build_netowork(self)
self.grad = 1.0
for node in reversed(netowork):
node._backward()

We start calling backward in
order

[Slide credit: Arman Cohan]



r
Auto-diff in PyTorch
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PyTorch’s Implementation: Forward/Backward API

= PyTorch has implementation of forward/backward operations for various operators.
= Example: multiplication operator

class Multiply(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y): Need to cash some
X ctx.save_for_backward(x, y) <+————| values for use in
Z=X%xYy backward
Z return z
@staticmethod
def backward(ctx, grad_z): Upst_ream
gradient
y X, y = ctx.saved_tensors
grad_x =y x grad_z # dz/dx * dL/dz Multiply upstream
grad_y = x x grad_z # dz/dy % dL/dz | and local gradients
return grad_x, grad_y

et J()HN\ H()M\Ns 157



PyTorch Operators

= PyTorch’s lower-level functions translate
activities to graphics processor via
libraries like OpenGL

=

i’

]

y

JOHNS HOPKINS

WHITING SCHOOIL
of ENGINEERING
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mul_scalar_.gls!
nchw_to_image.gls!
nchw_to_image2d.gls|
nchw_to_image_int32.gls!
nchw_to_image_int8.gls|
nchw_to_image_uint8.gls!
permute_4d.gls|
quantize_per_tensor_gint32.gls!
quantize_per_tensor_qint8.gls|
quantize_per_tensor_quint8.gls|
quantized_add.gls!
quantized_conv2d.gls!
quantized_conv2d_dw.gls|
quantized_conv2d_pw_2x2.gls!
quantized_div.gls!
quantized_mul.gls!
quantized_sub.gls!
quantized_upsample_nearest2d.gls!
reflection_pad2d.gls!
replication_pad2d.gls!
select_depth.gls|

sigmoid.gls!

sigmoid_.gls!

slice_ad.gls!

softmax.gls|

stack_feature.gls!

sub.gls!

sub_.gls!

tanh.gls!

tanh_glsl

threshold.gls!

upsample_nearest2d.gls|

[vulkan] Add image format qualifier to gls! files (#69330)

[vulkan] Enable 2D texture types (#86971)

[vulkan] Enable 2D texture types (#86971)

[Vulkan] Enable copying QInt8 and QInt32 tensors from cpu to vulkan. (#..
[Vulkan] Enable copying QInt8 and QInt32 tensors from cpu to vulkan. (#..
[Vulkan] Enable copying QInt8 and QInt32 tensors from cpu to vulkan. (;
[vulkan] Add image format qualifier to gls! files (#69330)

[Vulkan] Enable QInt8 and QInt32 quantization (#89788)

[Vulkan] Enable QInt8 and QInt32 quantization (#89788)

[Vulkan] Enable QInt8 and QInt32 quantization (#89788)

[Vulkan] [TCC] Fix quantized shaders (#89456)

[Vulkan] [TCC] Fix quantized shaders (#89456)

[Vulkan] [TCC] Fix quantized shaders (#89456)

[Vulkan] [TCC] Fix quantized shaders (#89456)

[Vulkan] [TCC] Fix quantized shaders (#89456)

[Vulkan] [TCC] Fix quantized shaders (#89456)

[Vulkan] [TCC] Fix quantized shaders (#89456)

[Vulkan] [TCC] Fix quantized shaders (#89456)

[vulkan] Add image format qualifier to gls! files (#69330)

[vulkan] replication_pad2d.glsl: use clamp() instead of min(max()) (#...
[Vulkan] Implement select.int operator (#81771)

[vulkan] Add image format qualifier to gls! files (#69330)

[vulkan] Add image format qualifier to gls! files (#69330)

[vulkan] Add image format qualifier to gls! files (#69330)

[vulkan] Add image format qualifier to gls! files (#69330)

[Vulkan] Implement Stack operator (#81064)

[Vulkan] Implement arithmetic ops where one of the arguments s a ten...
[Vulkan] Implement arithmetic ops where one of the arguments is a ten...
[vulkan] Clamp tanh activation op input to preserve numerical stabili...
[vulkan] Clamp tanh activation op input to preserve numerical stabili..
[vulkan] fix some broken tests in vulkan_api_test (#80962)

[vulkan] Add image format qualifier to gls! files (#69330)

last year

2 months ago
2 months ago
last month
last month
last month
last year

last month
last month
last month
last month
last month
last month
last month
last month
last month
last month
last month
last year

7 months ago
5 months ago
last year

last year

last year

last year

5 months ago
5 months ago
5 months ago
10 months ago
10 months ago
6 months ago

last year
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Example Activation Functions

¥ master +  pytorch [ aten/ src / ATen /[ native [ vulkan / glsl / tanh.gls]

@ SS-JIA [vulkan] Clamp tanh activation op input to preserve numerical stabili... ...

A 2 contributors @ ‘€I

27 lines (21 sloc) 777 Bytes

1 #version 450 core
2  #define PRECISION $precision
3 #define FORMAT sformat
4
5 layout(std43e) buffer;
6
7 /% Qualifiers: layout - storage - precision — memory x/
8
9 layout(set = @, binding = @, FORMAT) uniform PRECISION restrict writeonly image3D  uOutput;
10 layout(set = @, binding = 1) uniform PRECISION sampler3D uInput;
11 layout(set = @, binding = 2) uniform PRECISION restrict Block {
12 ivecs size;
13} uBlock;
14
15 layout(local_size_x_id = @, local_size_y_id = 1, local_size_z_id = 2) in;
16
17  void main() {
18 const ivec3 pos = ivec3(gl_GlobalInvocationID);
19
20 if (all(lessThan(pos, uBlock.size.xyz))) {
21 const vec4 intex = texelFetch(uInput, pos, 0);
22 imageStore(
23 uOutput,
24 pos,
25 tanh(clamp(intex, -15.0, 15.0 H

J JOHNS HOPKINS SN {ctamet "

WHITING SCHOOL

of ENGINEERING 27}



Check out PyTorch Documentations

= This is the main library the vast majority of the community uses.

= [t contains hundreds of mathematical operations with “backward()” function to allow
automatic gradient computation on computation graph.

Percentage of Repositories by Framework W Other W PyTorch TensorFlow

= See: https://pytorch.org/docs/stable/index.html "

25%

Percentage

0%

Jan 2018 Jan 2019 Jan 2020 Jan 2021 Jan 2022
Repository creation date

&3 JOHNS HOPKINS
’ NG SCHO(
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https://pytorch.org/docs/stable/index.html

Backprop in PyTorch *
q

¥

flz,y,2) = (z +y)z j
of of of ’

Want: Ps Gy Bz

X = torch.tensor(-2.0, requires_grad=True)
y = torch.tensor(5.9, requires_grad=True)
z = torch.tensor(-4.0, requires_grad=True)

f = (x+y)*z # Define the computation graph
f.backward() # PyTorch’s internal backward gradient computation

print('Gradients after backpropagation:', x.grad, y.grad, z.grad)



Why Learn All These Details About Backprop?

* Modern deep learning frameworks compute gradients for you!

= But why take a class on compilers or systems when they are implemented for
you?
o Understanding what is going on under the hood is useful!

= Backpropagation doesn’t always work perfectly out of the box
o Understanding why is crucial for debugging and improving models

aw JOHNS HOPKINS
QY JOLINS HOP: 162



Summary

= Modern deep learning libraries such as PyTorch implement a vast library of
operations to allow automatic and efficient Backprop.

= We will make extensive use of PyTorch in this class (yay!)

= Next: We will discuss a few practical considerations regarding training NNs.

=3 JOHNS HOPKINS
@ oo 163



Practical considerations

for training neural nets




Batching

[ Training Forward

= GPUs are fast with
Tensor operations

Backward

= Rather than visiting

instances in sequentially ,
batch them together Inference
for faster training and
inference.

= - .
w1 JOHNS HOPKINS
ll!" J WE N 01 165

HITING SCHO!
of ENGINEERING



Batches of Data: Example

= The case of natural language: Q=1

o Each word is mapped to a vector R? '

Vector
(first-order tensor)

o Then, each sentence of length is mapped to a matrix R**4

o A batch of sentences (size b) is mapped to a tensor R?*4xP

Third-order tensor
et J()HN\ H()M\Ns
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Batches of Data, In Practice

= PyTorch makes it easy to batch data.
o All its functionalities are designed around batched process.
o For example, you can create any tensor of any dimension.

TORCH.RAND

torch.rand (*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None,
requires_grad=False, pin_memory=False) — Tensor

Returns a tensor filled with random numbers from a uniform distribution on the interval [0, 1)
The shape of the tensor is defined by the variable argument size.

Parameters

size (int...) - a sequence of integers defining the shape of the output tensor. Can be a variable number of
arguments or a collection like a list or tuple.

Q) JOHINS HOPKINS https://pytorch.org/docs/stable/generated/torch.rand.html 167
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Batches of Data, In Practice

= Avoid loops, use tensors.

import torch

def matmul (A, B):
= torch.zeros like (A)
for 1 in range(A.size(0)):
for 7 in range(B.size (1)) :
for k in range(A.size (1)) :

cli, j] += A[i, k] * B[k,
return C

Example usage:
= torch.randn (10,

= torch.randn (10,
= matmul (A, B)

J]

import torch

Example

= torch.
.randn (10, 10)
.matmul (A, B)

jelaels!
jelaels!

usage:
randn (10, 10)
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Normalize Your Datal

= We do not like very large numbers.

o Large numbers lead to numerical problems (e.g., overflow) and lead to NaNs @

= We prefer if our data is distributed around zero.

Qi'l" JOHNS HOPKINS
’ \ NG SCHO(
EN N

0.8 1

0.6 1

0.4 1

0.2 1

0.0

Original Data Normalized data
0.4 1
0.3 1
0.2 1
0.1 A
Ll L Ll T 00 T Ll
00 25 50 75 -4 -2 0 2
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Normalize Your Datal

= We do not like very large numbers.
o Large numbers lead to numerical problems (e.g., overflow) and lead to NaNs @

= We prefer if our data is distributed around zero.

Raw Features Normalized Features

Feature 2
Feature 2

Feature 1 Feature 1

https://developers.google.com/machine- A l
learning/clustering/prepare-data -
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Non-Zero-Centered Data

oL
6wl

_ oL of

f=w'x+b
afawl

= upstream X x;

= If data is always positive (i.e., Vi: x; > 0), all the dimensions of VL would have the
same sign (all positive or all negative, same sign as upstream).

feasible direction
for gradients

Impossible directions
for gradients

w1

e The weight vector needs more
/‘ updates to be trained.
/ [ =\
Solution:

(i) Inter-leave normalization operators to normalize data around zero.
(ii) Choose activation functions that that are centered around zero.

)

| . l
wa

‘I'” JC

A

A hypothetical
training trajectory




* v+ B

y:

Layer, Batch, ...

ion

1zat

- | |
|
= Normalization of values standardizes the ranges of values

= Prevents value disparities

Normal

z — E|z]
Var[z] + €

= Stabilizes and speeds up training

172

Group Norm

Instance Norm

[Baetal. “Layer Normalization”]

Layer Norm

Batch Norm

See PyTorch documentations: https://pytorch.org/docs/stable/nn.html#normalization-layers

JOHNS HOPKINS
W I'ING SCHOOI

el


https://arxiv.org/pdf/1607.06450.pdf
https://pytorch.org/docs/stable/nn.html

inputs
5—()
activation
| | | ) functon
X @ net input
net;
(p —0;
B @ activation

“\:n threzjhold
= How do you choose what activation function to use?

= In general, it is problem-specific and might require trial-and-error.
= Here are some tips about popular action functions.

N YJHNS )P S
QI'!" Jou H( \] I‘\[\] 173
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Activation Functions : Sigmoid

Squashes numbers to range [0,1] g

Historically popular, interpretation as — /7

“firing rate” of a neuron

Key limitation: Saturated neurons “kill” the gradients _
e —X

Whenever |x| > 5, the gradients are basically zero. o(x) =1/(1+e7")

10 10

If all the gradients flowing back X _ _ (o(z) =1/(1+e7)|
will be zero and weights will - > 9o | sigmoid - >
N o) ate <
never change. 3L _ 60 0L z| 9 oL
dx Oz do oo

oy JOHNS HOPKINS
‘I'!' W TING SCHOC
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https://www.imaginary.org/gallery/maths-dance-moves

Activation Functions : Tanh r
/ -10 ﬂ 10
= Symmetric around [-1, 1] 1

= Still saturates |x| > 3 and “kill” the gradients tanh(x)
= Zero-centered — faster optimization (why?)

—

[LeCun et al., 1991]

¥ JOHN\ HOI I\Ns

17
[dance figure: https://www.imaginary.org/gallery/maths-dance-moves] >
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Activation Functions : RelLU

= Computationally efficient — @' T

= In practice, converges faster than
sigmoid/tanh in practice

= Does not saturate (in +region) — will die less!

v

-10 10

RelLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

I,uJ()HNS H()H\Ns

. . . 176
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Activation Functions : Leaky RelLU

OA

= Does not saturate — will not die. @ A

—

= Computationally efficient

= In practice it converges faster than
sigmoid/tanh in practice

. 10
= Other parametrized variants: f(z) = max(0.01z, x)
o Parametric Rectifier (PReLU): f(x) = max(ax,z) [Heetal,2015]

o Maxout: max(wirw + by, szw i bz) [Goodfellow et al., 2013]

= Provide more flexibility, though at the cost of more learnable parameters.
o For example, Maxout doubles the number of parameters.

JOHNS HOPKINS 177
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Choose Activations: In Practice

= In general, it is problem-specific and might require trial-and-error.

= A useful recipe:
1. Generally, ReLU is a good activation to start with.

2. Time/compute permitting, you can try other activations to
squeeze out more performance.

= : :
= JOHNS HOPKINS
=) J HOPK 178



Exploding/Vanishing Gradients

Gradient flow

2.00

If many numbers |x| > 1 get multip

NaN gradients --> no learning! =

1.50 A

If many numbers |x| < 1 get multip = 1251

Zero gradients -> no learning!

1.00 A

0.75 4

average gradient

0.50 A

0.25 4

0.00

I,HJ()HI\S H()H\I\IS 179



Exploding/Vanishing Gradients

= Remember gradient computation at layer L — k:

VWit = (160 Iy (80 Ty () T, Wiz Ty s (W)

O(k)-many matrix multiplication

= This matrix multiplication could quickly approach
o oo, if the matrix elements are a large — exploding gradients.
o 0, if the matrix elements are small — vanishing gradients.
o /0 gradients would kill learning (no flow of information).

= For those interested, conve\r/%ences of matrix powers is determined
by its largest eigenvalue (HW, extra credit).

@ JOHNS HOPKINS



Residual Connections/Blocks

= Create direct “information highways” between layers. IGensity

= Shown to diminish vanishing/exploding gradients

= Early in the training, there are fewer layers to propagate through.
o The network would restore the skipped layers, as it learns richer features.

o It is also shown to make the
optimization objective smoother.

[Fun fact: the paper (He et al. 2015)
introducing residual layers is the most
cited paper of century!!]

(a) without skip connections (b) with skip connections

= < HOPKING
@O 181

of EN ERING

[Li et al. “Visualizing the Loss Landscape of Neural Nets"]


https://arxiv.org/abs/1512.03385

Weight Initialization

= Initializing all weights with a fixed constant (e.g., 0's) is a very bad idea! (why?)

"o S Ve

S S S

L2

Irp f f

= If the neurons start with the same weights, then all the neurons will follow the same
gradient, and will always end up doing the same thing as one another.

= Effective initialization is one that breaks such “symmetries” in the weight space.

‘rﬁ JOHNS HOPKINS
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Weight Initialization
= Better idea: initialize weights with random Gaussian noise.

X = torch.tensor.empty(3, 5)
nn.init.normal (w)

= There are fancier initializations (Xavier, Kaiming, etc.) that we won't get into.

By JOHNS HOPKINS o 183
w ITING SCHOC [read more here: https://pytorch.org/docs/stable/nn.init.html]



https://pytorch.org/docs/stable/nn.init.html

Over-training Prevention

= Running too many epochs and/or a NN with many hidden layers may lead to an
overfit network

= Keep a held-out validation set and evaluate accuracy after every epoch

= Early stopping: maintain weights for best performing network on the validation set
and return it when performance decreases significantly beyond that.

AValues ; aValues . jValues -
R . q ’ o
. ¢+ e . . IR
......... e T W w1/% 5
........... . = o0 ° = . .. 9 « ¥
---- 4 e i :
. . of 1A o
e o i i s
------ c oo o R MWW L ge
o : ’ L] : > 2] s o.é ’
Time Time Time

QoS Hork Underfitted Good Fit/Robust Overfitted 184



Dropout Training

* |n each forward pass, randomly set some neurons to zero

* Probability of dropping is a hyperparameter; 0.5 is common

= Dropoutisimplicitly an ensemble (average) o
o Each binary mask is one model

o Forexample, a layer with 4096 units
has 24096 ~ 102233 possible masks!

W

(a) Standard Neural Net

JOHNS HOPKINS

(b) After applying dropout.

46

42

Classification Error %
w &
@ )

w
(=]

34

32

30

Test Error

— 15 frames 3 layers 2000 units
—— 15 frames 3 layers 4000 units
— 31 frames 3 layers 4000 units
— 31 frames 4 layers 4000 units

finetuning wn[out dropout

finetuning with dropout

XN IR A SNIIRNGS

0

50

100 150
Epochs

v sooo[Hinton et al, 2012; Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014]

200

185



Dropout During Test Time

= The issue for the test time:
o Dropout adds randomization. ®
o Each dropout mask would lead to a slightly different outcome.

= In ideal world, we would like to “average out” the outcome across
all the possible random masks:
o Not feasible.
o Remember the example: a layer with 4096 units has 24°9¢ ~ 10233 possible masks!
o Only ~ 1082 atoms in the universe ...

Qi'l" JOHNS HOPKINS
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Dropout During Test Time (2)

The alternative is to not apply dropout.

Without dropout, the input values to each neuron would be higher than what was
seen during the training (mismatch between train/test).

= Example: imagine we apply dropout (p 0.5) to the following model:
o Training time: E[ ] = —(W1x1 + szz) + = (0 + O)
+ = (0 + WoXy) +— (W1X1 + O) = —(W1X1 + wyx,)
o Testtime: E[a] = wyx; + wyxy

Solution: scale the values proportional to dropout probability.
o Can be applied in either testing (scaling down) or training (scaling up).
o A very common interview question! ©
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Dropout in Practice

dropout = nn.Dropout(p=0.2)
x = torch.randn(20, 16)
y = dropout(x)

Just call the PyTorch function!

i # training ste
It automatically g step

- activates the dropout for training. model.train()

# evaluate model:

- deactivatives it during evaluations and

scales the values according to its parameter. model.eval()

S JOHNS HOPKINS ; .
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https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

The Only Time You Want to Overfit: The First
Tryout

= A model with buggy implementation (e.g., incorrect gradient calculations or updates)
cannot learn anything.
= Therefore, a good and easy sanity check is to see if you can overfit few examples.
o This is really the first test you should do, before any hyperparameter tuning.
= Try to train to 100% training accuracy/performance on a small sample (<30) of
training data and monitor the training loss trends.
o Does it down? If not, something must be wrong.
o Try checking the learning rate or modifying the initialization.
o If those don't help, check the gradients.
« If they’re NaN or Inf, might indicate exploding gradients.
« If they're zeros, might indicate vanishing gradients.

‘rﬁ JOHNS HOPKINS
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Additional Comments on Training

= No guarantee of convergence; neural networks form non-convex
functions with multiple focal minima

In practice, many large networks can be trained on large data.

Many steps (tens of thousands) may be needed for adequate
training.

May be tricky to set learning rate or number of hidden units/layers.

To avoid local minima: several trials with different random initial
weights with majority or voting techniques
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Intuition about Neural Net Representations

N - - o N — - — - G —
Input layer Hidden layer Hidden layer Output layer
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Intuition about Neural Net Representations
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Low-Level
Feature

| Mid-Level

Feature

|High-Level

Feature

[Zeiler & Fergus 2013; Yosinski et al. 2015]
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https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/abs/1506.06579

Summary

output layer
input layer
hidden layer

= Feed-forward network architecture
o But many of the concepts here hold for any architecture.

= We learned Backprop, a general-purpose algorithm for efficient training of NNs.
o Recursively (and hence efficiently) apply the chain-rule along computation graph.
o The most important algorithm in neural networks! £

= Lots of empirical tricks for training neural networks:
o Things to be careful about: over-fitting, activations, exploding/vanishing gradients, ...
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