W]OHNS HOPKINS
y WHITING SCHOOL
of ENGINEERING

Transformer Language Models

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2024/

Language Models: A History

Probabilistic n-gram models of text generation [Jelinek+ 19807, ...]
o Applications: Speech Recognition, Machine Translation

Word representation learning [grown 1992, ..
o Brown, LSA, Word2Vec, Glove ...

Statistical or shallow neural LMs (late 90’s — mid 00’s) [Bengio+ 2001, ...]

Pre-training deep neural language models (2017's onward):
o Many models based on: Self-Attention

Qi'l" JOHNS HOPKINS

RNNs, Back to the Cons

= While RNNs in theory can represent long sequences, they
quickly forget portions of the input.

= Vanishing/exploding gradients
= Difficult to parallelize

= The alternative solution we will see: Transformers!

!rﬁ JOHNS HOPKINS

Chapter Plan

1. Self-Attention: how it works

2. Transformer architecture

3. Transformer-based families of Language Models
4. Practical hacks and variants

5. Various objective functions

Chapter goal----

ﬁ‘, JOHNS HOPKINS

Self-Attention

e blisobtained based on the

Self-Attention whole input sequence.

* can be parallelly computed.

b1 b2 b3 b4 bl bz b3 b4
] I [] ! ! I I
4 I \ 4 ™
— = = » Self-Attention Layer
1) U g
| | | | | |
51 X2 X3 x4 51 X2 3 "

|dea: replace any thing done by RNN with self-attention.

“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;
“Attention is All You Need” Vaswani et al. 2017

[adopted from Hung-yi &ge]

RNN vs Transformer

el N b
8 5 S
g g g
~ ~ «m
2 2 2
£ I~ s
: 5 E
< (0000} - [0000] - [0000]c -
Ei > -
£
i
S
=
=
£
S
%)
S
3
<—(0000] ' (0000] ' (0000« m
Al_oooo% _Tool,, ..TQQQTI s

<«{o0000)l—(0000)—{0000)]— -

- |ee®

) e L)

X e ()

eo)—{oe

eo)—{o0

>
£
-~
..T M
ry
oe) S
1

=

o0} (o0

[d
]
was

eo)—{o0

eo)—(o0

o
o
movie

;
j

=

RNN layer 3

RNN layer 2

RNN layer 1

WHITING SCHOOIL
of ENGINEERING

%W JOHNS HOPKINS

Attention

» Core idea: build a mechanism to focus (“attend”) on a
particular part of the context.

C
ie]
=
— S 82 g 8 (,[\)/\
[0 (0] —a 'a' ‘® = O'O
o3 - > = s S O += %) » £ ©
C ®=T 0 0 © 5 ac o @ = £ 0o 9 = >a w a
FJ13Scoo .2a2c603,£ 03 25 E c Eo .V vV
4] 1 i . ’
/
/ ' ’
1
|
4 | i .
0o T =5 08 = 0 c o O ¥ O wE OO D S >c A A
£33 203 3FTg393 £ 235¢& £ES v
b=) = o) = e P 17 c O 9
c o) Qe 7] = a
o RS ‘= Q w vy
2 £ tS) v
a
«©

Qi,., JOHNS HOPKINS
’ WHITI HOOL
of ENC

:RING

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

Defining Self-Attention

= Terminology:
o Query: to match others
o Key: to be matched
o Value: information to be extracted

,:”J”HM HOPKINS [Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762

Defining Self-Attention [An analogy }

= Terminology:

o Query: to match others [TT] valuesa
o Key: to be matched [TT1] vaess
o Value: information to be Query #9 [TT] @ value#
[T T1
it
D:‘:‘ value #1 =
&
=
o

."’J”HM HOPKINS [Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

}shw

10

Aaqo

https://arxiv.org/abs/1706.03762

Defining Self-Attention

= Terminology:

o Query: to match others
o Key: to be matched
o Value: information to be Query #9 50%

et J()HN\ H()M\Ns

30%

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

value #1

value #3

value #2

value #4

10qo.

Ishw

11

Aago

https://arxiv.org/abs/1706.03762

Query #9

‘I." e
WHITING SCHOOIL
NC

30%

q: query (to match others)

q; = Wix;
k: key (to be matched)
ki = kai
v: value (information to be extracted)
v; = WVx;
i value #4
‘ value #3
50% value #2 ‘
‘ o
(on
3p &
% value #1 - i
o
(op
=
Q

12

q: query (to match others)
q; = Wix;

k: key (to be matched)
ki = kai

v: value (information to be extracted)
V; = vai

13

q: query (to match others)

qi = Wx;
k: key (to be matched)
k; = Wkx;
v: value (information to be extracted)
= vai
3 CI4 k4 v4
00000 00000

X3 X4
sat on

14

Or s = q' - ki/ q: query (to match others)
v Vd
k: key (to be matched)

\ v: value (information to be extracted)
Scaled dot product
How much
should “The”
a a (04 a
attend to other L1 1.2 13 1,4
positions?

d1 1 "1 Q2 k, v, [TT] | veess
O O o D:Igj:lalue #zvalue #3
0 0 e
A A +
1T1] value #1 =
00000 00000

15

2.j eXp (z]
11 aq1,2 1,3 aq,4
How much t 1 1 t
should “The” Softmax]
attend to other | | I |
positions? 1,1 Aq,2 ®q,3 X1,4
1 "1 2 q 3 k3 v3 Qs Ky Uy
0 0
0 0
00000 00000 00000 00000
X1 X2 X3 X4
The cat sat on

16

1 _ 5 [
00 b* = z a1,iV Representation of “The” given the attention weights
[
a1 —% a1 X Q3 —% 01,4
t t t
[$oftmax]
| I I |
\ \
q1 ki V7 2 ky; v qz ks V3 s ks V4
o| |o 0 o| |o 0
o| |o 0 o| |o el
00000 00000 00000 00000
X1 X2 X3 X4
The cat sat on

17

Self-Attention

e Can write it in matrix form:

e GiveninputX:

Q = Wix
K = Wkx
V = WVx

Attention(x) = softmax

0K
Vd

hardmaru
© o @hardmaru

The most important formula in deep learning after 2018

Self-Attention
What is self-attention? Self-attention calculates a weighted
average of feature representations with the weight propor-
tional to a similarity score between pairs of representations.
Formally, an input sequence of n tokens of dimensions d,
X € R™? is projected using three matrices Wq € R%%4q,
Wk € R and Wy € R % to extract feature repre-
sentations @, K, and V, referred to as query, key, and value
respectively with d = d,. The outputs Q, K, V are com-
puted as

Q=XWq, K=XWgk, V=XWy. (1)

So, self-attention can be written as,

T
S = D(Q, K, V) = softmax (Q%) V, 2)
q
where softmax denotes a row-wise softmax normalization
function. Thus, each element in S depends on all other ele-
ments in the same row.

9:08 PM - Feb 9, 2021 - Twitter Web App

553 Retweets 42 Quote Tweets 3,338 Likes

Self-Attention: Back to Big Picture

= Attention is a powerful mechanism to create context-aware representations
= A way to focus on select parts of the input

bl b2 b3 b4—

4 4

Self-Attention Layer
4 4 4 4

x x x x*

=
N
w

= Better at maintaining long-distance dependencies in the context.

55 JOHNS HOPKIN . .
i JOH\\;W " [Attention Is All You Need, Vaswani et al. 2017]

19

19

https://arxiv.org/abs/1706.03762

Properties of Self-Attention

Layer Type Complexity per Layer Sequential
Operations

Self-Attention O(n? - d) O(1)

Recurrent O(n - d?) O(n)

= 1= sequence length, d = hidden dimension
= Quadratic complexity, but:
o 0O(1) sequential operations (not linear like in RNN)

= Efficient implementations

By JOHNS HOPKINS
’ W NG SCHOC

7 i scio [Attention Is All You Need, Vaswani et al. 2017]

21

https://arxiv.org/abs/1706.03762

Multi-Headed Self-Attention

= Multiple parallel attention layers is quite common.
o Each attention layer has its own parameters.
o Concatenate the results and run them through a linear projection.

Self-Attention Layer

24
"”JOHM I?f?[\‘k[% [Attention Is All You Need, Vaswani et al. 2017] 24

https://arxiv.org/abs/1706.03762

Combine with FFN

* Add a feed-forward network on top it to add more expressivity.

* This allows the model to apply another transformation to the contextual
representations (or “post-process” them).

* Usually, the dimensionality of
the hidden feedforward layer [ga7 o] oo
is 2-8 times larger than
the input dimension.

FFN(X) == f(CWl + bl)WZ + bz

Feedforward Net: Refresher \

Hidden
layer

Input
layer

Feed Forward Network

Output
layer

Inputs
Outputs

Multi-Headed
Self-Attention Layer

A fully-connected network
QOIS HOPKINS 00 |00 00 \ of nodes and weights. /

How Do We Prevent Vanishing Gradients?

= Residual connections let the model “skip” layers

-
o These connections are particularly useful for Add & Norm
training deep networks -
Forward
A
= Use layer normalization to stabilize the network
and allow for proper gradient flow arbie ke eI
Multi-Head
Attention
—tr
.
.

Sw JOHNS HOPKINS . :
Q JOINS Hon: [Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

Putting it Together: Self-Attention Block

out
Given input x: ~)
Add & Norm
out = LN (€ + ¢) Bl
¢ = FFN(C’) = f(C’W1 + bl)WZ + b2 7y
¢ =LN(c+x) Add & Norm
¢ = MultiHeadedAttention(x; W%, W*, W?) Multi-Head
Attention
1
S y

X: Input sequence

OHNS HOPKINS , .
WO [Attention Is All You Need, Vaswani et al. 2017] 27

https://arxiv.org/abs/1706.03762

Summary: Self-Attention Block

= Self-Attention: A critical building block of modern language models.

o The idea is to compose meanings of words weighted according some similarity
notion.

= Next: We will combine self-attention blocks to build various architectures known as
Transformer.

= ' .
=3 |OHNS HOPKINS
et oo 28

Transformer

‘ril?.,](YHNS HOPKINS

E NEF

Output
Probabilities

How Do We Make it Deep? (e)

A
[Linear]
A
= Stack more layers! p — a S
~—>| Add & Norm] ~> Add & Norm)
Feed Feed
= il = Forward Forward
NETWORKS A A
— |
STACK W/} N ~—>| Add & Norm) » NE —>{_Add & Norm]
MORE — Multi-Head Multi-Head
LAYERS Attention Attention
/ \ e S
— J \. J
Positional @_@
Encoding
Input
Embedding
w “'()Hfﬁ;f)‘lx\}w [Attention Is All You Need, Vaswani et al. 2017] Inputs

https://arxiv.org/abs/1706.03762

books

From Representations to Prediction

= To perform prediction, add a classification head
on top of the final layer of the transformer.

= This can be per token (Language modeling)
= Or can be for the entire sequence (only one token)

out € R5*? (S: Sequence length)
logits = Linear 4 v(out) = f(out. WV) € RV

probabilies = softmax(logits) € R>*Y

output token
probabilities (logits)

0.19850038 aardvark

0.7089803 aarhus
Decoder #12, Position #1 0.46333563 aaron
output vector

Pick an output

token based on

X its probability
(sample)

JOHNS HOPKINS
" W NG SCHO(

The

Output
Probabilities

l Softmax l
l Linear |

A

()
r—>| Add & Norm '
Feed
Forward
—
Nx | —(TAdd&Norm)
Multi-Head
Attention
At
— y
Positional D
Encoding
Input
Embedding

I

Inputs

9

=

One last wrinkle though ...

|

32

One issue: the model doesn’t know

|

4 word positions/ordering.
t t t T
[$oftmax J
I I I I
}</ 1,2 1,3 a1,4
1 q> 2 q3 ks vs3 ;LXM Uy
8GN SEN BEN
¢! 0
' 00000 | | 00000 | . 00000 | . 00000 |
X1 X X3 X4
The cat sat on

We will discuss
various choices for
these embedding! +

One issue: the model doesn’t know
word positions/ordering.

a1 —% Ay, —>% a3 &P’ﬂ“]
t t t)
[$oftmax]
| | I I
1,1 a2 /ais aq,4
k

d1 1 p) 2 3 K3 V3 Qs K4 V4

Allows model to learn
relative positioning

p; are positional
embeddings

100

0.75

An approach:
Sine/Cosine encoding

050

025

r0.00

r-0.25

-0.50

-0.75

T -1.00
100 120

Allows model to learn
relative positioning

p; are positional
embeddings

f __init_ (self, config):
super().__init_ ()
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
self.attn = CausalSelfAttention(config)
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
self.mlp = MLP(config)

ef forward(self, x):
X = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x

self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]l),
In_f=LayerNorm(config.n_embd, bias=config.bias),

Output
Probabilities

Linear
A

-
f->| Add & Norm '

Feed
Forward

N\

—

Nx | —(Add & Norm)

Multi-Head
Attention

L

N———

Positional D
Encoding
Input

Embedding

T

Inputs

36

Transformer-based Language Modeling

]
Output
T
And continue like
that until we reach
TRANSFORMER EOS or we get tired.
Input - T
recite| the | first | 1law $ ‘ | \ ‘ ‘

JOHNS HOPKINS 37
N FENGINEERING Image by http://jalammar.github.io/illustrated-gpt2/

http://jalammar.github.io/illustrated-gpt2/

Training a Transformer Language Model

= Goal: Train a Transformer for language modeling (i.e., predicting the next word).
= Approach: Train it so that each position is predictor of the next (right) token.

o We just shift the input to right by one, and use as labels _
EOS special token

(goldoutpu) Y = cat sat on the mat </s>

trr ottt e

T T T ? T T [Slide credit: Arman Cohan]

7 Jorxs Homans X= the cat sat on the mat .
| ITING SCHOC

Training a Transformer Language Model

= For each position, compute their corresponding distribution over the whole vocab.

(goldoutpu) Y = cat sat on the mat </s>

Joodn ool ool ool Jeolle Jaolle

I N

TRANSFORMER

R

&5 Jous Homes X = the cat sat on the mat

39

Training a Transformer Language Model

= For each position, compute the loss between the distribution and the gold output label.

(goldoutpu) Y = cat sat on the mat </s>

111111

Joodn ool ool ool Jeolle Jaolle

I N

TRANSFORMER

R

&5 Jous Homes X = the cat sat on the mat

40

Training a Transformer Language Model

= Sum the position-wise loss values to a obtain a global loss.

(goldoutpu) Y = cat sat on the mat </s>

c- 1+7+1+0+1+1

Joodn ool ool ool Jeolle Jaolle

TRANSFORMER

Pttt

&5 Jous Homes X = the cat sat on the mat

Prr Tt

41

Training a Transformer Language Model

= Using this loss, do Backprop and update the Transformer parameters.

(goldoutpu) Y = cat sat on the mat </s>

c= 1+7+1+0+1+1

' Well, this is not quite right Q..
\ T T T T T T what is the problem with this?
vCLey]

TRANSFORMER

-
’4

\“

R

&5 Jous Homes X = the cat sat on the mat

42

Training a Transformer Language Model

= The model would solve the task by copying the next token to output (data leakage).
o Does not learn anything useful

(goldoutput) Y = cat sat on

211111

Joodn ool ool ool Jeolle Jaolle

SN

TRANSFORMER
fons Hores X = the cat

sat on the mat

43

Training a Transformer Language Model

= We need to prevent information leakage from future tokens! How?

(goldoutput) Y = cat sat on

211111

Joodn ool ool ool Jeolle Jaolle

b TTT T

TRANSFORMER
fons Hores X = the cat

sat on the mat

44

X, W%z ¥ ¥y ~
—

2
Attention mask
|
Attention raw scores \ J —

o |-0.08 124 [069 |-098 | 1.43 | -0.6 0.7 0.16 | 0.93 | 1.28 ﬂ -1.1
~ |[-0.09| -0.0 | -0.7 | 0.06 | 0.25 | 0.23 | 0.26 | 0.18 | 0.78 | -0.21 | -1.01 | 1.01 T
~ 0.86 | 1.19 | 1.59 | 0.86 | -0.13 | -0.15 -0.98 1.87 | -0.72 - 7\ 7\ 7\ s
) 0.12 | -0.03 [-0.02 | 0.88 | -0.46 | -0.7 | 0.54 | -0.42 0.04 | -0.84 x 1 x2 X3 y1 yz
< 0.51 | 0.17 | 0.13 ﬂ 0.24 | -0.02 | 1.68 | -0.36 0.27 | 0.66 What we Want
) 0.24 043 | 074 | 096 | 2 [-0.31]| 154 | 1.66 | 1.14 | 0.58
© 0.26 | -0.1 093 | 0.72 | -0.38 | 1.65 | 0.47 | -0.96 | -0.17 | -0.9 0.22
~ | -0.55| 0.81 [0.71 1.7 -08 |-1.14 | 032 1.78 | -0.7 | -0.04 | 1.54 | 0.81
© 0.74 | -0.76 | -0.44 | -0.08 | (k| -0.13 0.57 | 0.74
o |-0.97 [-0.91 [0.15 | 0.35 [-0.81 [0.11 0.5 -0.3
o | 1.56 0.9 0.39 | 146 | 1.44 | -1.05 -0.62 | -0.43
= | 032 [074 | 044 | -0.1 119 | 0.83 | 0.29 | 2.06 | 0.51 | -0.26 | 1.51 | 0.11

1 2 3 4 5 6 7 8 9 10 1" 12

JOHNS HOPKINS

WHITING SCHOOIL
of ENGINEERING

Slide credit: Arman Cohan

X

7

X ¥ Vs

What we have

Yo

45

Z—

Attention mask 00

A%‘?f"?
Z

v

Attention raw scores Attention mask

o [-008| 124|069 [-098| 143 | 06 | 0.7 | 0.16 | 0.93 1.23. =l - g | o | o | o || o | o | s || g || e |
~ |-009]| 00 [-07 | 006 | 025 [023 | 026 | 0.18 | 0.78 | -0.21 | -1.01 | 1.01 - i | o | e | e | e | oo | o || e ||
~ | 086 | 119 | 159 | 0.86 [-0.13 -0.15-0.98 N a || g | s | s | o | o | e |
0.30
« | 012 [-0.03|-0.02 | 0.88 |-0.46 | -0.7 | 0.54 [-0.42 . i | i | oo | o | e || i | i |
0.25
¥ | 051 0471 013 024 1 -0.02 | 1.68 | -0.36 | 0. ’ ’ : < -inf | -inf | -inf | -inf [-inf | -inf | -inf
0.20
w | 024 [0 043 | 074 031|154 | 1.66 | 1.14 | 0.58))))))
) -inf -inf -inf -inf -inf -inf
-0.15
© | 026 | -01|093|072|-038| 165 | 047 [-0.96|-0.17 | 0.9 0.22 ot
© g
-0.10
~ |-055| 081|071 | 17 032|178 | -0.7 | 004 | 154 | 0.81
~
-005
o | 0.74 |-0.76 | -0.44 | -0.08 1.25 03 [057 | 074
©
-0.00
» |-097 [-091) 015 | 0.35 [-0.81 | 0.11 | 1.14 187 | 05 | 0.3
(=]
o | 156 | 09 | 039 | 146 | 144 |-105| 09 |-0.73| 0.36 | 067 | 062 | -0.43
o
= | 032|074 044 | -01 | 119 [083 | 029 | 206 | 0.51 | -0.26 | 1.51 | 0.1

&3 JOHNS HOPKINS . .
&) WG scrioor Slide credit: Arman Cohan

I
“NGINEERING

Z—

Attention mask 00

Af/f‘?f"?
Z

v

Attention raw scores Attention mask

o [-008| 124|069 [-098| 143 | 06 | 0.7 | 0.16 | 0.93 1.23- =l - g | o | o | o || o | o | s || g || e |
~ |-009]| 00 [-07 | 006 | 025 [023 | 026 | 0.18 | 0.78 | -0.21 | -1.01 | 1.01 - i | o | e | e | e | oo | o || e ||
~ | 086 | 119 | 159 | 0.86 [-0.13 -0,15-0.98 N ai || e | s | e | o | o | e | i
0.30
« | 012 [-0.03|-0.02 | 0.88 |-0.46 | -0.7 | 0.54 [-0.42 . i | i | oo | o | e || i | i |
0.25
¥ | 051 0471 013 024 1 -0.02 | 1.68 | -0.36 | 0. ’ ’ : < -inf | -inf | -inf | -inf [-inf | -inf | -inf
0.20
w | 024 [0 043 | 074 031|154 | 1.66 | 1.14 | 0.58))))))
X w0 -inf -inf -inf -inf -inf -inf
-0.15
© | 026 | -01|093|072|-038| 165 | 047 [-0.96|-0.17 | 0.9 0.22 ot
© g
-0.10
~ |-055| 081|071 | 17 032|178 | -0.7 | 004 | 154 | 0.81
~
-005
o | 0.74 |-0.76 | -0.44 | -0.08 1.25 03 [057 | 074
©
-0.00
» |-097 [-091) 015 | 0.35 [-0.81 | 0.11 | 1.14 187 | 05 | 0.3
(=]
o | 156 | 09 | 039 | 146 | 144 |-105| 09 |-0.73| 0.36 | 067 | 062 | -0.43
o
= | 032|074 044 | -01 | 119 [083 | 029 | 206 | 0.51 | -0.26 | 1.51 | 0.1

Note matrix multiplication is quite fast in GPUs.

of ENGINEERING

2 Arman Cohan

Attention mask

e T o] T Masked attention raw scores

- [a0s 00 [97] 006 [02s [0zs [020

o |-0.08 | -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf

- [012] 003002 | oun |48 [07 [04 o on

~ |-0.09 [-0.0 -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf

0ss o [are [17 ["on [RS8 52 | 170 |07 | oo [154 [oms

o~ | 086 | 1.19 | 1.59 [-inf -inf -inf -inf -inf -inf -inf -inf -inf

= [fosr[0ma] 015 [oss [[amn o [110 106 | 127 | 05 [02

= [156 [05 [039 | v | 144 [508] 05 (078 036 [-007[-002] 000

o | 012 [-0.03 | -0.02 [0.88 | -inf -inf -inf -inf -inf -inf -inf -inf

< | 051 | 0.17 | 0.13 0.24 | -inf -inf -inf -inf -inf -inf -inf
w | 0.24 043 | 0.74 | 0.96 -inf -inf -inf -inf -inf -inf

© | 026 | -0.1 | 093 [0.72 | -0.38 [1.65 | 0.47 | -inf -inf -inf -inf -inf

~ |-0.55(0.81 | 0.71 1.7 -0.32 | 1.78 | -inf -inf -inf -inf

w | 0.74 | -0.76 | -0.44 | -0.08 1.25 -inf -inf -inf
=3 -0.91 [0.15 | 0.35 1.14 1.87 | -inf -inf
< [156 | 09 | 039 | 146 09 |[-0.73 | 0.36 |-0.67 | -0.62 | -inf
= [032 | 074 | 044 | -0.1 0.29 [2.06 | 0.51 [-0.26 | 1.51 | 0.11

— H 1 2 3 4 5 6 7 8 9 10 1" 12
ayw JOHNS HOPKINS . .
WU o Slide credit: Arman Cohan

of ENGINEERING

Attention mask

Aftention raw scores

oo [0me] 1 u| or ‘m nnlua

00 |07 [006 [02s [azs [028 [010 [070 [-021 [Sga

119 [199 [086 {013 015 [EREH 0se | 0ar 5

o1z [0o

0z oss [-0s0] 07 | o5t [042 [RRRY 038 | 004

HHHEB

108 |-036] oe4 [036 [027

042 | 074 [ose [P 31 | 154 | 100 [114 [050

o1 [033 [072 [-038] 168 [0s7 [[ame] 017 [00 0z

17 [0 [R] 052 | 170 [07 | 004 | 154 [et

112 184 | 0 [osr [o7a

o B RaERaRe
BHH "HAEHBBBHHE

&

JOHNs HOPKINS

\\HH!\L SCHOOL
‘RING

ttention score

softmax

lasked attention raw scores
008 [e [e [e [o [[e [[[[
008 [-00 [o [o [e [[[[[[
086 [119 | 150 [er [e [e [o [o [e [e
012 |-003 | 002 | 088 [e [sor [e [e [e [e [e
081 |17 [oxs 024 | ot | ot | ot | ot | o | e
o o4 | 074 | 0ss ot [o [[[
026 | 01 | 093 [072 [0 168 [aer [s [o [o [
~ [08s[oot [o1 | 17 [Fom 032 178 | oo | o |
oz o[128 184 [ot | o
015 [035 |iam] 011 | 118 106 [187 | v
2|15 00 030 [4s [a0 o9 [a73] 036 [aer| ae
= |02 |07 [0ss | 01 10 2

—)

o
=

—
=

The effect is more than just pruning out some of the
wirings in self-attention block.

Attention probabilities

Slide credft: Atmah Cohan*

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.11 0.0 0.0 0.0 0.0 0.0

0.04 (B0 0.0 0.0 0.0 0.0

0.14 | 0.03 | 0.04 | 0.06 | 0.02 | 0.06 [0.02 [N 0.0 0.0 0.0
0.02 | 0.02 [0.07 | 0.08 | 0.03 | 0.06 [i | 0.01 m 0 0.0 0.0
0.11 | 0.06 | o feh [k 0.02 | 0.11 | 0.02 | 0.06 [0.02 | 0.02 | 0.0

0.05 | 0.07 | 0.05 | 0.03 | 0.11 | 0.08 | 0.05 [H¢ 0.06 | 0.03 [0.16 | 0.04
5 6 7 8 9 10 1

0.30

0.25

0.20

-0.15

-0.10

-0.05

49

Training a Transformer Language Model

= We need to prevent information leakage from future tokens! How?

(goldoutpu) Y = cat sat on the mat </s>

7N T N N)

TRANSFORMER

R

&5 Jous Homes X = the cat sat on the mat

50

How to use the model to generate text?

= Use the output of previous step as input to the next step repeatedly

tI;Te CTat T T T |

Qi"" JOHNS HOPKINS
WHITING SCHOOL
of ENGINEERING

53

How to use the model to generate text?

I
= Use the output of previous step as input to the next step repeatedly
The probabilities get

revised upon adding a
new token to the input.

- TRANSFORMER

R

LLLrrr

Qi"" JOHNS HOPKINS
W HI TING SCHOOL
of ENGINEERING

54

How to use the model to generate text?

= Use the output of previous step as input to the next step repeatedly

athe

%‘b

The probabilities get J..l.._ Joola. Jaola

revised upon adding a T * T T T T T

new token to the input.
TRANSFORMER

trrrtr

the cat sat on

Qi"" JOHNS HOPKINS
WHITING SCHOOL
of ENGINEERING

55

How to use the model to generate text?

= Use the output of previous step as input to the next step repeatedly

Q& »M at
%(b' l'

B
TRANSFORMER

.

Pt

the cat sat on the

The probabilities get .
revised upon adding a
new token to the input. T

Qi"" JOHNS HOPKINS
W HI TING SCHOOL
of ENGINEERING

56

How to use the model to generate text?

= Use the output of previous step as input to the next step repeatedly

/s>

< I,

B
TRANSFORMER

-

Pt

the cat sat on the mat

The probabilities get .
revised upon adding a
new token to the input. T

Qi"*' JOHNS HOPKINS
W HI TING SCHOOL
of ENGINEERING

57

=

An important efficienca/_ |
ing!

consideration about deco

58

Making decoding more efficient

oy JOHNS HOPKINS
‘llf' WHITING SCHOC
ENGINEE

K

Q = Wix
K = Wkx
IV =W'x

T
QK)V

B :
e SOftmaX(Vd
. 5

l v

[Slide credit: Arman Cohan]

59 °

Making decoding more efficient

Q = Wix
K = Wkx
_ . IV =W
% ‘ T
Attention(X) = softmax (Q\Z)V
4 - N

q .

q: the next token

previous context

[Slide credit: Arman Cohan]

)) S
I,uj(HI\S H(Il\I\I 60

Making decoding more efficient

Q = Wix
K = Wkx
V =W'x
Attention(x) ft (QKT>V
ention(x) = softmax
Vd
q |
-
q: the next tokAen Ki= ka o V= va
/ yd -
"‘ / previous context
BTh% Cat Sat on the [Slide credit: Arman Cohan]

I,uJ()HNs H()H\Ns 61

Making decoding more efficient

Q = Wix
K = Wkx
IV =W'x

'Jd

q | ;7

q: the next token K= \Wix VL—%:——W—

/ previous context

‘ Sat on the [Slide credit: Arman Cohan]

I,uJ()HNS H()H\Ns 62

Making decoding more efficient

Q = Wix
K = Wkx
IV =W'x
Attention(x) ft (QKT> |4
ention(x) = softmax
Vd
q ! .
g: the next token K = ka i V — va

/ previous context

The C/ | On the [Slide credit: Arman Cohan]

o JOHNS HOPKINS
QY JOHNS HOP: 63
EN NEERINC

Making decoding more efficient

Q = Wix
K = Wkx
V =W'
Attention(x) ft (QKT> 1%
ention(x) = softmax
Vd
q | _
g: the next token K = ka V = va

L

previous context

[Slide credit: Arman Cohan]

I,HJ()HI\\ H()H\IVS 64

Making decoding more efficient

Q = Wix
K = Wkx
IV =W'x
Attention(x) ft (QKT> |4
ention(x) = sortmax
Vd
q | |
1\

g: the next token K = ka V — va

" previous context

[Slide credit: Arman Cohan]

)) = -
I,uj(HNS H(II\I\IS 65

Making decoding more efficient

Q = Wix

K = Wkx

. . IV =W

= We are computing the Keys and Values many times! OKT
o Let’s reduce redundancy! & Attention(x) = SoftmaX< NE)V
q: the next token K = ka | V = va
. 2l ¥
e previous context

The Cat on Ithe [Slide credit: Arman Cohan]

o - ~ -

aw JOHNS HOPKINS

QY JOLINS HOP 66
EN NEE N

Making decoding more efficient

Q = Wix
K = Wkx
IV =W'x

= We are computing the Keys and Values many times! OKT
o Let’s reduce redundancy! & Attention(x) = softmax< 77)V

kypew = Wix[:, : — 1]

q | |
g: the next token K Cached V Cached

Y.

/

/M View = Wx[:, 1 —1]

The Cat Sat on Ithe [Slide credit: Arman Cohan]

I,uJ()HNS H()H\Ns 67

Making decoding more efficient

Q = Wix
K = Wkx
IV =W'x

= Question: How much memory does this K, V cache require?

'Jd

kypew = Wix[:, : — 1]

q | |
q: the next tok;; K Cached V Cached
AN ///

/M Vnew = WiX[:, + —1]

The Cat Sat on Ithe [Slide credit: Arman Cohan]

= JOHNS HOPKINS
QY JOHNS HOP! 68
EN NEERINC

Summary

= This is a very generic Transformer!

= We will implement this in HWS5 to build a simple Transformer Language
Model!!

= Next:
o Architectural variants
o Efficiency issues.
O ...

@ JOHNS HOPKINS

70

Transformer
Architectural Variants

Encoder-decoder

* Itis possible to have two stacks of L IS aaGg,
transformer layers

* The encoder is as we’ve seen

* We can also add a decoder layer

that is identical to the encoder but Encoder . Decoder
we give it the ability to also attend i A* 11 t 4 t 1 i
to the input | l o 1o 6 3 & 9 O o

<bos> I saw a cat
!)

previous history

S BuAen KOTHO Ha Mmare <eos>

el ‘]()H\\Eﬁ)‘lﬁlﬁ\m Fig from: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html 72

EN

Encoder-decoder models

= Encoder = read or encode the input,

= Decoder = generate or decode the output le chat

Encoder

The cat is cute <> e

I,lr JOHNS HOI l\IVS

est

mignon

73

Tl‘a I‘ISfOI‘mer [Vaswani et al. 2017]

= An encoder-decoder architecture built with attention modules.

'i.l,'r JOHNS Hc
’ WHITING SC
of ENGINEE

ENCODER #2

ENCODER #1

...

Add & Normalize

e

............................

POSITIONAL
ENCODING

x+ [

Thinking

@

Xz_

(Softmax)

)

(Linear)
£,)
e, > DECODER #2
s %
~ .,*(Add & Normalize)
E-3
g (Feed Forward) (Feed Forward)
(S} I sy Wy s
E ,*(Add & Normalize)
o | 3 3
""" :"(Encoder-Decoder Attention)
‘cemeooeos F-------------------)
,»(Add & Normalize)
'))
E (Self-Attention)

74
74

Tl‘a I‘ISfOI‘mer [Vaswani et al. 2017]

= Computation of encoder attends to both sides.

it
|
|
=

-7 71
|
pp——

Encoder Self-Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

Linear

(| Add & Norm)
Feed
Forward
7 A Add & Norm
_ .
A0l NG Multi-Head
Feed Attention
Forward 7 7 Nx
-1
Nix Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
L Attention Attention
At At
_ J g —)
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

https://arxiv.org/abs/1706.03762

Tl‘a I‘ISfOI‘mer [Vaswani et al. 2017]

= Atany step of decoder, it attends to previous
computation of encoder

Encoder-Decoder Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

f
[Add & Norm | N
Feed
Forward
7 A Add & Norm
[Add & Norm | -
A0l NG Multi-Head
Feed Attention
award | U 77 Nx
Ne——
Nix Add & Norm
(—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
1 At
_ J _ —)
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

https://arxiv.org/abs/1706.03762

Tl‘a I‘ISfOI‘mer [Vaswani et al. 2017]

= Atany step of decoder, it attends to previous
computation of encoder as well as decoder’s
own generations

MaskedDecoder Self-Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

(| Add & Norm)
Feed
Forward
7 A Add & Norm
[Add & Norm | .
A0l NG Multi-Head
Feed Attention
Forward 7 Nx
Nix Add & Norm
f_" Add & Norm ! Masked
N Multi-Head
Attention I Attention
A_t 7 At
. J L —)
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

https://arxiv.org/abs/1706.03762

Tl‘a I‘ISfOI‘mer [Vaswani et al. 2017]

= At any step of decoder, it attends to previous
computation of encoder as well as decoder’s
own generations

= At any step of decoder, re-use previous
computation of encoder.

= Computation of decoder is linear,
instead of quadratic.

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

Linear

(1 Add & Norm N
Feed
Forward
e \ Add & Norm
_ -
A0l NG Multi-Head
Feed Attention
Forward 7 7 Nx
~—
Nix Add & Norm
(—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
_ J _ —)
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs 78

(shifted right)

https://arxiv.org/abs/1706.03762

Recap: Transformer

= Yaaay we know Transformers now! &

= An encoder-decoder architecture

= 3 forms of attention

=
I
1
-

Encoder Self-Attention

MaskedDecoder Self-Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output
Probabilities

Linear

(1 Add & Norm N
Feed
Forward
7 R Add & Norm
_ .
el N Multi-Head
Feed Attention
Forward DY) Nx
_k
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
1 1t
— J g —)
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

https://arxiv.org/abs/1706.03762

After Transformer ...

e A —— -
¢ v

Variants of positional
embeddings

Architectural choices

Multi-modal models

X-formers

i]

hshar 155§

Attenti
M {Local Transformer[156], Gaussian Transformer([42])

Prior —{Pred.lctlve Attention Transformer[143], Realformer[51], Lazyformer[159])
Attention

—(Average Attention[164], Hard-Coded Gaussian Attention[161], Synt.hesizer[l:ﬂ])

Collaborative MHA[21]
—Multi-head)_—(Adapﬁve Attention Span[126], Multi-Scale Transformer[44])
Dynamic Routing[40, 74]

—(Absolute)—(BERT[Z&]. Wang et al. [139], FLOATER[ss])

Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
sl DeBERTa[50]

L{implicit Rep)——Complex Embedding[140], R-Transformer [144], CPE[20]

)
—(Placement }—{post-LN[28, 83, 137], pre-LN[6, 17, 67, 136, 141]) Cove r
LN]
)

—(LayerNorm)——(Substitutes)—(AdaNorm[lSS], scaled ¢, normalization[93], PowerNorm[121]
—(Nerm-free)—(ReZero-Transformer[S])
—(Activ. Func.)—(Swish[lO()], GELU[14, 28], GLU[118])

Enlarge Product-key Memory[69], Gshard[71], Switch Transformer[36],
Capacity Expert Prototyping[155], Hash Layer[110]

—(Dropping HMI—AKenﬁon layer[127], Yang et al. [157])
—@.ighweight)—(ﬁte Transformer[148], Funnel Transformer[23], DeLighT[91])

Realformer(51], Predictive A ion Transfc [143], T Attention[8]
el Feedback Transformer [34]
UT(26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al. [129]

Transformer-XL[24], Compressive Transformer[103], Memformer[147] j

Yoshida et al. [160], ERNIE-Doc[30]

Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer([145]
TENER([154], TNT[48]

—(Alt, Arch.)—(ET[]ZT&], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167]
—(Encoder)—(BERT[zs], RoBERTa[87], BigBird[163])

—(Pre-Train)—

App.

—(Decoder —(GPT[101], GPT-2[102], GPT-3(12])
—@nc,Dec.)—(BARTUZ], T5[104], Switch Transformer[S(:D
—(N'LP)—(BERT[ZS],ET[IZS], Transformer-XL[24],Compressive Transformer[103], TENER[154])
—(cv “—{(Image Transformer[94], DETR[13], ViT[33], Swin Transformer[85], ViViT[3])

—CAudio)—(Speech Transformer[31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56])

—(Mummodal)—@isuamﬁm[ﬁ], VLBERT([125), VideoBERT([128], M6[81], Chimera[46], DALL-E[107], CogView([29])

We will visit a few of
{8) Dt i S 7, g e 1 these branches ...

But there is a lot
—(Other Rep.)—(TUPE[63], Roformer[124]) that we do not

Yang et al. Harnessing the Power of
LLMs in Practice: A Survey on
ChatGPT and Beyond, 2023

Evolutionary
Tree @G

Flan
5

Closed-Source

ST-Mo) G

Switch

g |- @

ALBERT[78 @ BART/[s \
(7]

ERNIE P
&
@ "
O
Encode”o 1
Ai2 iy
@D
FastText GloVe
Word2Vec

G
E%%Eﬂﬂ@
(CodeX® GLaMG_(Gopher) O

BardG (GPT-4@& N [Jurassic-2J&2

|C'laud§.

LTS

OPT-IMLI#N
BLOOMZ]

Sparrod©
BLOOM]#¢}
OPT]RN)

|Chinchilla|°

)

[@OAG

Galactica[g8]GLMf= :

ZDQ Fnend G
PG

EVE L) -

pai

GPT-NeoX[®]

NG
Jurassic-1ass

PT-36

NG
T ®

GPT-1
Decoder-Only @

ohere|/#

GPT-[e)
GPT-Neo[®]

.
Ociosed sorce CHIE
3 10
s |m
1o
= |]
S [eN]
s

Impact of Transformers

= A building block for a variety of LMs

[==t

=

!

/%77
>3]

7 JOHNS HOPKINS
’ W NG SCHOC

Encoders

Decoders

Encoder-
Decoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context. Wait, how do we pretrain them?

Examples: GPT-2, GPT-3, LaMDA
Other name: causal or auto-regressive language model

Nice to generate from; can’t condition on future words

Examples: Transformer, T, Meena

What's the best way to pretrain them?

85

85

Transformer

Language Model Families

=

@ JOHNS HOPKINS

Encoder-Decoder Family of
Transformers

——= " | Encoder-
=23 Decoders

|

87

Encoder-decoder Models

* The original transformer architecture was
encoder decoder

* Encoder-decoder models are flexible in both
generation and classification tasks

* How can we pretrain an encoder-decoder
model like BERT to be a good general
language pretrained LM?

‘rﬁ JOHNS HOPKINS

Output

Probabilities
*_Softmax
[}
5 N\
Add & Norm
Feed
Forward
e A Add & Norm
_ .
SRl N Multi-Head
Feed Attention
Forward 7 7 Nx
) C—
Nix Add & Norm
f—>' Add & Norm | A
Multi-Head Multi-Head
Attention Attention
t t
] J _ ——'
Positional D ¢ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs
(shifted right)

88

T5: Text-To-Text Transfer Transformer

Original text

. Thank you inviing me to your part week.
= An encoder-decoder architecture — you fet inviting, your party Jast
nputs

= Pre-training objective: Thank you <X> me to your party <Y> week.

corrupt and reconstruct objective o
<x> for inviting <v> last <7~

Model | Parameters | No. of layers | dmoget | di | div | No. of heads

Small 60M 6 312 2048 | 64 8

Base 220M 12 768 3072 | 64 12

Large 770M 24 1024 | 4096 | 64 16
3B 3B 24 1024 | 16384 | 128 32
11B 11B 24 1024 | 65536 | 128 128

= The original paper is an excellent set of in-depth analysis of various parameters of
model design. We discuss some of these results in other places.

s ORI https://huggingface.co/t5-base

Al L Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 89

BART (Lewis et al. 2020)

= Similar Architecture as T5.
o Corrupt the input -> ask the model to reconstruct the original input
o Outperformed existing methods on generative tasks (question answering, and

summarization).
ABCDE
EREE
C Pre-trained |:> Pre-trained) BART: Denoising Sequence-to-Sequence Pre-training for Natural

Encoder Decoder Language Generation, Translation, and Comprehension
+—— >
<ssABCD Mike Lewis*, Yinhan Liu*, Naman Goyal*, Marjan Ghazvininejad,
Randomly Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer
Initialized Encoder Facebook Al
f * * * * {mikelewis, yinhanliu, naman}@fb.com

Qi'l" JOHNS HOPKINS
’ NG SCHO(

90

BA RT The code might be outdated, but the logic is the same ...

from transformers import BartTokenizer, BartForConditionalGeneration

tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
model = BartForConditionalGeneration.from _pretrained("facebook/bart-large")

TXT = "The sun is <mask> ."

input_ids = tokenizer([TXT], return_tensors="pt")["input ids"]

logits = model(input_ids).logits

masked index = (input_ids[@] == tokenizer.mask token_id).nonzero().item()
probs = logits[0, masked index].softmax(dim=0)

values, predictions = probs.topk(5)

tokenizer.decode(predictions).split()

["located', 'at', 'approximately', 'also', ‘'about']

=

@ JOHNS HOPKINS

Encoder-only Family of Transformers

92

BERT

Bidirectional Encoder Representations from Transformers

93

BERT

Bidirectional Encoder Representations from Transformers

Like Bidirectional LSTMs (ELMo), let’s look in both directions

94

BERT

Bidirectional Encoder Representations from Transformers

Let's only use Transformer Encoders, no Decoders

95

BERT

Bidirectional Encoder Representations from Transformers

It's a language model that builds rich representations
via self-supervised learning (pre-training)

96

BERT: Architecture

s
el

e \
_Add & Norm
Stacks of Transformer encoders =
Forward
—
24 (ENCODER) Nix —
Multi-Head
o 00 "
Attention
{ \ L_}
— |
12 ENCODER 4 ENCODER S g
- s Positional
f) Encoding D
ces 3 ENCODER
\. J Input
(") Embedding
2 ENCODER 2 ENCODER
L) 1
' f) Inputs
1 ENCODER 1 ENCODER P
\ J
BERTgasE BERTarGE
JOHNS HOPKINS

ENGINEERINC

[BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

97

https://arxiv.org/abs/1810.04805

BERT: Architecture

= Model output dimension: 512

12 (ENCODER)

2 (ENCODER)
1 [ENCODER J

1 2 3 4 oo 512

[CLS]

Q@i"" JOHNS HOPKINS

TING SCHOC

Feed
Forward

4)
Add & Norm

 S—

Nx | —(Add&Norm)

_

Multi-Head
Attention

L

—

J

Positional
Encoding

of ENGINEERINC [BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

D

Input
Embedding

T

Inputs

https://arxiv.org/abs/1810.04805

brown 0.92
lazy 0.05
playful 0.03

T [BERT

tt 1 1
® o [

t t 1T 1

T S S SR,

| I 1 1
<CLS> The brewn dog

X1 X2 X3 X4

BERT is trained to uncover masked tokens.

Probing BERT Masked LM

= Masking words forces BERT to use context in both directions to predict the masked

word.

JOHNS HOPKINS
" W NG SCHO(

Paris is the [MASK] of France.

Compute

capital
heart
center
centre
city

</> JSON Output

0.997
0.001
0.000
0.000

0.000

Maximize

https://huggingface.co/bert-base-uncased

100
100

https://huggingface.co/bert-base-uncased

Probing BERT Masked LM

= Masking words forces BERT to use context in both directions to predict the masked

word.

JOHNS HOPKINs
" W NG SCHO(

Today is Tuesday, so tomorrow is [MASK].

Compute

friday
wednesday
thursday
monday

sunday

</> JSON Output

0.274
0.211
0.139
0.108

0.077

Maximize

https://huggingface.co/bert-base-uncased

101

101

https://huggingface.co/bert-base-uncased

BERT: Pre-training Objective (1):

Tokens

= Randomly mask 15%
of the tokens and train

the model to predict them.

I,u J()HI\S H()I I\I\IS

Masked

Use the output of the 0.1% | Aardvark

masked word’s position
to predict the masked word

Possible classes:

All English words 10% Improvisation

0% | Zyzzyva

[FFNN + Softmax]

BERT

Randomly mask

15% of tokens
[CLS] [MASK]

Input

[CLS]

[BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

102

https://arxiv.org/abs/1810.04805

BERT: Pre-training Objective (1): Masked
Tokens

l store I l Galon I

the man went to the [MASK] to buy a [MASK] of milk

= Too little masking: Too expensive to train

= Too much masking: Underdefined
o (not enough info for the model to recover the masked tokens)

Later work shows that more principled masking (instead of uniformly random)
could benefit downstream task performance and result in faster training.

PMI Masking (Levine et al., 2021) https://arxiv.org/pdf/2010.01825.pdf

SpanBERT (Joshi et al., 2020) https://arxiv.org/pdf/1907.10529.pdf

JOHNS HOPKINS
"o/ ENGINEERIN [BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

103

https://arxiv.org/abs/1810.04805

BERT: Pre-training Objective (2): Sentence
Ordering

Predict likelihood
that sentence B
belongs after

1% IsNext

= Predict sentence ordering

99% NotNext

sentence A
[FFNN + Softmax]
= 50% correct ordering, and oo
50% random incorrect ones
BERT
Tokenized eoe
lnpUt [CLS] [MASK]
Input [CLS] [MASK] [MASK]
’ Sentence A ' ' Sentence B
o JUHM H()I l\I\IS
Ill SINBERIN [BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018] 104

https://arxiv.org/abs/1810.04805

BERT Pre-training Objective (2): Sentence
Ordering

= Learn relationships between sentences, predict whether Sentence B is actual
sentence that proceeds Sentence A, or a random sentence

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.

Label = IsNextSentence Label = NotNextSentence

. %8 .

§ Jous Horans 105

[BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

BERT: Input Representation

= Use 30,000 WordPiece vocabulary on input.

= Each token is sum of three embeddings
o Addition to transformer encoder: sentence embedding

Input [CLS] ’ my dog is | cute ’ [SEP] he | likes H play ’ ##ing | [SEP]

Token

Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe Elikes Eplay EMing E[SEP]
L L L] L] L] L] L L L] L] L]

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
-+ =+ + -+ -+ -+ -+ -+ + + =+

Position

Embeddings Eo E1 E2 E3 E4 ES E6 E7 E8 E9 E10

!

&3 JOHNS HOPKINS
’ NG SCHO(

.

4 \
Add & Norm

Feed
Forward

Nx | —(CAdd & Norm)

.

Multi-Head
Attention

]

L

J

Positional
Encoding

[BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

&

Input
Embedding

T

Inputs

106

https://arxiv.org/abs/1810.04805

Training

= Trains model on unlabeled data over different pre-training tasks (self-supervised learning)
= Data: Wikipedia (2.5B words) + BookCorpus (0.8B words)

* Training Time: 1M steps (~40 epochs)

= Optimizer: AdamW, 1le-4 learning rate, linear decay

= BERT-Base: 12-layer, 768-hidden, 12-head, sequence length of 512

= BERT-Large: 24-layer, 1024-hidden, 16-head, sequence length of 512

* Trained on 4x4 and 8x8 TPUs for 4 days (cost today using cloud TPU: $1.3K and $5K)

=X . .
aw JOHNS HOPKINS
=1y J HOPK 107

[BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

Fine-tu ning BERT “Pretrain once, finetune many times.”

o Idea: Make pre-trained model usable in downstream tasks
o Initialized with pre-trained model parameters
o Fine-tune model parameters using labeled data from downstream tasks

ﬁp Mask LM Mai LM \ ﬁ MAD Start/End Spam
& * a0

O BPBMmE &
|| >
| -
BERT s =« s = u u & afle o wfa]s . > BERT
[fem || & | [&][Esen][&] - |E | [Gea)l & | [[Een][&] |E |
=~ . N LN —— = B D
@ Tok1 | ... o [SEP] fcLs) [SEP]
Masked Sentence A Masked Sentence B Question Paragraph
2 &
\\ Unlabeled Sentence A and B Pair / \\\ Question Answer Pair J
Pre-training Fine-Tuning
Jonsﬁp‘lfi‘\"m 108

[BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

An Example Result: SWAG

Human Performance (88.00%)

Leaderboard Running Best

€ Submissions

BERT (Bidirectional Encoder Representations from Transfo...

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
10/11/2018

OpenAl Transformer Language Model

Original work by Alec Radford, Karthik Narasimhan, Tim Salimans, ...

10/11/2018

ESIM with ELMo
Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin
08/30/2018

ESIM with Glove
Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin
08/29/2018

86.28%

77.97%

59.06%

52.45%

A girl is going across a set of monkey bars. She

(1) jumps up across the monkey bars.
(ii) struggles onto the bars to grab her head.

(iii) gets to the end and stands on a wooden plank.

(iv) jumps up and does a back flip.

® Run each Premise + Ending
through BERT.

e Produce logit for each pairon
token o ([CLS])

[BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

Effect of Model Size

Effect of Model Size

= MNLI (400k) == MRPC (3.6 k)
88

86

84

82

Dev Accuracy

80

78
50 100 150 200 250 300

" Blg mOdeIS help a IOt Transformer Params (Millions)

= Going from 110M -> 340M params helps even on datasets with 3,600 labeled
examples

= Improvements have not plateaued!

I,u J()HI\\ H()I’I\I\IS 110
[BERT: Pre-training of Deep Bidirectional Transformers for Lanquage Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

Impact of BERT

= |n order to have state-of-the-art performance on different tasks, there is no need
for coming up with a novel model architecture

o End of task-specific model architecture engineering

= An early sign that larger scales and self-supervised learning (language modeling)
are the key for future performance improvements

=X . -
W JOHNS le {\[ws 111

2]
N’

Why did no one think of this before?

= Why wasn't contextual pre-training popular before 2018 with ELMo?

= Good results on pre-training is >1,000x to 100,000 more expensive
than supervised training.

= : ;
=3 |OHNS HOPKINS
et o 112

What Happened After BERT?

= ROBERTa (Liu et al., 2019)
o Exact same architecture as BERT
o Drops the next sentence prediction loss!
o Trained on 10x data (the original BERT was actually under-trained)
o Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQUAD)

Sw JOHNS Hol
‘II" v NG SCHO(
EN N

SQuAD
Model data bsz steps (v1.1/2.0) MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT . arcE
with BOOKS + WIKI 13GB 256 IM 90.9/81.8 86.6 93.7

113

What Happened After BERT?

= RoBERTa (Liu et al., 2019)
o Exact same architecture as BERT
Drops the next sentence prediction loss!

O
o Trained on 10x data (the original BERT was actually under-trained)
o Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQUAD)

= ALBERT (Lan et al., 2020)

o Increasing model sizes by sharing model parameters across layers
o Less storage, much stronger performance but runs slower..

= ELECTRA (Clark et al., 2020)
o Pre-training objective: replaced-token detection
o Two models generator and discriminator (GAN-like)
o It provides a more efficient training method

Qi'l" JOHNS HOPKINS

the —> [MASK] —>|
chef — chef —>
cooked —> [MASK] —>
the — the —>

meal —> meal —>

sample
t-> the —>f
Generator chef —>
(typically a [-> ate —>
small MLM) the —>
meal —>|

Discriminator
(ELECTRA)

—> original
—> original
—> replaced
> original
—> original

114

What Happened After BERT?

Models that handle long contexts
o Longformer, Big Bird, ...

Multilingual BERT
o Trained single model on 104 languages from Wikipedia. (a) global (b) band

BERT extended to different domains
o SciBERT, BioBERT, FinBERT, ClinicalBERT, ...

Making BERT smaller to use
o DistillBERT, TinyBERT, ...

(c) dilated (d) random (e) block local

o - ~

aw JOHNS HOPKINS

QY JOLINS HOP 115
EN NEE N

Text generation using BERT

= Does not support generation or sequence-to-sequence tasks
o Summarization, Translation, Text simplification, etc

BERT has a Mouth, and It Must Speak: Mask-Predict: Parallel Decoding of
BERT as a Markov Random Field Language Model Conditional Masked Language Models
Alex Wang Kyunghyun Cho Marjan Ghazvininejad* Omer Levy* Yinhan Liu* Luke Zettlemoyer
New York University New York University Facebook AI Research

alexwang@nyu.edu Facebook Al Research Seattle, WA
CIFAR Azrieli Global Scholar
kyunghyun.cho@nyu.edu

Exposing the Implicit Energy Networks behind Masked

Language Models via Metropolis--Hastings

Kartik Goyal, Chris Dyer, Taylor Berg-Kirkpatrick src Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen .

t =0 The departure of the French combat completed completed on 20 November .
t =1 The departure of French combat troops was completed on 20 November .
t =2 The withdrawal of French combat troops was completed on November 20th .

Leveraging Pre-trained Checkpoints for Sequence

» Generation Tasks

116
Sascha Rothe, Shashi Narayan, Aliaksei Severyn

Summary Thus Far

BERT and the family

An encoder; Transformer-based networks trained on massive piles of data.

Incredible for learning contextualized embeddings of words

It's very useful to pre-train a Iarie unsupervised/self-supervised LM then
fine-tune on your particular task (replace the top layer, so that it can work)

However, they were not designed to generate text.

= o -

aw JOHNS HOPKINS

QY JOLINS HOP 117
EN NEE N

1 JOHNS Hc

)PKINS

Decoder-only Family of Transformers

I 22271 Decoders

118

GPT

Generative Pre-trained Transformer

GPT-2: A Big Language Model (2019)

Language Models are Unsupervised Multitask Learners

Alec Radford *! Jeffrey Wu *! Rewon Child' David Luan' Dario Amodei ! Ilya Sutskever ™!

GPT: An Auto-Regressive LM (2018)

Improving Language Understanding
by Generative Pre-Training

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever
OpenAl OpenAl OpenAl OpenAl
alecQopenai.com karthiknQopenai.com tim@openai.com ilyasu@openai.com

23

GPT-2

= GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences
from scratch or from a starting sequence

= As it processes each subword, it masks the “future” words and conditions on and
attends to the previous words

output token

Token probabilities (logits)
Embeddings
0.19850038 aardvark
0.7089803 aarhus
Decoder #12, Position #1 0.46333563 aaron Pick an output
output vector
token based on
— X = its probability
(sample)
The
-0.51006055 |zyzzyva
p |
DECODER J
‘ ‘ DECODER }
<s>
1 2 1024
—, JOHNS HOPKINS 120
PR Image by http://jalammar.github.io/illustrated-gpt2/

http://jalammar.github.io/illustrated-gpt2/

GPT2: Model Sizes

Play with it here: https://huggingface.co/gpt2

GPT-2

LARGE

G PT‘ 2 Ce C DECODER 9
GPT_ 2 MEDIUM .o 6 (DECODER D)
24 DECODER D 5 DECODER D
SMALL s a(DECODER D) a(DECODER D)
12 DECODER) s (DECODER)| | C DECODER D)
coe 2 DECODER D) 2 DECODER D) 2 DECODER D)
1 (DECODER) 1 (DECODER) C (DECODER)) C(DECODER)J

GPT-2
EXTRA
LARGE

68 C DECODER ﬂ

Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280

117M parameters 345M 762M

JOHNS HOPKINS
e [Image by http://jalammar.github.io/illustrated-gpt2/]

Model Dimensionality: 1600

1542M

121

https://huggingface.co/gpt2
http://jalammar.github.io/illustrated-gpt2/

GPT-2isidentical to GPT-1, but:

* Has Layer normalization in between each sub-block (as we've already seen)
* Vocab extended to 50,257 tokens and context size increased from 512 to 1024

® Data: 8 million docs from the web (Common Crawl), minus Wikipedia

Language Models are Unsupervised Multitask Learners

Alec Radford *!' Jeffrey Wu *! Rewon Child! David Luan! Dario Amodei **! Ilya Sutskever ** !

GPT2: Some Results

Language Models are Unsupervised Multitask Learners

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiText103 1BW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)
SOTA 99.8 56.25 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 834 2941 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). Other language model results are from (Dai et al., 2019).

T -
aw JOHNS HOPKINS
Q Jors Homr 123

Article: Prehistoric man sketched an incredible array of prehistoric beasts on the rough limestone walls of a cave in

modern day France 36,000 years ago.

Now, with the help of cutting-edge technology, those works of art in the Chauvet-Pont-d’ Arc Cave have been

reproduced to create the biggest replica cave in the world.

The manmade cavern named the Caverne du Pont-d’Arc has been built a few miles from the original site in
Vallon-Pont-D’arc in Southern France and contains 1,000 painstakingly-reproduced drawings as well as around 450

bones and other features...

Cavemen and women sketched an incredible array of prehistoric beasts on the rough limestone walls of a cave
36,000 years ago and now a replica has been created (pictured)

GPT-2: The original site in Vallon-Pont-D’arc in South-
ern France is a Unesco World Heritage site and is the
oldest known and the best preserved cave decorated by
man. The replica cave was built a few miles from the orig-
inal site in Vallon-Pont-D’ Arc in Southern France. The
cave contains images of 14 different species of animals
including woolly rhinoceros, mammoths, and big cats.

Reference: Cave mimics famous Caverne du Pont-d’ Arc
in France, the oldest cave decorated by man and the
best preserved. The replica contains all 1,000 paint-
ings which include 425 such as a woolly rhinoceros and
mammoths. Minute details were copied using 3D mod-
elling and anamorphic techniques, often used to shoot
widescreen images. The modern cave also includes replica
paw prints of bears, bones and details preserved in the
original cave.

Impact of GPT2

= Zero-shot learning (no use of task-specific supervision) increasingly become a reality.

NMT: “Translate to french,” <English text>, <French text>.
QA: “Answer the question,” <Document>, <Question>, <Answer>.

SUMM: <Document> “TL; DR:” <Summarization>

I,IVJOHNS H(?l KINS 125

GPT-3: A Very Large Language Model (2020)

More layers & parameters

Bigger dataset

Longer training

Larger embedding/hidden dimension

Larger context window

[Slide credit: Sbhya Chhabria & Michael Tang]

Size Comparisons

e BERT-Base model has 12 transformer blocks, 12 attention heads,
o 110M parameters!

e BERT-Large model has 24 transformer blocks, 16 attention heads,
O 340M parameters!

e GPT-2istrained on 40GB of text data (8M webpages)!

o 1.5Bparameters!

e GPT-3isaneven bigger version of GPT-2, but isn't open-source
o 175B parameters!

Impact of GPT3

Moving away from the fine-tuning paradigm
o Zero/Few-shot learning and in-context learning

Massive LM scale makes high zero/few-shot performance possible

Start of closed source models
o Not too many details about their model
o No released code / model checkpoint

Also revitalized ppen source efforts:
o OPT, LLaMA by Meta, BLOOM by Huggingface, etc.

= JOHNS HOPKINS
&) oo 128

Model Usage

G PT4 davinci-002 $0.0020 / 1K tokens

Model Input Output

gpt-4 $0.03 / 1K tokens $0.06 / 1K tokens
= Transformer-based

o Therestis mystery! ©

o If we're going based on costs, GPT4 is ~15-30 times costlier than GPT3. That
should give you an idea how its likely size!

= Note, these language models involve more than just pre-training.
o Pre-training provides the foundation based on which we build the model.
o We will discuss the later stages (post hoc alignment) in a 2-3 weeks.

By JOHNS HOPKINS . - 129
< G SCHO https://openai.com/pricing

https://openai.com/pricing

Accessing API Models

import openai
openai.api_key = ("sk- ")
my prompt = '''The sun is [MASK].

Replace [MASK] with the most probable 5 words to replace, and give me their probabilities.'''

response = openai.Completion.create(
engine="text-davinci-002",
prompt=my_prompt,
temperature=0,
max_tokens=100,

print(response['choices'][@]["'text'])

&4 JOHNS HOPKINS
‘II" : G SCHOC(

E E [

Other Available [Decoder] LMs

EleutherAl: GPT-Neo (6.7B), GPT-] (6B), GPT-NeoX (20B)
https://huggingface.co/EleutherAI

https://6b.eleuther.ai/

LLaMA, 65B: https://github.com/facebookresearch/llama

Mistral and Mixtral:
https://huggingface.co/mistralai/Mistral-7B-Instruct-ve.2

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-vo.1

I,IVJOHNS H(?l KINS 131

https://6b.eleuther.ai/
https://6b.eleuther.ai/
https://github.com/facebookresearch/llama
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Training Transformer LMs:

Empirical Considerations

Pre-training Transformer LMs

= You have learned about the basics of pre-training Transformer language models.

= There is so much empirical knowledge/experiences that goes into training these
models.

= Various empirical issues about:
o Preparation/pre-processing data
o Efficient training of models

O ...

= : ;
W JOHNS HOPKINS
=t o 133

C4: The Data

= C4: Colossal Clean Crawled Corpus Tiaks gt i
o Web-extracted text
o English language only *x C4 745GB
o 750GB C4, unfiltered 6.1TB

) JOHNS HOPKINS Play with the data: https://c4-search.apps.allenai.org/ 134

https://c4-search.apps.allenai.org/

C4: The Data

Remove any:
 References to Javascript

« “Lorem ipsum” text — placeholder text commonly used to

demonstrate the visual form of a document

The lemon, Citrus Limon (I.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for
culinary and non-culinary purposes
throughout the world, primarily for its juice,
which has both culinary and cleaning uses.
The juice of the lemon is about 5% to 6%
citric acid, with a ph of around 2.2, giving it
a sour taste.

The origin of the | n, though

Retain:

» Sentences with terminal
punctuation marks
* Pages with at least 5 sentences,

sentences with at least 3 words Y,

E

Organic dried lemons from our farm in
California.

Lemons are harvested and sun-dried for
maximum flavor.

Good in soups and on popcorn.

Slide adapted from Colin Raffel

135

Pre-training Data: Experiment

= Takeaway:
o Clean and compact data is better than large, but noisy data.
o Pre-training on in-domain data helps.

Data set Size GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* C4 745GB 83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB 81.46 19.14 78.78 68.04 26.55 39.34 27.21

!rﬁ JOHNS HOPKINS

136

Pre-training Data Duplicates

= There is a non-negligible number of
duplicates in any pre-training data.

% train examples with % valid with

dupintrain dupinvalid dup in train

C4 3.04% 1.59% 4.60%
RealNews 13.63% 1.25% 14.35%
LMI1B 4.86% 0.07% 4.92%
Wiki40B 0.39% 0.26% 0.72%

Dataset

Example

Near-Duplicate Example

Wiki-40B

\n_START_ARTICLE \nHum Award for Most Impact-
ful Character \n_START_SECTION_\nWinners and nomi-
nees\n_START_PARAGRAPH_\nln the list below, winners are
listed first in the colored row, followed by the other nominees.

[...]

\n_START _ARTICLE_\nHum Award for Best Actor in a
Negative Role \n_START_SECTION_\nWinners and nomi-
nees\n_START_PARAGRAPH_\nIn the list below, winners are
listed first in the colored row, followed by the other nominees. [...]

LMI1B

I left for California in 1979 and tracked Cleveland ’s changes on
trips back to visit my sisters .

I left for California in 1979 , and tracked Cleveland ’s changes on
trips back to visit my sisters .

C4

Affordable and convenient holiday flights take off from your
departure country, "Canada". From May 2019 to October 2019,
Condor flights to your dream destination will be roughly 6 a
week! Book your Halifax (YHZ) - Basel (BSL) flight now, and
look forward to your "Switzerland" destination!

Affordable and convenient holiday flights take off from your depar-
ture country, "USA". From April 2019 to October 2019, Condor
flights to your dream destination will be roughly 7 a week! Book
your Maui Kahului (OGG) - Dubrovnik (DBV) flight now, and look
forward to your "Croatia" destination!

!

ENGINEERIN(

B3 JOHNS HOPKINS
’ NG SCHO(

Deduplicating Training Data Makes Language Models Better, 2020

137

Deduplicating Data Improves LMs

= Models: GPT-2-like (1.5B param) models

= On there datasets:
o C4 : the original training data
o C4-NearDup: C4 excluding exact duplicates
o C4-ExactSubs: C4 excluding

near-duplicates o C4 Original Training data
o - = Original
p + C4 Duplicates = mam NearDu
© I P
Except when evaluated on > — s ExactSubstr
duplicate evaluation data! S CaUnique e
. J . ® -
= LLIVI 1 B

(o : A I
Training on deduplicated data H Wiki40B S
I—

always leads to lower PPL!
-

o

5 10 15 20 25 30 35
Perplexity
Deduplicating Training Data Makes Language Models Better, 2020 138

J

JOHNS HOPKINS
v WHITIN 01

HITING SCHO!
of ENGINEERING

LLaMA’s Data Pipeline

Starts with the massive crawled data by CommonCrawl.

The WET format that contains textual information.

WARC is raw, WAT is metadata, WET is text+some metadata.

I,u J()HN\ H()l’l\l\H

@ Deduplication

CommonCrawl (CC) Deduplication Language ‘ LM Filtering
"= Massive Web - . 83 Language - Train LM on
= — (= —> > §i.8
4*‘ Crawl = WRRL ™ e sharding Identification 57 target lang (Wiki)
}\¥> _ L WAT § Paragraph Language § Paragraph
= Normalization Scoring Perplexity w/ LM
. WET C% Paragraph | ||| | ATA Discard or [Segment Perplexity
= \A Hashing | ||| | M Keep Decision - distribution

Discard or
Keep Decision

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWYOFIOtYC dYLs76r5g

139

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

LLaMA’s Data Pipeline

Shard WET content into shards of 5GB each (one CC snapshot can have 30TB).
Then you normalize paragraphs (lowercasing, numbers as placeholders, etc),
compute per-paragraph hashes and then duplicate them.

I,u J()HI\\ H()l’l\l\H

e Deduplication

CommonCrawl (CC) Deduplication Language LM Filtering
"= Massive Web - . (X] Language - Train LM on
= — (= —» > §i.8
*’«‘ Crawl = WARC _b = ‘ = SIRIEig Identification 57 target lang (Wiki)
* v & v
,g L WAT § Paragraph Language § Paragraph
\ = Normalization Scorin Perplexity w/ LM
\ g
\\\\ = WET c% Paragraph | ||| | ATA Discard or Segment Perplexity
= hm Hashing | | || | M Keep Decision distribution
""""" Discard or

Keep Decision

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWYOFIOtYC dYLs76r5g

140

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

LLaMA’s Data Pipeline

Perform language identification and decide whether to keep or discard languages.
The order of when you do this in the pipeline can impact the language discrimination quality.

LM Filtering

I,u J()HN\ H()l’l\l\H

@ Deduplication

CommonCrawl (CC) Deduplication Language ‘
"= Massive Web - . 83 Language - Train LM on
= — (= —> > sit
4*‘ Crawl = WRRL ™ e sharding Identification 57 target lang (Wiki)
}\¥ . WAT § Paragraph Language § Paragraph
= Normalization Scoring Perplexity w/ LM
. WET C% Paragraph | ||| | ATA Discard or [Segment Perplexity
= \A Hashing | ||| | M Keep Decision - distribution
""""" Discard or

Keep Decision

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWYOFIOtYC dYLs76r5g

141

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

Il aMA’e Daka Dinalina
Do further quality filtering: Train a simple LM (n-gram) on target languages using Wikipedia,
then compute per-paragraph perplexity on the rest of the data:
« Very high PPL: Very different than Wiki and likely low-quality = Drop
« Very low PPL: Very similar or near duplicates to Wiki - Drop

CommonCrawl (CC) Deduplication Language LM Filtering
"= Massive Web _ b | = . \ £3 Language § Q];. Train LM on
* Crawl = WARC | e Sharding) Identification 1 57 target lang (Wiki)
f ! { il
A\ v
I\ — ‘ L WAT § Paragraph Language § Paragraph
\‘, — 7| = Normalization Scoring Perplexity w/ LM
[il !
i WET | :% Paragraph | | || | ATTA Discard or ‘ Segment Perplexity
= \A& Hashing | ||| | M Keep Decision | | | distribution
[i
Dedunlicati [N R Ny Discard or
eduptication ‘ f\//‘ Keep Decision

WJOHMHO”\M CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data, 2019 142

=

Architectural choices

|

143

Architectures: Different Choices

Prefix LM

Z
==

Z
@
| = Z

=
—Z

@V J‘*’E‘Tiﬁﬁhf}“ Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 144

Architectures: Different Attention Masks

= Fully visible mask allows the self attention mechanism to attend to the full input.
= A causal mask doesn’t allow output elements to look into the future.
= Causal mask with prefix allows to fully-visible masking on a portion of input.

Fully-visible Causal Causal with prefix

| aESee
L EEan

<— Input Input —

DE]D Knopsgerodel el
... 00000 CO000)
TN 00000 10

lIlI 00000 (0000

Prefix LM

J”W?Ef?f?fms Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 145

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65

oy JOHNS HOPKINS
‘I'!' W TING SCHOC

ENGINEERIN

Exploring the limits of transfer leatningwit te4t-to-text transfer transformers, 2020 146

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65

[
Input: Thank you for <X> me to your party
<Y>. Target: <X> inviting <Y> last week.

—, JOHNS HOPKINS
’ v TING SCHOC

ENGINEF

Exploring the limits of transfer leatningwit te4t-to-text transfer transformers, 2020 147

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
/
Number of = 1 Y2
parameters 3
3
)
()

I
. NS
500
D=
o) >d
o IR
=

—, JOHNS HOPKINS
’ WHITING SCHOC

ENGINEERIN

Exploring the limits of transfer leatningwit te4t-to-text transfer transformers, 2020 148

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65

Number of FLOPS

oy JOHNS HOPKINS
‘I'!' W TING SCHOC

ENGINEERIN

Exploring the limits of transfer leatningwit te4t-to-text transfer transformers, 2020 149

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46

oy JOHNS HOPKINS
‘I'!' W TING SCHOC

ENGINEERIN

Exploring the limits of transfer leatningwit te4t-to-text transfer transformers, 2020 150

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46

Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95

Decoder
<
i

Encoder
X

r”J”HM HOPKINS Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 151

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising 2 M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86

Language model

oy JOHNS HOPKINS
‘I'!' W TING SCHOC

ENGINEERIN

: o X, X, X %/ : ¢
Exploring the limits of transfer learning With fext-lo-tekt transfer transformers, 2020 152

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising 2 M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Language model is decoder-only Language model
X, Y,

@Q

=) R %y B
r”J”HM HQI\{\N% Exploring the limits of transfer learnlng With f’exﬁo-t)é%(t transfer transformers, 2020 153

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46

Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P /M 74.70 17.93 61.14 55.02 25.09 35.28 25.86

Language model

2 x3 y1 y2

X

LM looks at both input and target, while
encoder only looks at input sequence and
decoder looks at output sequence.

—, JOHNS HOPKINS
’ v TING SCHOC

ENGINEF

: o X, X, X %’ : ¢
Exploring the limits of transfer learning With fext-lo-tekt transfer transformers, 2020 154

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising F M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39

Prefix LM

2 X3 y1 y2 s

N\

===l

- B

Exploring the limits of transfer leafnindfavitPf4ex¥to-téxt transfer transformers, 2020 155

X

L
L

I,u J()HI\\ H()I’I\IVS

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46

Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798 27.39

= Takeaways:
1. Halving the number of layers in encoder and decoder hurts the performance.

’ JOHM HQ"}T‘“ Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 156

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising F M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39

= Takeaways:

1. Halving the number of layers in encoder and decoder hurts the performance.
2. Performance of Enc-Dec with shared params is almost on-par with prefix LM.

J”W?Ef?f?fms Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 157

=

Pre-training objectives

|

158

On Pre-training Objectives

= So far, the dominant objective we have seen is “next-token” prediction.

= |n reality any “marginal” observations about language can be a source of
supervision.

!rﬁ JOHNS HOPKINS

159

Objectives

Prefix language modeling e IID noise, replace spans
o Input: Thank you for inviting o0 Input: Thank you <X> me to your party <X> week
o Output: me to your party last week O Output: <X> for inviting <Y> last <Z>
BERT-style denoising e IID noise, drop tokens
o Input: Thank you <M> <M> me to your party o Input: Thank you me to your party week .
apple week

L O Output: for inviting last
o Output: Thank you for inviting me to your
party last week

Deshuffling

o Input: party me for your to. last fun you
inviting week Thanks.

o Output:

r"J”HM e Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 160

Objectives: Experiments

= All the variants perform similarly

= “Replace corrupted spans” and “Drop corrupted tokens” are more appealing because
target sequences are shorter, speeding up training.

Assuming Enc-Dec architecture.
Evaluated for classification tasks.

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Prefix language modeling 80.69 18.94 77.99 65.27 26.86 39.73 27.49
Deshuflling 73.17 18.59 67.61 58.47 26.11 39.30 25.62
BERT-style (Devlin et al., 2018) 82.96 19.17 80.65 69.85 26.78 40.03 27.41
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07 39.76 27.82

’n:-u' JOHNS HOPKINS

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

161

Grouped Query-Attention

= Used for training LLaMA 2.

= One key-value vector for each group of queries — an interpolation between “multi-

head” attention and “multi-query” attention.
Multi-head Grouped-query Multi-query

Values

- Q0000000 0 0 U '}

e

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

= Improves inference scalability for our larger models

o
“g 2
g
=
1 4 8 16 32 64
GQA groups

Figure 6: Time per sample for GQA-XXL as a function
of the number of GQA groups with input length 2048
and output length 512. Going from 1 (MQA) to 8
groups adds modest inference overhead, with increasing
cost to adding more groups.

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023 163

Optimizers

= Most modern models use "AdamW" optimizer (not vanilla Gradient Descent).

o Adam optimization is a stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order "momentums”.

cost

. . A Movement =
o “"W” because it decouples “weight decay” Negative of Gradient + Momentum
from “learning rate”. (Details out of scope —» Negative of Gradient

for us. See the cited paper.)

«sssp Momentum

—fp Real Movement

\f

> :
= -»> \
Gradient=0

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
JOHNS HOPKINS https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
W7 g scioor [Decoupled Weight Decay Regularization, 2017] 164

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Batching Data

Model: 13B LLaMA on A100 GPU

Previously we talked about the v 1.2k

importance of batching data é

GPUs are faster at Tensor operations and £ 0.8k -

hence, we want to do batch processing >

The lager batch of data, the faster they £ 0.4k

get processed. =

Alas, the speedup is often sub-linear E 0

(e.g., 2x larger batch leads to less than = 0 10 20 30 40
2x speedup). Batch size (# requests)

B JOHNS HOPKINS: ¢¢: -) .)
o "Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023 165

The Memory Usage

= Here is the memory usage of an NVIDIA A100 when serving (i.e., no training)

o Model: 13B LLaMA
o Batch size of 10
KV

o ~65% of your GPU memory is (26GB, 65%) | (>30%)

the model parameters that never change
o ~32% of your memory are KV tensors that

change for each input.

« This KV cache will increase for Others

larger batch sizes.
arger batch sizes NVIDIA A100 40GB

By JOHNS HO
s

<! i f\f“"[\ﬁfﬂcient Memory Management for Large Language Model Serving with PagedAttention, 2023 166

—— LLaMA 7B
2.1 - LLaMA 13B
Convergence 7 2.0 —— LLaMA 33B
o —— LLaMA 65B
o 1.9
[
c 1.8

= In practice, your model’s loss should continue |‘_§
to go down with more training on more data.

0 200 400 600 800 1000 1200 1400
Billion of tokens

= So, the real bottlenecks are:
o (1) compute;
O (2) data. 2.1

= Sometimes training diverges (spikes in the
loss), at which point practitioners usually
restart training from an earlier checkpoint.

Train PPL

0 250 500 750 1000 1250 1500 1750 2000
% j()Hl\'S HOPKINS Processed Tokens (Billions) .
NV 7w schoc 167

Summary

= There is many empirical knowledge that goes into engineering LMs.
= Here we covered a basic topics about data and architecture engineering.

= Various topics are forthcoming: scaling laws, efficient training, etc.

@ JOHNS HOPKINS

168

