
Transformer Language Models
CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2024/

2

Language Models: A History

§ Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]

o Applications: Speech Recognition, Machine Translation

§ Word representation learning [Brown 1992, …]

o Brown, LSA, Word2Vec, Glove …

§ Statistical or shallow neural LMs (late 90’s – mid 00’s) [Bengio+ 2001, …]

§ Pre-training deep neural language models (2017’s onward):
o Many models based on: Self-Attention

3

RNNs, Back to the Cons

§ While RNNs in theory can represent long sequences, they
quickly forget portions of the input.

§ Vanishing/exploding gradients

§ Difficult to parallelize

§ The alternative solution we will see: Transformers!

4

Chapter Plan

1. Self-Attention: how it works
2. Transformer architecture
3. Transformer-based families of Language Models
4. Practical hacks and variants
5. Various objective functions

Chapter goal----

5

Self-Attention

6

Self-Attention

6

𝑥!𝑥"𝑥#𝑥$

𝑏!𝑏"𝑏#𝑏$

𝑥!𝑥"𝑥#𝑥$

𝑏!𝑏"𝑏#𝑏$

Self-Attention Layer

• 𝑏% is obtained based on the
whole input sequence.

• can be parallelly computed.

Idea: replace any thing done by RNN with self-attention.

RNN

[adopted from Hung-yi Lee]“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;
“Attention is All You Need” Vaswani et al. 2017

7

RNN vs Transformer

8

Attention

§ Core idea: build a mechanism to focus (“attend”) on a
particular part of the context.

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

9

Defining Self-Attention

§ Terminology:
o Query: to match others
o Key: to be matched
o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762

10

Defining Self-Attention

§ Terminology:
o Query: to match others
o Key: to be matched
o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

An analogy ….

https://arxiv.org/abs/1706.03762

11

Defining Self-Attention

§ Terminology:
o Query: to match others
o Key: to be matched
o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762

12

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞% = 𝑊&𝑥%

𝑘% = 𝑊'𝑥%

𝑣% = 𝑊(𝑥%

O
O

𝑣$
O
O

𝑘$
O
O

𝑞$

𝑥$
The

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞% = 𝑊&𝑥%

𝑘% = 𝑊'𝑥%

𝑣% = 𝑊(𝑥%

O O O O O

13

O
O

𝑣$
O
O

𝑘$
O
O

𝑞$

𝑥$

O O O O O

The cat sat on

O
O

𝑣#
O
O

𝑘#
O
O

𝑞#

𝑥#

O O O O O

O
O

𝑣"
O
O

𝑘"
O
O

𝑞"

𝑥"

O O O O O

O
O

𝑣!
O
O

𝑘!
O
O

𝑞!

𝑥!

O O O O O

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞% = 𝑊&𝑥%

𝑘% = 𝑊'𝑥%

𝑣% = 𝑊(𝑥%

14

O
O

𝑣$
O
O

𝑘$
O
O

𝑞$

𝑥$

O O O O O

The cat sat on

O
O

𝑣#
O
O

𝑘#
O
O

𝑞#

𝑥#

O O O O O

O
O

𝑣"
O
O

𝑘"
O
O

𝑞"

𝑥"

O O O O O

O
O

𝑣!
O
O

𝑘!
O
O

𝑞!

𝑥!

O O O O O

𝑞: query (to match others)
𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝛼$,$ 𝛼$,# 𝛼$," 𝛼$,!

𝛼$,% =)𝑞$ * 𝑘%
√𝑑

Scaled dot product

15

How much
should “The”
attend to other
positions?

O
O

𝑣$
O
O

𝑘$
O
O

𝑞$

𝑥$

O O O O O

The cat sat on

O
O

𝑣#
O
O

𝑘#
O
O

𝑞#

𝑥#

O O O O O

O
O

𝑣"
O
O

𝑘"
O
O

𝑞"

𝑥"

O O O O O

O
O

𝑣!
O
O

𝑘!
O
O

𝑞!

𝑥!

O O O O O

𝛼$,$ 𝛼$,# 𝛼$," 𝛼$,!

How much
should “The”
attend to other
positions?

Softmax

-𝛼$,$ -𝛼$,# -𝛼$," -𝛼$,!

𝜎 𝑧 ! =
exp 𝑧!
∑" exp 𝑧"

16

O
O

𝑣$
O
O

𝑘$
O
O

𝑞$

𝑥$

O O O O O

The cat sat on

O
O

𝑣#
O
O

𝑘#
O
O

𝑞#

𝑥#

O O O O O

O
O

𝑣"
O
O

𝑘"
O
O

𝑞"

𝑥"

O O O O O

O
O

𝑣!
O
O

𝑘!
O
O

𝑞!

𝑥!

O O O O O

𝛼$,$ 𝛼$,# 𝛼$," 𝛼$,!

Representation of “The” given the attention weights

Softmax

-𝛼$,$ -𝛼$,# -𝛼$," -𝛼$,!

O O 𝑏! =#
"

$𝛼!,"𝑣"

17

Self-Attention

● Can write it in matrix form:

● Given input 𝐱:

𝑄 = 𝐖&𝐱
𝐾 = 𝐖'𝐱
𝑉 = 𝐖(𝐱

Attention(𝐱) = softmax
𝑄𝐾*

√𝑑
𝑉

18

19

Self-Attention: Back to Big Picture

§ Attention is a powerful mechanism to create context-aware representations
§ A way to focus on select parts of the input

§ Better at maintaining long-distance dependencies in the context.

19

𝑥!𝑥"𝑥#𝑥$

𝑏$ 𝑏# 𝑏" 𝑏!

Self-Attention Layer

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

21

Properties of Self-Attention

§ n = sequence length, d = hidden dimension
§ Quadratic complexity, but:

o O(1) sequential operations (not linear like in RNN)

§ Efficient implementations

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

24

Multi-Headed Self-Attention

§ Multiple parallel attention layers is quite common.
o Each attention layer has its own parameters.
o Concatenate the results and run them through a linear projection.

24

Self-Attention LayerSelf-Attention Layer

𝑥!𝑥"𝑥#𝑥$

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

25

Combine with FFN

Multi-Headed
Self-Attention Layer

O O O O O O

Feed Forward Network

O O O O O O

• Add a feed-forward network on top it to add more expressivity.
• This allows the model to apply another transformation to the contextual

representations (or “post-process” them).
• Usually, the dimensionality of

the hidden feedforward layer
is 2-8 times larger than
the input dimension.

Feedforward Net: Refresher

A fully-connected network
of nodes and weights.

FFN 𝐱 = 𝑓 𝑐𝑊$ + 𝑏$ 𝑊# + 𝑏#

26

How Do We Prevent Vanishing Gradients?

§ Residual connections let the model “skip” layers
o These connections are particularly useful for

training deep networks

§ Use layer normalization to stabilize the network
and allow for proper gradient flow

26
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

27

Putting it Together: Self-Attention Block

Given input 𝐱:

out = 𝐿𝑁()𝒄 + 𝒄#)
)𝒄 = FFN 𝒄# = 𝑓 𝒄#𝑊$ + 𝑏$ 𝑊% + 𝑏%

𝒄# = 𝐿𝑁(𝒄 + 𝒙)
𝒄 = MultiHeadedAttention(𝒙;𝐖&,𝐖',𝐖()

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

28

Summary: Self-Attention Block

§ Self-Attention: A critical building block of modern language models.
o The idea is to compose meanings of words weighted according some similarity

notion.

§ Next: We will combine self-attention blocks to build various architectures known as
Transformer.

29

Transformer

30

How Do We Make it Deep?

§ Stack more layers!

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

31

From Representations to Prediction

§ To perform prediction, add a classification head
on top of the final layer of the transformer.

§ This can be per token (Language modeling)
§ Or can be for the entire sequence (only one token)

books

32

One last wrinkle though …

O
O

𝑣$
O
O

𝑘$
O
O

𝑞$

𝑥$

O O O O O

The cat sat on

O
O

𝑣#
O
O

𝑘#
O
O

𝑞#

𝑥#

O O O O O

O
O

𝑣"
O
O

𝑘"
O
O

𝑞"

𝑥"

O O O O O

O
O

𝑣!
O
O

𝑘!
O
O

𝑞!

𝑥!

O O O O O

𝛼$,$ 𝛼$,# 𝛼$," 𝛼$,!

Softmax

-𝛼$,$ -𝛼$,# -𝛼$," -𝛼$,!

O O 𝑏! =#
"

$𝛼!,"𝑣" One issue: the model doesn’t know
word positions/ordering.

O
O

𝑣$
O
O

𝑘$
O
O

𝑞$

𝑥$
O O O O O

O
O

𝑣#
O
O

𝑘#
O
O

𝑞#

𝑥#
O O O O O

O
O

𝑣"
O
O

𝑘"
O
O

𝑞"

𝑥"
O O O O O

O
O

𝑣!
O
O

𝑘!
O
O

𝑞!

𝑥!
O O O O O

𝛼$,$ 𝛼$,# 𝛼$," 𝛼$,!

One issue: the model doesn’t know
word positions/ordering.

Softmax

-𝛼$,$ -𝛼$,# -𝛼$," -𝛼$,!

O O 𝑏! =#
"

$𝛼!,"𝑣"

O O O O O
𝑝!

O O O O O
𝑝"

O O O O O
𝑝#

O O O O O
𝑝$

Allows model to learn
relative positioning𝑝" are positional

embeddings

We will discuss
various choices for
these embedding!

O
O

O
O

O
O

𝑥$
O O O O O

O
O

O
O

O
O

𝑥#
O O O O O

O
O

O
O

O
O

𝑥"
O O O O O

O
O

O
O

O
O

𝑥!
O O O O O

O O O O O
𝑝!

O O O O O
𝑝"

O O O O O
𝑝#

O O O O O
𝑝$

Allows model to learn
relative positioning𝑝" are positional

embeddings

An approach:
Sine/Cosine encoding

36

The Transformer Stack in PyTorch

37Image by http://jalammar.github.io/illustrated-gpt2/

TRANSFORMER

Transformer-based Language Modeling

And continue like
that until we reach
EOS or we get tired.

http://jalammar.github.io/illustrated-gpt2/

38

Training a Transformer Language Model

§ Goal: Train a Transformer for language modeling (i.e., predicting the next word).
§ Approach: Train it so that each position is predictor of the next (right) token.
o We just shift the input to right by one, and use as labels

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =
EOS special token

[Slide credit: Arman Cohan]

39

Training a Transformer Language Model

§ For each position, compute their corresponding distribution over the whole vocab.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

40

Training a Transformer Language Model

§ For each position, compute the loss between the distribution and the gold output label.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

41

Training a Transformer Language Model

§ Sum the position-wise loss values to a obtain a global loss.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

42

Training a Transformer Language Model

§ Using this loss, do Backprop and update the Transformer parameters.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ

Well, this is not quite right 🤡 …
what is the problem with this?

43

Training a Transformer Language Model
§ The model would solve the task by copying the next token to output (data leakage).

o Does not learn anything useful

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ

44

Training a Transformer Language Model
§ We need to prevent information leakage from future tokens! How?

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ

45

Attention mask

Slide credit: Arman Cohan

What we haveWhat we want

46

Attention mask

Slide credit: Arman Cohan

Attention mask

47

x

Attention mask

Slide credit: Arman Cohan

Attention mask

Note matrix multiplication is quite fast in GPUs.

48

x =

Attention mask

Slide credit: Arman Cohan

49

x

softmax

Attention mask
The effect is more than just pruning out some of the

wirings in self-attention block.

Slide credit: Arman Cohan

50

Training a Transformer Language Model
§ We need to prevent information leakage from future tokens! How?

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ + masking

53

§ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sam
ple sat

54

§ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat

sam
ple on

The probabilities get
revised upon adding a

new token to the input.

55

§ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on

sam
ple the

The probabilities get
revised upon adding a

new token to the input.

56

§ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on the

sam
ple mat

The probabilities get
revised upon adding a

new token to the input.

57

§ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on the mat

sam
ple </s>

The probabilities get
revised upon adding a

new token to the input.

58

An important efficiency
consideration about decoding!

59

Making decoding more efficient

59

K V

q

x

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

[Slide credit: Arman Cohan]

60

Making decoding more efficient

60

K

q

x

q: the next token

previous context

V

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

[Slide credit: Arman Cohan]

61

Making decoding more efficient

61

q
q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

[Slide credit: Arman Cohan]

62

Making decoding more efficient

62

q
q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

[Slide credit: Arman Cohan]

63

Making decoding more efficient

63

q
q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

[Slide credit: Arman Cohan]

64

Making decoding more efficient

64

q
q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

[Slide credit: Arman Cohan]

65

Making decoding more efficient

65

q
q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

[Slide credit: Arman Cohan]

66

Making decoding more efficient

§ We are computing the Keys and Values many times!
o Let’s reduce redundancy! 😤

66

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

q

[Slide credit: Arman Cohan]

67

Making decoding more efficient

§ We are computing the Keys and Values many times!
o Let’s reduce redundancy! 😤

67

K Cached

q
q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

The cat sat on the

vnew = Wvx[: , : −1]

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

[Slide credit: Arman Cohan]

68

K Cached

q
q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

vnew = Wvx[: , : −1]

§ Question: How much memory does this K, V cache require?

68

The cat sat on the

𝑄 = 𝐖%𝐱
𝐾 = 𝐖&𝐱
𝑉 = 𝐖'𝐱

Attention(𝐱) = softmax
𝑄𝐾(

√𝑑
𝑉

Making decoding more efficient

[Slide credit: Arman Cohan]

70

Summary

§ This is a very generic Transformer!
§ We will implement this in HW5 to build a simple Transformer Language

Model!!

§ Next:
o Architectural variants
o Efficiency issues.
o …

71

Transformer
Architectural Variants

72

Encoder-decoder

• It is possible to have two stacks of
transformer layers

• The encoder is as we’ve seen

• We can also add a decoder layer
that is identical to the encoder but
we give it the ability to also attend
to the input

Fig from: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html 77

73

Encoder-decoder models

§ Encoder = read or encode the input,
§ Decoder = generate or decode the output

Encoder

<s>The cat is cute

Decoder

Le chat

chat est

mignonest

Le

74

Transformer [Vaswani et al. 2017]

§ An encoder-decoder architecture built with attention modules.

74

75

Transformer [Vaswani et al. 2017]

§ Computation of encoder attends to both sides.

75
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

76

Transformer [Vaswani et al. 2017]

§ At any step of decoder, it attends to previous
computation of encoder

76
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

77

Transformer [Vaswani et al. 2017]

§ At any step of decoder, it attends to previous
computation of encoder as well as decoder’s
own generations

77
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

78

Transformer [Vaswani et al. 2017]

§ At any step of decoder, it attends to previous
computation of encoder as well as decoder’s
own generations

§ At any step of decoder, re-use previous
computation of encoder.

§ Computation of decoder is linear,
instead of quadratic.

78
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

80

Recap: Transformer

§ Yaaay we know Transformers now! 🥳
§ An encoder-decoder architecture
§ 3 forms of attention

80
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

After Transformer …

We will visit a few of
these branches …

Variants of positional
embeddings

Architectural choices

Multi-modal models

But there is a lot
that we do not

cover …

Yang et al. Harnessing the Power of
LLMs in Practice: A Survey on
ChatGPT and Beyond, 2023

85

Impact of Transformers
§ A building block for a variety of LMs

85

Decoders

Encoders

Encoder-
Decoders

v Examples: GPT-2, GPT-3, LaMDA

v Other name: causal or auto-regressive language model

v Nice to generate from; can’t condition on future words

v Examples: BERT, RoBERTa, SciBERT.

v Captures bidirectional context. Wait, how do we pretrain them?

v Examples: Transformer, T5, Meena

v What’s the best way to pretrain them?

86

Transformer
Language Model Families

87

Encoder-Decoder Family of
Transformers

Encoder-
Decoders

88

Encoder-decoder Models

• The original transformer architecture was
encoder decoder

• Encoder-decoder models are flexible in both
generation and classification tasks

• How can we pretrain an encoder-decoder
model like BERT to be a good general
language pretrained LM?

89

T5: Text-To-Text Transfer Transformer

§ An encoder-decoder architecture
§ Pre-training objective:

corrupt and reconstruct objective

§ The original paper is an excellent set of in-depth analysis of various parameters of
model design. We discuss some of these results in other places.

https://huggingface.co/t5-base
Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

90

BART (Lewis et al. 2020)

§ Similar Architecture as T5.
o Corrupt the input -> ask the model to reconstruct the original input
o Outperformed existing methods on generative tasks (question answering, and

summarization).

BART

Result:

The code might be outdated, but the logic is the same …

92

Encoder-only Family of Transformers

Bidirectional Encoder Representations from Transformers

93

BERT

Bidirectional Encoder Representations from Transformers

BERT

94

Like Bidirectional LSTMs (ELMo), let’s look in both directions

Bidirectional Encoder Representations from Transformers

BERT

95

Let’s only use Transformer Encoders, no Decoders

Bidirectional Encoder Representations from Transformers

BERT

96

It’s a language model that builds rich representations
via self-supervised learning (pre-training)

97

BERT: Architecture
§ Stacks of Transformer encoders

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

98

BERT: Architecture

§ Model output dimension: 512

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

<CLS>
x1

brown dog
x3 x4

Encoder #1

Encoder #2

Encoder #12
BERT is trained to uncover masked tokens.

BERT

The

x2 38

brown 0.92
lazy 0.05

playful 0.03

100

Probing BERT Masked LM

§ Masking words forces BERT to use context in both directions to predict the masked
word.

100
https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased

101

Probing BERT Masked LM

§ Masking words forces BERT to use context in both directions to predict the masked
word.

101
https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased

102

BERT: Pre-training Objective (1): Masked
Tokens

§ Randomly mask 15%
of the tokens and train
the model to predict them.

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

103

BERT: Pre-training Objective (1): Masked
Tokens

the man went to the [MASK] to buy a [MASK] of milk

§ Too little masking: Too expensive to train
§ Too much masking: Underdefined

o (not enough info for the model to recover the masked tokens)

Galonstore

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

Later work shows that more principled masking (instead of uniformly random)
could benefit downstream task performance and result in faster training.
PMI Masking (Levine et al., 2021) https://arxiv.org/pdf/2010.01825.pdf
SpanBERT (Joshi et al., 2020) https://arxiv.org/pdf/1907.10529.pdf

https://arxiv.org/abs/1810.04805

104

BERT: Pre-training Objective (2): Sentence
Ordering

§ Predict sentence ordering

§ 50% correct ordering, and
50% random incorrect ones

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

105

BERT Pre-training Objective (2): Sentence
Ordering

§ Learn relationships between sentences, predict whether Sentence B is actual
sentence that proceeds Sentence A, or a random sentence

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

106

BERT: Input Representation

§ Use 30,000 WordPiece vocabulary on input.
§ Each token is sum of three embeddings

o Addition to transformer encoder: sentence embedding

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

107

Training

§ Trains model on unlabeled data over different pre-training tasks (self-supervised learning)

§ Data: Wikipedia (2.5B words) + BookCorpus (0.8B words)

§ Training Time: 1M steps (~40 epochs)

§ Optimizer: AdamW, 1e-4 learning rate, linear decay

§ BERT-Base: 12-layer, 768-hidden, 12-head, sequence length of 512

§ BERT-Large: 24-layer, 1024-hidden, 16-head, sequence length of 512

§ Trained on 4x4 and 8x8 TPUs for 4 days (cost today using cloud TPU: $1.3K and $5K)

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

108

Fine-tuning BERT
o Idea: Make pre-trained model usable in downstream tasks
o Initialized with pre-trained model parameters
o Fine-tune model parameters using labeled data from downstream tasks

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

“Pretrain once, finetune many times.”

https://arxiv.org/abs/1810.04805

An Example Result: SWAG

● Run each Premise + Ending
through BERT.

● Produce logit for each pair on
token 0 ([CLS])

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

110

Effect of Model Size

§ Big models help a lot
§ Going from 110M -> 340M params helps even on datasets with 3,600 labeled

examples
§ Improvements have not plateaued!

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

111

Impact of BERT

§ In order to have state-of-the-art performance on different tasks, there is no need
for coming up with a novel model architecture
o End of task-specific model architecture engineering

§ An early sign that larger scales and self-supervised learning (language modeling)
are the key for future performance improvements

112

Why did no one think of this before?

§ Why wasn’t contextual pre-training popular before 2018 with ELMo?

§ Good results on pre-training is >1,000x to 100,000 more expensive
than supervised training.

113

What Happened After BERT?
§ RoBERTa (Liu et al., 2019)

o Exact same architecture as BERT
o Drops the next sentence prediction loss!
o Trained on 10x data (the original BERT was actually under-trained)
o Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)

114

What Happened After BERT?

§ RoBERTa (Liu et al., 2019)
o Exact same architecture as BERT
o Drops the next sentence prediction loss!
o Trained on 10x data (the original BERT was actually under-trained)
o Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)

§ ALBERT (Lan et al., 2020)
o Increasing model sizes by sharing model parameters across layers
o Less storage, much stronger performance but runs slower..

§ ELECTRA (Clark et al., 2020)
o Pre-training objective: replaced-token detection
o Two models generator and discriminator (GAN-like)
o It provides a more efficient training method

115

What Happened After BERT?

§ Models that handle long contexts
o Longformer, Big Bird, …

§ Multilingual BERT
o Trained single model on 104 languages from Wikipedia.

§ BERT extended to different domains
o SciBERT, BioBERT, FinBERT, ClinicalBERT, …

§ Making BERT smaller to use
o DistillBERT, TinyBERT, …

116

Text generation using BERT

§ Does not support generation or sequence-to-sequence tasks
o Summarization, Translation, Text simplification, etc

117

Summary Thus Far

§ BERT and the family

§ An encoder; Transformer-based networks trained on massive piles of data.

§ Incredible for learning contextualized embeddings of words

§ It’s very useful to pre-train a large unsupervised/self-supervised LM then
fine-tune on your particular task (replace the top layer, so that it can work)

§ However, they were not designed to generate text.

118

Decoder-only Family of Transformers

Decoders

23

GPT
Generative Pre-trained Transformer

GPT: An Auto-Regressive LM (2018)GPT-2: A Big Language Model (2019)

120

GPT-2
§ GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences

from scratch or from a starting sequence
§ As it processes each subword, it masks the “future” words and conditions on and

attends to the previous words

Image by http://jalammar.github.io/illustrated-gpt2/

http://jalammar.github.io/illustrated-gpt2/

121

GPT2: Model Sizes

1542M762M345M117M parameters

Play with it here: https://huggingface.co/gpt2

[Image by http://jalammar.github.io/illustrated-gpt2/]

https://huggingface.co/gpt2
http://jalammar.github.io/illustrated-gpt2/

GPT-2 is identical to GPT-1, but:

• Has Layer normalization in between each sub-block (as we’ve already seen)

• Vocab extended to 50,257 tokens and context size increased from 512 to 1024

• Data: 8 million docs from the web (Common Crawl), minus Wikipedia

123

GPT2: Some Results

125

Impact of GPT2

§ Zero-shot learning (no use of task-specific supervision) increasingly become a reality.

GPT-3: A Very Large Language Model (2020)

[Slide credit: Sbhya Chhabria & Michael Tang]

● More layers & parameters
● Bigger dataset
● Longer training
● Larger embedding/hidden dimension
● Larger context window

Size Comparisons

● BERT-Base model has 12 transformer blocks, 12 attention heads,
○ 110M parameters!

● BERT-Large model has 24 transformer blocks, 16 attention heads,
○ 340M parameters!

● GPT-2 is trained on 40GB of text data (8M webpages)!
○ 1.5B parameters!

● GPT-3 is an even bigger version of GPT-2, but isn’t open-source
○ 175B parameters!

128

Impact of GPT3

§ Moving away from the fine-tuning paradigm
o Zero/Few-shot learning and in-context learning

§ Massive LM scale makes high zero/few-shot performance possible
§ Start of closed source models

o Not too many details about their model
o No released code / model checkpoint

§ Also revitalized ppen source efforts:
o OPT, LLaMA by Meta, BLOOM by Huggingface, etc.

129

GPT4

§ Transformer-based
o The rest is …. mystery! J
o If we’re going based on costs, GPT4 is ~15-30 times costlier than GPT3. That

should give you an idea how its likely size!

§ Note, these language models involve more than just pre-training.
o Pre-training provides the foundation based on which we build the model.
o We will discuss the later stages (post hoc alignment) in a 2-3 weeks.

https://openai.com/pricing

https://openai.com/pricing

130

Accessing API Models

131

Other Available [Decoder] LMs

EleutherAI: GPT-Neo (6.7B), GPT-J (6B), GPT-NeoX (20B)
https://huggingface.co/EleutherAI

https://6b.eleuther.ai/

LLaMA, 65B: https://github.com/facebookresearch/llama

Mistral and Mixtral:
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

https://6b.eleuther.ai/
https://6b.eleuther.ai/
https://github.com/facebookresearch/llama
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

132

Training Transformer LMs:
Empirical Considerations

133

Pre-training Transformer LMs

§ You have learned about the basics of pre-training Transformer language models.
§ There is so much empirical knowledge/experiences that goes into training these

models.
§ Various empirical issues about:

o Preparation/pre-processing data
o Efficient training of models
o …

134

C4: The Data

§ C4: Colossal Clean Crawled Corpus
o Web-extracted text
o English language only
o 750GB

Play with the data: https://c4-search.apps.allenai.org/

https://c4-search.apps.allenai.org/

135

C4: The Data

Slide adapted from Colin Raffel

Remove any:
• References to Javascript
• “Lorem ipsum” text — placeholder text commonly used to

demonstrate the visual form of a document

Retain:
• Sentences with terminal

punctuation marks
• Pages with at least 5 sentences,

sentences with at least 3 words

136

Pre-training Data: Experiment

§ Takeaway:
o Clean and compact data is better than large, but noisy data.
o Pre-training on in-domain data helps.

137

Pre-training Data Duplicates

§ There is a non-negligible number of
duplicates in any pre-training data.

Deduplicating Training Data Makes Language Models Better, 2020

138

Deduplicating Data Improves LMs

§ Models: GPT-2-like (1.5B param) models
§ On there datasets:

o C4 : the original training data
o C4-NearDup: C4 excluding exact duplicates
o C4-ExactSubs: C4 excluding

near-duplicates

Deduplicating Training Data Makes Language Models Better, 2020

Training on deduplicated data
always leads to lower PPL!

Except when evaluated on
duplicate evaluation data!

139

LLaMA’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Starts with the massive crawled data by CommonCrawl.
The WET format that contains textual information.

WARC is raw, WAT is metadata, WET is text+some metadata.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

140

LLaMA’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Shard WET content into shards of 5GB each (one CC snapshot can have 30TB).
Then you normalize paragraphs (lowercasing, numbers as placeholders, etc),

compute per-paragraph hashes and then duplicate them.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

141

LLaMA’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Perform language identification and decide whether to keep or discard languages.
The order of when you do this in the pipeline can impact the language discrimination quality.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

142

LLaMA’s Data Pipeline

CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data, 2019

Do further quality filtering: Train a simple LM (n-gram) on target languages using Wikipedia,
then compute per-paragraph perplexity on the rest of the data:
• Very high PPL: Very different than Wiki and likely low-quality à Drop
• Very low PPL: Very similar or near duplicates to Wiki à Drop

143

Architectural choices

144

Architectures: Different Choices

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

145

Architectures: Different Attention Masks
§ Fully visible mask allows the self attention mechanism to attend to the full input.
§ A causal mask doesn’t allow output elements to look into the future.
§ Causal mask with prefix allows to fully-visible masking on a portion of input.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

146

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

147

Architectural Variants: Experiments

Input: Thank you for <X> me to your party
<Y>. Target: <X> inviting <Y> last week.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

148

Architectural Variants: Experiments

Number of
parameters

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

149

Architectural Variants: Experiments

Number of FLOPS

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

150

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

151

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

152

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

153

Architectural Variants: Experiments

Language model is decoder-only

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

154

Architectural Variants: Experiments

LM looks at both input and target, while
encoder only looks at input sequence and
decoder looks at output sequence.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

155

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

156

Architectural Variants: Experiments

§ Takeaways:
1. Halving the number of layers in encoder and decoder hurts the performance.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

157

Architectural Variants: Experiments

§ Takeaways:
1. Halving the number of layers in encoder and decoder hurts the performance.
2. Performance of Enc-Dec with shared params is almost on-par with prefix LM.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

158

Pre-training objectives

159

On Pre-training Objectives

§ So far, the dominant objective we have seen is “next-token” prediction.
§ In reality any “marginal” observations about language can be a source of

supervision.

160

Objectives
§ Prefix language modeling

o Input: Thank you for inviting
o Output: me to your party last week

§ BERT-style denoising
o Input: Thank you <M> <M> me to your party

apple week
o Output: Thank you for inviting me to your

party last week

§ Deshuffling
o Input: party me for your to. last fun you

inviting week Thanks.
o Output: Thank you for inviting me to your

party last week

● IID noise, replace spans
○ Input: Thank you <X> me to your party <X> week
○ Output: <X> for inviting <Y> last <Z>

● IID noise, drop tokens
○ Input: Thank you me to your party week .
○ Output: for inviting last

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

161

Objectives: Experiments

§ All the variants perform similarly
§ “Replace corrupted spans” and “Drop corrupted tokens” are more appealing because

target sequences are shorter, speeding up training.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Assuming Enc-Dec architecture.
Evaluated for classification tasks.

163

Grouped Query-Attention

§ Used for training LLaMA 2.
§ One key-value vector for each group of queries — an interpolation between “multi-

head” attention and “multi-query” attention.

§ Improves inference scalability for our larger models
GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023

164

Optimizers

§ Most modern models use “AdamW” optimizer (not vanilla Gradient Descent).
o Adam optimization is a stochastic gradient descent method that is based on

adaptive estimation of first-order and second-order “momentums”.

o “W” because it decouples “weight decay”
from “learning rate”. (Details out of scope
for us. See the cited paper.)

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

[Decoupled Weight Decay Regularization, 2017]

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

165

Batching Data

§ Previously we talked about the
importance of batching data

§ GPUs are faster at Tensor operations and
hence, we want to do batch processing

§ The lager batch of data, the faster they
get processed.

§ Alas, the speedup is often sub-linear
(e.g., 2x larger batch leads to less than
2x speedup).

Model: 13B LLaMA on A100 GPU

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

166

The Memory Usage

§ Here is the memory usage of an NVIDIA A100 when serving (i.e., no training)
o Model: 13B LLaMA
o Batch size of 10

§ Notice:
o ~65% of your GPU memory is

the model parameters that never change
o ~32% of your memory are KV tensors that

change for each input.
• This KV cache will increase for

larger batch sizes.

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

167

Convergence

§ In practice, your model’s loss should continue
to go down with more training on more data.

§ So, the real bottlenecks are:
o (1) compute;
o (2) data.

§ Sometimes training diverges (spikes in the
loss), at which point practitioners usually
restart training from an earlier checkpoint.

168

Summary

§ There is many empirical knowledge that goes into engineering LMs.

§ Here we covered a basic topics about data and architecture engineering.

§ Various topics are forthcoming: scaling laws, efficient training, etc.

