
Connecting Language
to the World
CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2024/

2

Connecting Language to the World

§ So far, we have focused on only “language” as our primary focus.
§ But there is there are other modalities in which humans communicate with the world.

3

Connecting LMs to the World: Chapter Plan

1. Connecting vision and language
2. Generative vision-language models
3. Other modalities [speech, audio, …]
4. From language to code
5. From language to action

Chapter goal: Getting comfortable with thinking about extending LLMs to other
modalities of the world and their limits.

4

Connecting
vision and language

5

Computer Vision Abridged History

§ 1960s - First computer vision projects (MIT summer project)

6

Computer Vision Abridged History

§ 1960s - First computer vision projects (MIT summer project)
§ 2000s - Emergence of “tasks” and benchmarking in computer vision

Caltech-101 (2003) Caltech-256 (2007)

ImageNet (2009)
ImageNet (2009)

https://en.wikipedia.org/wiki/List_of_datasets_in_
computer_vision_and_image_processing

PASCAL Visual Object Classes (2005-2012)

https://en.wikipedia.org/wiki/List_of_datasets_in_computer_vision_and_image_processing
https://en.wikipedia.org/wiki/List_of_datasets_in_computer_vision_and_image_processing

7

Computer Vision Abridged History

§ 1960s - First computer vision projects (MIT summer project)
§ 2000s - Emergence of “tasks” and benchmarking in computer vision
§ 2000s - Shallow classifiers and feature engineering (e.g., Viola & Jones algorithm)

8

Computer Vision Abridged History

§ 1960s - First computer vision projects (MIT summer project)
§ 2000s - Emergence of “tasks” and benchmarking in computer vision
§ 2000s - Shallow classifiers and feature engineering
§ 2012 - Deep Learning revolution:

o Success of Convolutional neural nets in ImageNet

ImageNet Classification with Deep
Convolutional Neural Networks, 2012

Deep Residual Learning for
Image Recognition, 2015

9

Computer Vision Abridged History

§ 1960s - First computer vision projects (MIT summer project)
§ 2000s - Emergence of “tasks” and benchmarking in computer vision
§ 2000s - Shallow classifiers and feature engineering
§ 2012 - Deep Learning revolution:

o Success of Convolutional neural nets in ImageNet
o Unification of architectures
o Rise of image generation (VAEs, GANs, etc.)

Kingma et al. Auto-Encoding Variational Bayes, 2013
Goodfellow et al. Generative Adversarial Networks, 2014

10

Computer Vision Abridged History

§ 1960s - First computer vision projects (MIT summer project)
§ 2000s - Emergence of “tasks” and benchmarking in computer vision
§ 2000s - Shallow classifiers and feature engineering
§ 2012 - Deep Learning revolution:

o Success of Convolutional neural nets in ImageNet
o Unification of architectures
o Rise of image generation (VAEs, GANs, etc.)

§ 2020s - Era of Vision Transformer
o Stronger connection to language
o Better generative models
o Further unification of models and tasks

This is where we begin!

11

Let's Consider Images – How to Encode?

12

Vision Transformers

tokenize" the image by
cutting it into patches of
16px², and treating each

patch as a token, e.g.
embedding it into input

space

13

Vision Transformers

14
[An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2020]

Vision Transformers

https://arxiv.org/abs/2010.11929

16

What about paired image-text – How to Encode?

Basilica of St. John Lateran House with Chimeras – Kiev

17

What about paired image-text – How to Encode?

§ The idea is to create a space to
represent both semantics of
language and image.

§ Then, create a model that can align
semantically-equivalent text and
images nearby.

18

Contrastive Language–Image Pre-training (CLIP)

§ Training: simple contrastive loss between image-text pairs
o Learning image representations from web-scale noisy text supervision

19

Contrastive Language–Image Pre-training (CLIP)

§ Given a batch of N (image, text) pairs, predict which of the N × N possible (image,
text) pairings across a batch occurred.

[Learning Transferable Visual Models From Natural Language Supervision, 2021]

https://arxiv.org/abs/2103.00020

20

What can CLIP do?

§ Downstream: zero-shot image classification and image-text retrieval
o Image classification can be reformatted as a retrieval task via considering the

semantics behind label name.

[Learning Transferable Visual Models From Natural Language Supervision, 2021]

https://arxiv.org/abs/2103.00020

21

What can CLIP do?

§ Consider classifying photos of “dogs” vs “cats”—for each image, check if CLIP predicts
text description “a photo of a dog” or “a photo of a cat” is more likely to be paired with it.

[Learning Transferable Visual Models From Natural Language Supervision, 2021]

https://arxiv.org/abs/2103.00020

22

What can CLIP do?

CLIP evaluates associations
between image-text pairs:

§ Image Classification

§ Image Searching

§ …

23

What can CLIP do?

CLIP evaluates associations
between image-text pairs:

§ Image Classification

§ Image Searching

§ …

https://huggingface.co/openai/clip-vit-large-patch14

24

What can CLIP do?

CLIP evaluates associations
between image-text pairs:

§ Image Classification

§ Image Searching

§ …

https://huggingface.co/openai/clip-vit-large-patch14

25

What can CLIP do?

CLIP evaluates associations
between image-text pairs:

§ Image Classification

§ Image Searching

§ …

https://huggingface.co/openai/clip-vit-large-patch14

26

What can't CLIP do?

§ No generation capabilities

§ Prompting / In-Context Learning
o Few-shot captioning

27

What can't CLIP do?

§ No generation capabilities

§ Prompting / In-Context Learning
o Few-shot captioning

§ CLIP is not perfect.

28

What can't CLIP do?

§ No generation capabilities

§ Prompting / In-Context Learning
o Few-shot captioning

§ CLIP is not perfect.

https://huggingface.co/openai/clip-vit-large-patch14

29

What can't CLIP do?

§ No generation capabilities

§ Prompting / In-Context Learning
o Few-shot captioning

§ CLIP is not perfect.

https://huggingface.co/openai/clip-vit-large-patch14

30

What can't CLIP do?

§ No generation capabilities

§ Prompting / In-Context Learning
o Few-shot captioning

§ CLIP is not perfect.

https://huggingface.co/openai/clip-vit-large-patch14

31

What happened after CLIP?

§ Ton of follow-up work on improve its design:

32

What happened after CLIP?

§ Open-source reproduction and scaling up
o Open-source model: OpenCLIP
o Pre-training on LAION-5B dataset

https://github.com/mlfoundations/open_clip
Ilharco et al., OpenCLIP, 2021

https://github.com/mlfoundations/open_clip

33

What happened after CLIP?

§ Open-source reproduction and scaling up
§ Modifying the training process

o A notable example is FLIP
• Randomly masking out image patches
• Does not hurt the performance, yet it improves the training efficiency

Scaling Language-Image Pre-training via Masking, 2022

34

What happened after CLIP?

§ Open-source reproduction and scaling up
§ Modifying the training process
§ Adding more modalities:

o ImageBind: linking 7 modalities https://facebookresearch.github.io/ImageBind
ImageBind: One Embedding Space To Bind Them All, 2023

https://facebookresearch.github.io/ImageBind

35

What happened after CLIP?

§ Open-source reproduction and scaling up
§ Modifying the training process
§ Adding more modalities:
§ Generative models:

o Text → Image
o Image, Text → Image
o Image, Image → Text
o …

Forthcoming

36

Summary

§ The same computational architecture (e.g., Transformer) can represent different
modalities.

§ One can build models that embed different modalities in the same space.

§ Next: generative vision-language models.

37

Generative Vision-
Language Models

38

Image Generation Toolkit

39

Image Generation Toolkit: Diffusions

Image generation is out of scope for us. You can learn more by taking a
computer vision class or watching the online tutorials. For example:

https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/

40

Text to Image Generation

41

DALL-E

Zero-Shot Text-to-Image Generation, 2021
Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022

42

DALL-E

§ DALL-E is built on top of a pre-trained CLIP model.
o This frozen model provides the representations of text and images.

Zero-Shot Text-to-Image Generation, 2021
Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022

43

DALL-E

Zero-Shot Text-to-Image Generation, 2021
Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022

§ First, a text prompt is input into a text encoder that is trained to map the prompt
to a representation space.

44

DALL-E

Zero-Shot Text-to-Image Generation, 2021
Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022

§ A prior maps the text encoding to a corresponding image encoding that captures
the semantic information of the prompt contained in the text encoding.

45

DALL-E

§ Finally, an image decoder stochastically generates an image which is a visual
manifestation of this semantic information.

Zero-Shot Text-to-Image Generation, 2021
Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022

46

DALL-E

§ [Ignoring some details] Both modules are implemented using “diffusion models”.

Zero-Shot Text-to-Image Generation, 2021
Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022

47

Imagen

§ Simpler than DALL-E

§ Key components:
o Frozen language model providing

text embeddings to all diffusion models.
• Human raters prefer T5-XXL as the

text encoder over CLIP encoder.

o Cascaded diffusion models providing
effective way to generate high-quality
images.

Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, 2022

48

Imagen

Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, 2022

49

50

51

52

A ton of work on T → V

§ Text to video

§ Text to 3D shapes

§ Text to motions/navigation

53

What about models that generate text?

54

Multi-modal GPT4
§ Model: unknown
§ Strong zero-shot visual

understanding & reasoning
capability

§ How do we build opensource
models that are as good
as GPT4?

55

Image-to-Text Generative Models

§ Model architectures:
o Pre-trained image encoders
o Pre-trained language models
o Modules (to be trained) to connect the two modalities

56

LLaVA Model

https://arxiv.org/pdf/2304.08485.pdf
Visual Instruction Tuning, 2023

Give it a try! https://llava-vl.github.io/

https://arxiv.org/pdf/2304.08485.pdf
https://llava-vl.github.io/

57
https://arxiv.org/pdf/2304.08485.pdf

Visual Instruction Tuning, 2023

Give it a try! https://llava-vl.github.io/LLaVA Model

https://arxiv.org/pdf/2304.08485.pdf
https://llava-vl.github.io/

58

LLaVA Architecture

https://arxiv.org/pdf/2304.08485.pdf
Visual Instruction Tuning, 2023

CLIP image
encoder

This projection matrix
maps the embedded
image to the same

dimension as the LLM
input (word embeddings).

Language instructions

https://arxiv.org/pdf/2304.08485.pdf

59

LLaVA: GPT4-assisted data generation

§ The raw data: image captioning datasets
o Consists of images, captions and bounding boxes of objects

§ Augmentation: it uses GPT4 to augment these with detailed captions.

60

GPT4

61

LLaVA Architecture: Training

§ Step 1: Feature alignment — aligning the representation of Vision Encoder and LLM
o Both Vision Encoder and LLM are kept frozen.
o The only training parameter is W (the projection matrix)

§ Step 2: End-to-end fine-tuning
o Vision Encoder is kept frozen. The training params are W and LLM.

https://arxiv.org/pdf/2304.08485.pdf
Visual Instruction Tuning, 2023

Trainable
parameters
Trainable

parameters

https://arxiv.org/pdf/2304.08485.pdf

62

Many open-source models …

§ BLIP/BLIP2 [Li et al. 2023]
§ Instruct-BLIP [Dai et al. 2023]
§ MiniGPT4 [Zhu et al. 2023]
§ CoCa [Yu et al. 2022]
§ Shikra [Chen et al. 2023]
§ LLaVA 1.5 [Liu et al. 2023]
§ …

63

Note: You Can Also do Multimodal RLHF

64

Summary

§ There are massive amounts of unimodal data in the world.
o We can build strong unimodal self-supervised models.

§ Multi-modal models: the key challenge is
aligning the representations.

§ Many recent successes but a lot of challenges remain.
o Making the models efficient.
o Further scaling up — data scaling and model scaling
o Better alignment of the representations — more natural/richer signals for alignment.

65

Challenges for Future Multi-Modal Models

Figure: https://arxiv.org/pdf/2111.11432.pdf

Temporality: static images,
short videos, very long

videos, …

Different types
of inputs

Different modalities of information:
Images, regions, pixels, ….

Different tasks: Classification, captioning,
detection, grounding, segmentation, depth, …

https://arxiv.org/pdf/2111.11432.pdf

66

Challenges for Future Multi-Modal Models

67

The long tail: Most things are infrequent

68

Transformers for
Speech and Audio

69

Dealing with Audio Data

§ Audio is originally continuous wave.

70

Dealing with Audio Data

§ Audio is originally continuous wave.
§ When recording it, we sample from it.
§ The choice of sampling rate determines

the fidelity of the recording.
§ If the sampling rate is too low, the

digital sound will be muffled.
§ Nyquist limit: the minimum rate.

71

Spectrogram

§ A spectrogram shows the
frequency content (y-
axis) of an audio signal
as it changes over time.

§ In spectrogram,
magnitude of the sound
is shown by color-
coding.

https://huggingface.co/learn/audio-course/en/chapter1/audio_data

72

Spectrogram: Example

https://huggingface.co/learn/audio-course/en/chapter1/audio_data

73

Spectrogram: Example

https://huggingface.co/learn/audio-course/en/chapter1/audio_data

74

Feeding Speech to Transformer

§ Turn your data into a format that can
be processed by Transformer.

75

Audio Spectrogram Transformer (AST)

§ Like ViT, AST splits the spectrogram
into a sequence of partially
overlapping 16×16 images.

§ This sequence of patches is then
projected into a sequence of
embeddings, and these are given to
the transformer encoder.

§ On top of this is a simple classification
layer with sigmoid activation to map
the hidden-states to classification
probabilities.

AST: Audio Spectrogram Transformer, 2021

76

Birds of View of Speech Tasks

§ The progress in speech/audio is not as mature as areas.
§ There are various modality connections:

o Speech/audio to text, Speech/audio to image, Text to speech/audio, Image to
speech/audio, …

§ Recording audio is quite tricky:
o Each microphone is different
o Each room is different
o Multiple audio sources (e.g., group of people)
o …

§ There are tons of sounds in the world that are not easily captured.

77

Summary

§ Audio/speech via Transformers?

§ Use the same old recipe: pre-process and feed it directly.

§ How far are we from solving it? Quite far!!

78

LMs and
Code Generation

79

How many people have used Github CoPilot?

https://github.com/features/copilot

https://github.com/features/copilot

80

Some examples

Evaluating Large Language Models Trained on Code, 2021

81

General Idea

The story is the same as what we have seen before! 😮

§ 1. Pre-train on web-scale text/code data (what we have seen before)
§ 2. More pre-training on a lot of [potentially, noisy] code data (new)
§ 3. Fine-tune on smaller but cleaner data (new)

Evaluating Large Language Models Trained on Code, 2021

82

Setup: Pre-train on Code Data

§ Start with GPT-3 that is already pre-trained to on text and code.

§ Codex: Starting from GPT-3, do continued training on code data.
o Training data: 160GB of Python code (unlabeled!!)

§ The goal is to evaluate model for:
o Generating code from doc-string (implementing an idea)
o Generating doc-string from code (explaining code)

§ Why should this work?
o Human written code often comes with comments (i.e., free supervision)!! 😍

Evaluating Large Language Models Trained on Code, 2021

83

Fine-tuning on Clean[er] Data

§ Competitive Programming (10,000 problems)
o Problem descriptions as docstrings
o These have unit test coverage

§ Continuous Integration (40,000 functions)
o “Developers regularly merge code changes

into a central repository, after which
automated builds and tests are run.”

o These come with free test functions.

Evaluating Large Language Models Trained on Code, 2021

§ They also do additional filtering.
§ Filter out:

o Low-quality docstring
o Stateful functions that may be

missing variables outside them.

§ Approach:
o Use Codex-12B to generate

100 samples per problem,
discard the problem if no
generation passes.

84

Evaluation

§ 164 hand-written problems
o Hand-written to avoid overlap with the training data (“training data leakage”)

• Although in practice it’s hard to control for this.
o Evaluates language comprehension, reasoning, algorithms and simple math

Evaluating Large Language Models Trained on Code, 2021

• “Check if two words have the same characters.”
• “Return median of elements in the list l.”
• “sum_to_n is a function that sums numbers from 1 to n.”
• “Given a non-empty list of integers lst. add the even elements that are at odd indices.”
• “Return true if a given number is prime, and false otherwise.”
• “Return n-th Fibonacci number.”

85

Evaluation

§ Format:
o function signature
o docstring with examples
o unit-tests

Evaluating Large Language Models Trained on Code, 2021

86

Evaluation

§ The traditional NLP metrics are not necessarily good for code generation.

§ Instead, they measure functional correctness.
o Whether the generated code (ignoring its details) passes all unit tests
o This is the way humans evaluate correctness of the code rather than its content.

Evaluating Large Language Models Trained on Code, 2021

BLEU = 81

Non-equivalent code

BLEU = 66

Equivalent code
Reference code

87

Evaluation

§ Given a prompt, generate k samples
o For each, sample tokens until a stop sequence is encountered

§ pass@k: the probability that at least one of the top k-generated code samples for
a problem passes the unit tests.
o How do you compute this?

• Think about it! ;-)

Evaluating Large Language Models Trained on Code, 2021

88

Results

§ Scaling improves the results

§ Just pre-training code (Codex) gives a major boost.

§ Reranking heuristics:
Generate 100 samples per problem and selecting the
sample with the highest mean log-probability or by
selecting the sample that passes the unit tests (oracle).

Evaluating Large Language Models Trained on Code, 2021

89

Results: w/ Open-source Models

§ Existing open-source models (GPT-J and
GPT-Neo) know a surprising amount
about code generation!!

§ Reason: The Pile (used for GPT-J)
contains a lot of code: 8% GitHub code,
along with natural language data

Evaluating Large Language Models Trained on Code, 2021

90

Result: Degradation with Length

§ The longer the inputs instructions
are, the lower the model
performance is.

91

Summary

§ Our focus: building a bridge between natural language and code.

§ Turns out the ideas in prior chapters go a long way!

§ The importance of this is more than just increasing the productivity of programmers!
§ In the next part, we will use this bridge to enable LMs speak to do various things!

92

Connecting Language
to Actions/Tools

93

Leverage LLMs for Real-World Tasks

LLM

Put this book on the
table.

def grab(obj):
grab the target object
...

def move_ahead(dist):
move ahead by dist
...

def put(obj, loc):
put the object at loc
...

Available
Actions/APIS

def put_book(book, shelf):
grab the book
grab(book)
move ahead by 1 meter
move_ahead(1)
put the book at the shelf
put(book, shelf)

Policies/Programs

94

LLM

Tool/Action
1

Planning:

Tool/Action
2

Tool/Action
3

Execution:User Interaction:

Robot Actions

App Tools (e.g., map,
weather)

Web Navigation APIs (e.g.,
click, type, select)

Leverage LLMs for Real-World Tasks

• Make me a cup of
coffee

• Plan a 2-day trip
to DC

• Buy my
favorite snacks

def make_coffe()
...
def plan_route():
...
def buy_snacks():
...

95

LLMs as Backbones for Planners

§ Rich parametric knowledge about commonsense and procedures
§ Impressive capabilities of zero-shot/few-shot code generation

96

LMs as Planners: Procedural and
Commonsense Knowledge

97

LMs as Planners: Procedural
and Commonsense Knowledge

98

Visual Programming: Compositional visual reasoning without
training

ViperGPT: Visual Inference via Python Execution for Reasoning

LLM as Planners: Composing Tools via Code
Generation

99

Application: Embodied Planning
Few-Shot Grounded Planning for Embodied Agents with LLMsGenerating Situated Robot Task Plans using LLMs

100

Application: Vision-Language Agents
Few-Shot Grounded Planning for Embodied Agents with LLMs

MM-ReAct:
Connecting LLM to

Vision Experts

101

Application: Web Agents

109

Planning with
Environment Feedback

110

Language models as (autoregressive)
planners

Huang et al. (2022)

LLM

All possible actions
in the environment

LLM

…

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

111

Language models as (autoregressive)
planners

Empty Dishwasher Organize Closet

Huang et al. (2022)

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

112

Language models as (autoregressive)
planners

Huang et al. (2022)

LLM

All possible actions
in the environment

LLM

…

No environment feedback
?

?

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

113

Interactive planner

Dasgupta et al. (2022)

Wang et al. (2023)Li et al.
(2022)

Sharma et al. (2021)

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

114

Reflection

Memory

Interactive planner

Goal

Observation

LLM

Description (e.g., scene graphs)

Feature / high-level plans

Policy
Raw obs. (e.g., image)

Action

“Go to kitchen”

“Turn left”

History: actions taken so far
Progress: I have done xxx
Failures: I couldn’t find xxx
…

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

115

Sustained Embodied Reasoning
in Rich Environments

116

Limits in LLMs

§ Social reasoning: understanding humans

Does this person need help?

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

117

World models and agent models

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

118

Simulators as world models
§ Physics engines / embodied simulators

iGibson 2.0

Li et al. (2021)

AI2-THOR

Kolve et al. (2017)
Habitat 2.0 ThreeDWorld

Gan et al. (2020)Szot et al. (2021)

MuJoCo

Todorov et al. (2012)

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

119

Simulators as world models
§ Embodied simulators + synthetic humans

VirtualHome 2.0
Habitat 3.0

Puig et al. (2021)
Puig et al. (2023)

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

120

Video prediction for robot planning

Yang et al. (2023)
"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

121"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

122

Humans represent agents differently
from objects

Heider & Simmel (1944)

123

Humans represent agents differently
from objects

Moral judgment
good guy, bully

Goals
helping, hurting, escaping

Relationships
friends, enemies

(size / velocity / angle…)
A big triangle moves back and forth, while a small
triangle and a small circle rotate 360°…

Strengths
strong, weak

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

124

Level-0 agent models for embodied tasks

Goal

Current state

Simulate plans via world model

Choose the best plan

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

125

Level-1 agent models for social reasoning

An observer

Goal: Office or coffee shop?

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

126

Level-1 agent models for social
reasoning

Theory of Mind: mapping
actions to mental state

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

127

Summary

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

128

Summary

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

129

Another issue is interaction
with more then one agents

130

Multi-agent planning and communication

§ Multi-agent collaboration

Mandi et al. (2023)

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

131

Multi-agent planning and communication

§ Human-AI cooperation

Zhang et al. (2023)

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

132

Multi-agent planning and communication

§ Social interaction between multiple simulated agents

Park et al. (2023)

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

133

Multi-agent planning and communication

§ Social interaction between multiple simulated agents

Park et al. (2023)

• Persona

• Social relationships with
other agents

John Lin is a pharmacy shopkeeper at the Willow Market and
Pharmacy who loves to help people.
…
John Lin is living with his wife, Mei Lin, who is a college professor,
ands on, Eddy Lin, who is a student studying music theory

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

134

Multi-agent planning and communication

§ Social interaction between multiple simulated agents

Park et al. (2023)

A day in the life (persona) Conversation (social relation)

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

135

Summary

§ Model-based reasoning
o Data-efficient
o Generalizes to new scenarios well

§ Traditionally, world models and agent models are all domain specific

§ Can we leverage the open-endedness of LMs to construct world and agent models?

§ Language models as backend

Language
Reasoning

Environment-
specific tasks Agent

model

Language
Reasoning

Embodied
Reasoning

Social
Reasoning

Planning

Language
model

Agent model

World model
Language

model
World
model Goal

Belief

Backend Abstraction

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

136

Summary
§ Language models as the backend for world models and agent models, supporting

model-based reasoning

Language
Reasoning

Environment-
specific tasks Agent

model

Language
Reasoning

Embodied
Reasoning

Social
Reasoning

Planning

Language
model

Agent model

World model
Language

model
World
model Goal

Belief

Backend Abstraction

Language
Reasoning

Environment-
specific tasks Agent

model

Language
Reasoning

Embodied
Reasoning

Social
Reasoning

Planning

Language
model

Agent model

World model
Language

model
World
model Goal

Belief

Backend Abstraction

LM backend: more general and open-endedConventional paradigms

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

137

Summary

§ Language models as the backend for world models and agent models, supporting model-
based reasoning

§ While language alone is not sufficient for many tasks, language models can be connected
with models operating on other modalities to achieve multimodal capacity

§ There is still a need for manually crafted components (such as belief / memory modules)
or conventional methods (such as classical planning)

§ Enhancing the language model backend
o Multimodality?
o Single-model or modular design?
o …

§ Questions?

"Language Models meet World Models" Zhiting Hu and Tianmin Shu, 2023

138

Envisioning the future

§ More modalities — combinations of video (2D, 3D), text, code, etc.
§ Large models and more efficient scaling
§ More breath — more data and more types of data
§ Interaction with physical world — models with hands and actuators
§ Better personalization — these agents should serve your 🫵 needs
§ Better human-machine teaming

o CoPilot for coding
o CoPilot for writing
o ….
o CoPilot for life!!!

139

§ https://sites.google.com/princeton.edu/cos597f

https://sites.google.com/princeton.edu/cos597f

