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Scaling model size
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Model Size vs. Accuracy

]
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Large Language Models Exhibit "Emergent”

Abilities

= With scaling models
their ICL perf
consistency
improves.

Accuracy (%)
=N W s U
o o & & & &

(o
o OO

o

Accuracy (%)
=N W e O
R-E-R-E-]

—e— LaMDA —=— GPT-3

(A) Mod. arithmetic

10'® 102° 1022 102

(E) Truthful QA

1020 1022 1024

(F) Grounded mappings

70

Accuracy (%)
=N W R OO
[=lellelle el ol

(B) IPA transliterate

—&— Gopher

10'8 10%° 10?2 10%*

1020

10?2

1024

(C) Word unscramble

50

=N W
o O O

o

Exact match (%)

o

Accuracy (%)
=N W s OO N
R R-R-E-R-R-K=

~#— Chinchilla

—@— PaLM - - - Random

(G) Multi-task NLU

10'8 1020 1022 10%4

1020

1022

Model scale (training FLOPs)

1024

(D) Figure of speech

10'% 1020 1022 10%*

(H) Word in context

“ e

N W o O
© O OO

Accuracy (%)

—
o

o

10%°  10*? 10**

=

@;ﬂ,,rjo{ Emergence —qualitative changes in behavior with some “scaling” parameter ] 4




“"More is Different” e v e SCTENCE

= The idea that complex physical systems can behave in
ways that can't be understood by the laws that govern More Is Different
thelr mleOSCOpiC pa rts- Broken symmetry and the nature of
the hierarchical structure of science.

= Anderson also gives an example of "More is Different"
at the molecular level.

o He describes a peculiar broken symmetry that i B

appears in larger-scale molecules, which seems to o it e s
go against a law defined at the smaller scale.

o This broken symmetry is a new effect that
appears when the scale changes.

= Anderson argues that new properties appear at each
level of complexity.

o For example, although chemistry is subject to the
laws of physics, we can't infer chemistry from our
knowledge of physics.

P. W. Anderson

Clea Sl cases. 0l
of active sc ientists I think it is a :ptcd ‘ te nhy ics. pla smn phy "
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less relevance they seem to have to the
very real problems of the rest of sci-
ence, much less to those of society.

The constructionist hypothesis breaks
down when confronted with the twin
difficulties of scale and complexity. The
behavior of large and complex aggre-
gates of elementary particles, it turns
out, is not to be understood in terms
of a simple extrapolation of the prop-
erties of a few particles. Instead, at
each level of complexity entirely new
properties appear, and the understand-
ing of the new behaviors requires re-
search which I think is as fundamental
in its nature as any other. That is, it
seems to me that one may array the

of sciences roughly linearly in a hierarchy,
di

according to the idea: The elementary

entities of science X obey the laws of
science Y.




What is "Scaling”?

“scaling means larger model size”
o But model parameters may be under-utilized.

“scaling means more compute”
o But computation may be unnecessarily wasted.

“scaling means more data”
o But more data might not necessarily contain more information (e.g., duplications)

Scale means all the above: effective compression of information
o Requires model capacity
o Requires compute
o Requires large, rich data

@ JOHNS HOPKINS



Constraints of Real World

= Even massive companies have their owr
constraints. 6Pr-3 (1759

Megatron-Turing NLG (530B)

[
o
o

= Examples of constraints:
o The total amount of data

Megatron-LM (8.3B)
Turing-NLG (17.2B)

=
o

T5 (11B)

Model Size (in billions of parameters)

o The total computing budget.
o Time 1 o
@)
o BERT-Large (340M)
= Given a set of constraints, how do ELIa 3R
you choose which LM to train?

o Note, trial and error is wasteful.

S JOHNS HOPKINS
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Scaling Laws

= Hypothesis: there are fundamental principles that govern effective scaling

= Importance: understanding these “laws” would allow us to find optimal
models for a given data/compute budget.

= Think of Newton’s laws

o Provide the basis for understanding and analyzing the motion of objects
in the physical world

o Can be used to calculate the trajectory of a rocket, the speed of a car,
or the motion of a planet.

!(;Tﬁ'!y JOHNS HOPKINS



Scaling Language Models: Chapter Plan

1. Scaling laws for computational cost of models

2. Optimal scaling of model size and pre-training data
3. Why didn’t we scale earlier?

4. Is scale all you need? A discussion.

Chapter goal: Getting familiar with various ideas related to “scaling”.

Qi'l" JOHNS HOPKINS



Computation Cost
of Models




=

@ JOHNS HOPKINS

How do you compute computational cost of
a single-layer NN with one matrix multiplication?

|
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FLOPS

= Floating point operations per second (FLOPS, flops or flop/s)

= Each FLOP can represent an addition, subtraction, multiplication, or division of
floating-point numbers,

= The total FLOP of a model (e.g., Transformer) provides a basic approximation of
computational costs associated with that model.

—, JOHNS HOPKINS
’ W NG SCHOC
EN E N

12



FLOPS: Matrix Multiplication

= Matrix-vector multiplication are common in Self-Attention (e.g., QKV projection)

o Requires 2mn (2 x matrix size) operations for multiplying A € R™ ™ and b € R"

o (2 because 1 for multiplication, 1 for addition)

All
A21

Aml

!rﬁ JOHNS HOPKINS

A12
A22

Am2

Aln |
A2n

Amn

 Ap11y + Aparo + -+ Appy
Ao1z1 + Agoxa + -+ -+ Aoy

_Amlxl =i Am2x2 EEapsp Amnxn_
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FLOPS: Matrix Multiplication

= Matrix-vector multiplication are common in Self-Attention (e.g., QKV projection)
o Requires 2mn (2 x matrix size) operations for multiplying A € R™ ™ and b € R"

o (2 because 1 for multiplication, 1 for addition)
= For multiplying A € R™™ and B € R™"*P, one needs 2mnp operations.
o Again, 2 because of 1 for multiplication, 1 for addition

= Now this is just forward propagation in Backprop. What about the backward step?

@ JOHNS HOPKINS
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FLOPS: Matrix Multiplication: Backward

= Backward pass needs to calculate the derivative of loss with respect to each hidden
state and for each parameter

oL :
We also need 55 Lo continue to pass
gradient to the previous layers. . ol o v
0L |Upstream

One matrix multiplication f ﬁ
ne matrix multiplication for - / Y | gradient
oL oY

= //W
FLOPs for backward pass is roughly twice oY 0

of forward pass.

15
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FLOPS: Matrix Multiplication: Backward

= FLOPs for backward pass is roughly twice of forward pass.
= Note that, this ratio depends on various parameters (architecture, batch size, et).

FLOP backward-forward ratios

N
[

N
o

=
[E]

backward-forward ratio
=
o

=
n

--- 2.0-ratio
2.5-ratio

o
=}

What's the backward-forward FLOP ratio for Neural Networks? LessWrong, 2021
https://www.lesswrong.com/posts/fnjKpBoWJIXcSDwhZk/what-s-the-backward-
Ty Jors Hoekins: forward-flop-ratio-for-neural-networks

WHITING S D01
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https://www.lesswrong.com/posts/fnjKpBoWJXcSDwhZk/what-s-the-backward-forward-flop-ratio-for-neural-networks
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FLOPS: Matrix Multiplication: Altogether

= Multiplying an input by a weight matrix requires 2x matrix size FLOPS.
= FLOPs for backward pass is roughly twice of forward pass.

4 )

Training FLOPs for multiplying by a matrix W =

6 x (batch size) x (size of W)
\ J

‘rﬁ JOHNS HOPKINS
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Computing the computational cost of Transformer

|
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Transformer FLOPs: The Quick Estimate

= The Weight FLOPs Assumption

o The FLOPs that matter the most are weight FLOPs, that is ones performed when
intermediate states are multiplied by weight matrices.

o The weight FLOPs are the majority of Transformer FLOPs
o We can ignore FLOPs for

 Bias vector addition

* layer normalization

« residual connections

 non-linearities

« Softmax

Qi'l" JOHNS HOPKINS
’ NG SCHO(

The FLOPs Calculus of Language Model Training, Dzmitry Bahdanau (2022)
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Transformer FLOPs: The Quick Estimate

Let N be number of parameters (the sum of size of all matrices)
Let D be the number of tokens in pre-training dataset.
Forward pass:

o FLOPs for forward pass on a single token is roughly 2N

o FLOPs for forward pass for the entire dataset is roughly 2ND
Backward pass:

o FLOPs for backward pass is roughly twice of forward pass

o FLOPs for backward pass for the entire dataset is roughly 4ND
= What is the total?

@ JOHNS HOPKINS
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Transformer FLOPs: The Quick Estimate

Let N be number of parameters (the sum of size of all matrices)
Let D be the number of tokens in pre-training dataset.
The total cost of pre-training on this dataset is:

C ~6ND

= You can already see how this relates to our constraints:

o If you have a fixed compute budget C, increasing D means
decreasing N (and vice versa).

= JOHNS HOPKINS
W oo 21



Transformer Parameter Count

Non-embedding params

—_—

_ 2
N=12X nlayers X dmodel + (nvpcab T nPOS) a dmOdel

Embedding params

= One can show that:

= Assuming:
o the size of MLP hidden layer to be 4. d,oqel

O Mheads:- dhidden = dmodel
ﬁ Most Transformer LMs make}

: . , these design assumptions.
= You will prove this in homework assignment! ©

!rﬁ JOHNS HOPKINS
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Transformer Parameter Count

Non-embedding params

—_—

= One can show that: >
N=12X nlayers X dmodel + (nvpcab + npos) X dmodel

Nlayer | model | Parameters (V) Embedding params
4 512 13M
) 68 =y For example, see the models in the following table:
12 ;j‘; ;?gx Nnon—embedding = 12 X 64 x 81922 = 51.5B
24 3072 2.7B

Vocab size = 65536
40 5120 13B Positional emb size = ?

Nembedding = (65536 +?7) X 8192 = 0.5B + ?

64 8192 52B

Table from: A General Language Assistant
as a Laboratory for Alignment, 2021 24



Transformer Parameter Count

= Given the pre-training data with 400B tokens.

Nlayer | @model | Parameters (N) | Training FLOPs
4 512 13M 3.0e19
6 | 7es oy 6D Training cost (FLOPs):
10 | 1280 197M 4.7¢20
16 | 2048 810M 1.9¢21 C ~ 6ND
24 | 3072 2.7B 6.5¢21 = 6 X(400 x 107)x(52 x107)
40 | 5120 13B 3.0e22 = 1.24 x1023
64 | 8192 52B 1.2¢23

Table from: A General Language Assistant

as a Laboratory for Alignment, 2021 25



Estimating training time

* This is a very practical question in real world.
* We will use our formula earlier to estimate training time.

e Consider HyperCLOVA, an 82B parameter model that was pre-trained on
150B tokens, using a cluster of 1024 A100 GPUs.

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021
S JOHM qu KINS https://arxiv.org/pdf/2109.04650.pdf 26



https://arxiv.org/pdf/2109.04650.pdf

Estimating training time

» Consider HyperCLOVA, an 82B parameter model that &7
was pre-trained on 150B tokens, using a cluster of 1024 A100 GPUSs.

* Training cost (FLOPs):
C = 6ND

= 6 X(150 x 10%)x(82 x10°) = 7.3 x10%?

» The peak throughput of A100 GPUs if 312 teraFLOPS or 3.12 x10%%.
- How long would this take?

model compute cost __ 7.3 X1022
cluster throughput  3.12 x1014x 1024

Duration = = 2.7 days

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021
‘ri—?y JOHNS HOPKINS https://arxiv.org/pdf/2109.04650.pdf 27



https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://arxiv.org/pdf/2109.04650.pdf

Estimating training time

 How long would this take?

model compute cost _ 7.3 x1022

Duration = =
cluster throughput 3.12 x1014x 1024

= 2.7 days

» According to the white paper, training took 13.4 days. Our estimate is
5 times off (why?), but we did get the order of magnitude right! -

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021
S JOHNS qu KINS https://arxiv.org/pdf/2109.04650.pdf 28



https://arxiv.org/pdf/2109.04650.pdf

Factors We Did Not Consider

* Note that these estimates can be slightly off in practice

* Theoretical peak throughput is not achievable with distributed training.
(unless your model only does large matrix multiplications).

* We ignored many additional operations like softmax, ReLU/GelLU activations,
self-attention, Layer Norm etc.

* Training divergence and restarting from earlier checkpoints are not uncommon.

= There are various factors that contribute to computation latency
o Communication latency, memory bandwidth, caching, etc.

o See https://kipp.ly/transformer-inference-arithmetic/ for an excellent discussion.

‘rﬁ JOHNS HOPKINS
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Measuring FLOPS Empirically

= There are libraries for computing FLOPS
o Example: https://qgithub.com/MrYxJ/calculate-flops.pytorch

from calflops import calculate_flops_hf

batch_size, max_seq_length = 1, 128
model_name = "meta-1lama/Llama-2-7b"
access_token = "" # your application for using llama

flops, macs, params = calculate_flops_hf(model_name=model_name,
access_token=access_token,
input_shape=(batch_size, max_seq_length))

print("%s FLOPs:%s MACs:%s Params:%s \n" %(model_name, flops, macs, params))

et J()HN\ H()M\Ns
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https://github.com/MrYxJ/calculate-flops.pytorch

Measuring FLOPS Empirically

= There are libraries for computing FLOPS
o Example: https://qgithub.com/MrYxJ/calculate-flops.pytorch

et S JOHNS H()M\Ns

TING SC
EN \\\\

Model

bloom-1b7
bloom-7b1
bloomz-1b7
baichuan-7B
chatglm-6b
chatglm2-6b
Qwen-7B
llama-7b

llama2-7b

Input

Shape

(1,128)
(1,128)
(1,128)
(1,128)
(1,128)
(1,128)
(1,128)
(1,128)

(1,128)

Params(B)

1.72B
7.07B
1.72B
7B
6.17B
6.24B
7.72B
6.74B

6.74B

Params(Total)

1722408960

7069016064

1722408960

7000559616

6173286400

6243584000

7721324544

6738415616

6738415616

fwd
FLOPs(G)
310.92
1550.39
310.92
1733.62
1587.66
1537.68
1825.83
1700.06

1700.06

fwd
MACs(G)
155.42
77511
155.42
866.78
793.75
768.8
912.88
850
850

fwd +
bwd
FLOPs(G)

932.76
4651.18
932.76
5200.85
4762.97
4613.03
5477.48
5100.19

5100.19

31


https://github.com/MrYxJ/calculate-flops.pytorch

Summary

= One can measure the computational cost of training neural networks in terms of
FLOPS.

= Such estimates allow you to estimate the training time of your model, given your
GPU specs.

= What else can we do?

@ JOHNS HOPKINS
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Optimal Scaling




Optimal Scaling

= A real problem: Your boss gives you a compute budget $$$. What is the best
model you can build with this budget?

= We know from the literature that larger models generally lead to better models.
o Does that mean that you should aim to build the largest model possible?

= Intuitively, if you choose a model that is too large for your budget, you need to cut
your training cycles that may reduce its quality.

= This chapter: principled approach to selecting optimal data/model scaling.

=y JOHNS HOPKINS
Y- NG SCHO 34



Scaling

Experimental Setup:
= Pre-train various models of different sizes

= Plot their validation loss throughout training

et J()HN\ H()M\Ns
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Large model

Scahng Small model reaches lower loss
I plateaus early
. | 1"
= Smaller models don’t have enough capacity 10
to utilize the extra compute. They plateau PR
early.
2 10°
S 15
g . = 7]
= Larger models are initially slower to train, 2 10° E
but with more compute they reach lower s &
7
losses. 10
10°
15 - — 10°
10° 10" 107 10 10° 10"

Compute (PetaFLOP/s-days)

Photo credit: GPT3, Brown et. al., 2020
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Scaling - Optimal Model Size

= Let's say our compute budget is ¢ = 1072

PetaFLOPs-days.

= The
exactly C.

is the one that plateaus at

= If we train a larger model than optimality
point, we won't reach the best performance.

= If we train a smaller model the performance
wouldn’t be optimal

By JOHNS HOPKINS
’ W NG SCHOC
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Validation Loss

| Optimal model |
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Photo credit: GPT3, Brown et. al., 2020
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Scaling - Optimal Model Size

10

The idea of “"optimal model size for given

compute” was introduced by Kaplan et. al. .

? 10
= Inideal world, we are given lots of compute 2
to train many models to find the optimality. £ 10"
.-9 ‘\\\\\\
= Alas not feasible when you have budgetto = 10
train a single model.
2 6
10
= |f we have the equations (“laws") describing e 0 0?1 10 10 10°
the behavior, we can compute it analytically. Compute (PetaFLOP/s-days)

Photo credit: GPT3, Brown et. al., 2020
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Scaling - Optimal Model Size

= What is the function that describes this
optimality line?

Validation Loss

10° 10" 107 10° 10 10

Compute (PetaFLOP/s-days)

Photo credit: GPT3, Brown et. al., 2020
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Terminology: Power law vs exponential

Exponential goes to

zero at a faster rate.

Power law = variable(constant)
Exponential = (constant)va"aPlel  ghopn in logarithmic scale.

0.8

(@)

0.7
0.614

0.5¢

03l
02 ’:"

0.1

—e— Power-law
©— Exponential |

x
Oy
I LS. ST A

I,HJ()HI\SI’ JEINLIND

4]

10—

10"

Power law trend looks
linear, when the variable is

—e— Power-law

— Exponential

10°
1

3 4 5 6 7 8910
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Scaling Laws of Kaplan et. al., 2020

= A power-law function predicts

the “compute efficient” frontier:

I C—O.48

= Using this (and some other analysis not

shown here) we can analytically
predict the optimal model and data
size, fora given amount of compute.

JOHNS HOPKINS
" W NG SCHO(

Validation Loss

-10
10"
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Compute (PetaFLOP/s-days)
Photo credit: GPT3, Brown et. al., 2020
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N: number of model parameters

Scaling Laws: Kaplan etal. ;.7

D: dataset size

= Optimal model size and optimal number of tokens, for a given compute budget
Kaplan et. al. 2020 Nopt X 073 Dopt X 027

Nopt exponent >> Dy, exponent

= Takeaway: grow the model size faster than growing the number of tokens.
o Example: Given 10x compute, increase N by mask;, and D bymaski¢

= GPT3 (and many other followed this recipe) training a 175B model on 300B tokens

By JOHNS HOPKINS
A U G SCHO [ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]
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https://github.com/allenai/acl2022-zerofewshot-tutorial/

Recap: Scaling Laws (Kaplan et al.)

= [t appears that there are Precise scaling laws predicting the performance of Al
models based on

o Model size: Number of params
o Dataset size
o Total compute used for training

= Scaling Laws: scale model size at a faster rate.

u G|Ven d 1OX |ncrease |n Compute bUdget, .S 108 Minimum serial steps eQe Data requirements
. . = increases negligibly — —~ "&\5‘ grow relatively slowly
o increase the size of the model by 5.5x, 2 s R

and training data size by 1.8x. 5 A° *eaxo“s
o 0
% 104 1 AQ oo Optimal model size
Q N\ode\ increases very quickly
g1 A 00000%
E 7\
=

106 10-6 10-4 10-2 10°

‘rﬁ JOHNS HOPKINS Compute (PF-days)



Implications of Scaling Laws (Kaplan et al.)

= Subsequent papers tried to engineer larger and larger models

Model

Size (# Parameters)

Training Tokens

LaMDA (Thoppilan et al., 2022)
GPT-3 (Brown et al., 2020)
Jurassic (Lieber et al., 2021)
Gopher (Rae et al., 2021)

MT-NLG 530B (Smith et al., 2022)

137 Billion
175 Billion
178 Billion
280 Billion
530 Billion

168 Billion
300 Billion
300 Billion
300 Billion
270 Billion

Qi'l" JOHNS HOPKINS
’ \ NG SCHO(
EN N
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However ...

= In 2022 a Hoffmann et al. from DeepMind showed a different set of scaling laws.

Qi'l" JOHNS HOPKINS
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Scaling - Kaplan et al. vs. Hoffmann et al.

Experimental setup:

= They chose different compute budgets.

= For each compute budget, train different
sized models (varying data or model size)
= They find a clear valley like shape

= For each compute budget there is an
optimal model to train

I,u J()HI\S H()I l\[\IS

Training Loss
N
(@)]
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1e20 1
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Parameters

Training Compute-Optimal Large Language Models (2022)
https://arxiv.org/pdf/2203.15556.pdf



N: number of model parameters

Scaling Laws: Hoffmann et al. ¢

D: dataset size

= Optimal model size and optimal number of tokens, for a given compute budget

0.73 0.27
Kaplan et. al. 2020 Nopt < C Dope ¢ C
0.5 0.5
Hoffmann et. al.,, 2021 Nopt ¢ C Dopt ¢ C

Nopt exponent = Dy, exponent

= Compute and tokens should increase at the same rate.
o Example 1: Given 10x compute, grow N by 3.2x and D by 3.2x
o Example 2: Given 100x compute, grow N byMASKland D by [MASK]

Qi,.,y JOHNS HOPKINS
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https://github.com/allenai/acl2022-zerofewshot-tutorial/

Recap

= We used to train “oversized” and “under-trained” models.

= You should scale your model at the same rate as your data.

= For example, if you get a 100x increase in compute,
o Yyou should make your model 10x bigger and your data 10x bigger.

@ JOHNS HOPKINS
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A Word of Caution

= While we kept referring to these as “law”, one should take them with grain of salt.

= There are various confounding factors here:
o Different optimizer: AdamW vs. Adam vs. others
o Different tokenizers
o Different numerical representation (e.g., bfloat16 vs float32)
O ....

@ JOHNS HOPKINS
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More Recently ...

= Training Loss for Llama 2 models.

= After pretraining on 2T Tokens, the models still did not show any sign of saturation.
Why? &

= The scaling laws are usually |
derived on much smaller scales. 2.1 e e B — 138
Behavior might be different at
larger scales.

2.2 Llama-2

Llama 2: Open Foundation and Fine-Tuned

2.0
1.9

1.8

Train PPL

1.7

1.6

1.5

14
&2 10rs HOPKINS 0 250 500 750 1000 1?50 1500 1750 2000
[ NG sciio Processed Tokens (Billions)



Data Quality Matters

= There is increasing evidence that data more than just token count.
o Previously we saw that data duplications and noise hurts LLM performance.
o There is also evidence that’s one can be selective about data diversity.

= These are topics of the ongoing research and there will be more discuss here in
coming years.

Beyond neural scaling laws: beating power law scaling

&7 JOHNS HOPKINS via data pruning (Sorscher et al., 2022) 55



Summary

= Optimality conditions: given a limited budget (compute, data, size) what is the best
model you can train.

= For now: maintain similar ratio for model size and data size.

= Next: why didn’t we scale earlier?

@ JOHNS HOPKINS
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Why didn't we
scale earlier??




The Old Wisdom: Optimizing Model Capacity

% random x;,

= 5 i x y; noisy version
x =®
t— . e of f*(x;)
\\ x ,’ \\
— S . ~
n =20 samples °: o s - x .
~ ’ .
- 0 \\ ,/ \\
Sx ’ .
N , .
R * ~ ~ x
05 S S S N true f*(x)
! ~___,” \s~‘.
-1.5
x
20 0.2 04 0.6 0.8 1
X
JOHNS HOPKINS 59

W7 v o [Figure credit: NeurlPS ‘23 Tutorial: Reconsidering Overfitting in the Age of Overparameterized Models]
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The Old Wisdom: Optimizing Model Capacity

x random x;,
- % ” x y; noisy version

1= - * ,'“"‘-\ Off*(xi)

n =20 samples o . predicted f(x)

polynomial fit

degreed =2 ;\\j/truef*(x)

Small models cannot fit perfectly.
* they cannot express complex functions — high statistical bias.
* largely ignores noise — does not fluctuate a lot (small variance)

JOHNS HOPKINS €0
A B [Figure credit: NeurlPS ‘23 Tutorial: Reconsidering Overfitting in the Age of Overparameterized Models]



The Old Wisdom: Optimizing Model Capacity

x random x;,
¥i noisy version

- of f*(xi)

n =20 samples o= . — predicted f(x)

polynomial fit

degree d =20 \ L — true f'(x)

% 0.2 0.4 0.8 1

Large models fit perfectly (overfit)
* (Can express function of interest — small statistical bias.
* Fits too much of the noise (overfit) — fluctuates a lot (high variance)

=X Q >

aw JOHNS HOPKINS
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[Figure credit: NeurlPS ‘23 Tutorial: Reconsidering Overfitting in the Age of Overparameterized Models]



The Old Wisdom: Optimizing Model Capacity

* random x;,
¥; noisy version

. of f*(x:)
n =20 samples ° predicted f(x)
polynomial fit .
degreed=5 X [ —— SruS i)

Classical generalization theory — one can get generalization by optimizing for
capacity (expressivity) — equivalent to balancing the bias-variance trade-off.

T -
=y JOHNS HOPKINS
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The Old Wisdom: Optimizing Model Capacity

under-fitting over-fitting

. Test risk

~

- Tralnlng risk
sweet spot ~
pot.

_—
T —

Complexity of H

(a) U-shaped “bias-variance” risk curve

.

Classical generalization theory — one can get generalization by optimizing for
capacity (expressivity) — equivalent to balancing the bias-variance trade-off.

=

()HI\S H()l’l\[\l\
e | 63

[Reconciling modern machine learning practice and the bias-variance trade-off, Belkin et al. 2019]



https://arxiv.org/abs/1812.11118

Harmless Interpolation for Large Models

= Learning theory made us allergic to over-parametrized models.

under-fitting over-fitting

. Test risk

Risk

~

~ ‘Training risk
sweet spot_ . —

S i
Complexity of H

(a) U-shaped “bias-variance” risk curve

Q@i"" JOHNS HOPKINS

WHITING SCHOOIL

ENGINEERING [Reconciling modern machine learning practice and the bias-variance trade-off, Belkin et al. 2019]

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

~ Training risk:

- _ . _interpolation threshold

Complexity of H

(b) “double descent” risk curve
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https://arxiv.org/abs/1812.11118

Harmless Interpolation for Large Models

]
ion thresholc Trained #
-1 en 0 of epochs
, 1
0.7 __ Optimal Early
~ Stopping
5 06 /regularization 10
qt) 0.5 compare dark blue
- (at convergence)
n 100 .
Qg4 with red dashed
= . .
(best stopping time)
0.3 1000
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ResNet1l8 Width Parameter
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[Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever '20]



There Were Empirical Evidence

= Even in mid-90’s there were evidence supporting the benefit of larger models
= Although they were ignored ....

70 T T T T T

60 - .

50 .

40 | .

Test Error %

30 .

20 | .

1 0 | 1 1 |

6 8 10 12 14
Number of Hidden Nodes

" .... larger networks may generalize well and better generalization is possible from larger networks if
they can be trained more successfully than the smaller networks” -- Lawrence, Giles, and Tsoi in 1997

By JOHNS HOPKINS 66
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There Were Empirical Evidence

= Even in mid-90’s there were evidence supportlng the beneflt of Iarger models

Thigen Pscviom oo Maise
S -

= Although they were ignored .. . PO N o

.. "Nets of all sizes overfit some
problems. But generalization is surprisingly
Insensitive to excess CapaCIty If the netis Figure 3: MLP approximation using backpropagation (BP) training of data from Equation 1 as the
trained W|th baCkprOp ” number of hidden units is increased. No significant overfitting can be seen.

07 T T Y T 07

10 Hidden Units 100 Hidden Units
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05 4 05 -
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-- Caruana, Lawrence, and Giles (2000)
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Test NMSE
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Figure 4: Test Normalized Mean Squared Error for MLPs trained with BP (left) and CG (right).

Results are shown with both box-whiskers plots and the mean plus and minus one standard deviation.
M
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* Overfitting not bad: double descent phenomenon

Classical Regime: Modern Regime
Bias-Variance Tradeoff Larger Model is Better
A ——Svi
H 11
0.5 ' — Test 0.7 Optimal Early
.
o ’ Train Stopping
- '
5 0.4 . 06 10
w . 5
c ' =
E 03 : w 05
= \ ' Interpolation 171 100
~02 \ ! Threshold 04
4 \ ¢ -
=01 B 0.3 1000
.
003 10 20 30 40 S0 60 3 10 20 30 40 S0 60
ResNet18 width parameter ResNet18 Width Parameter

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.
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Summary

= We some had evidence for impact of scaling.

= Took us some time to trust them.

Qi'l" JOHNS HOPKINS

69



Is Scale All You Need?




Is Scale All We Need?

= For what purpose?

o For building useful applications
(answering simple questions,
translating simple sentences) we
already have good models. Not our
focus.

o General intelligence: think of an
assistant that is always with you,
knows what you want, assists you
with anything you need.

@ JOHNS HOPKINS
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Is Scale All We Need?

Nando de Freitas ==
\ @NandoDF
= For what purpose?

o For building useful applications Solving these scaling challenges is what will deliver
(answering simple questions AGI. Research focused on these problems, eg S4 for
translating simple sentencess we greater memory, is needed. Philosophy about symbols

already have good models. Not our isn’t. Symbols are tools in the world and big nets have
focus. no issue creating them and manipulating them 2/n

4:50 AM - May 14, 2022 - Twitter for iPhone

o General intelligence: think of an 23 Retweets 5§ Quote Tweets 153 Likes
assistant that is always with you,
knows what you want, assists you

with anything you need. _
Do you agree with Nando?

=y JOHNS HOPKINS
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Is Scale All We Need?

1. Is scale the/a right “hill to climb"?

2. Even ifitis a right “hill” is it feasible/practical to climb this hill? (there might be
other “hills” too).

!rﬁ JOHNS HOPKINS

73



Argument: Not Enough Compute

Limitations regarding compute:

= There is simply not enough compute available.
o Models have been increasing 10x every year
o Moore's law: # of transistors on an IC doubles about every two years.
o There are physical limits to how much faster computers can get.

= Even if we have the compute, scaling the compute will be quite costly.

= Scaling compute is simply infeasible. [QED]
Are you convinced?

= . .
= JOHNS HOPKINS
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Rebutting "Not Enough Compute”

= On insufficiency of compute resource:
o Hardware technologies continue to progress at a rapid pace.

o Huang’s law: advancements in GPUs happen at much faster rate than what
Moore predicted.

o So much potentials in parallel computing.

= On cost-[in]efficiency of scaling:
o While models like GPT3 cost a lot (monetary or otherwise), their availability
prevent training MANY smaller, mediocre models.

o Therefore, it might be that the net cost of scaling large models is negative.
It is the case within Microsoft according to its CTO, Kevin Scott.

@ JOHNS HOPKINS

75



Argument: Not Enough Data

= Hoffmann et al showed that, to be compute-optimal, model size and training data
must be scaled equally.

= [t shows that existing LLMs are severely data-starved and under-trained.

= Given the new scaling law, even if you pump a billions of params into a model, the
gains will not compensate for more training tokens.

= There is simply not enough [language] data. [QED]

Are you convinced?

&3 JOHNS HOPKINS
’ NG SCHO(

el ; : [Training Compute-Optimal Large Language Models. Hoffmann+ NeurlPS, 2022] 76



Rebutting "Not Enough Data”

= Data is growing exponentially (?)

6M :
5M -
M
3M -
2M -
1M
0 . : . . ; . ; . . .
q,& N ’190*’ (]90% (19'»0 '190 (19'\,"‘ @»"’ (9'3’ ’19'19 WQ'\:”
Wikipedia size
=

¥ JOHNS HOPKINS
v WHITING SCHOOIL
of ENGINEERING

I How Many Websites Are There?

Number of websites online from 1991 to 2021

World Wide Web Project
s Notable website launches 1.88b
1.5b
D YouTube r@
1.0b
YAHOO! Google  facebook
0.5b
0.0b —
1991* 2000

2021*

* As of August 1, 1991.
** | atest available data for 2019: October 28, for 2020: June 2, for 2021: August 6.
Source: Internet Live Stats
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Rebutting "Not Enough Data” (2)

= You can harness data from other modalities.

o For example, to get more text data we can build a solid speech processor model
that converts speech to text.

o (aside: more than 80% if internet traffic is video)

SKYQUEST

Global Online Video Platforms Market Drives over 80% of Total Internet Traffic |
Skyquest Technology

o (aside2: is that why OpenAl built Whisper?!)

JOHN%EO}?\E"N ["Robust speech recognition via large-scale weak supervision." Radford+ 2022]



Rebutting "Not Enough Data” (3)

= You can use data more effectively.

= Sorscher et al. lays out recipes to achieve - ses3ie
*exponential* scaling instead through 20
statistical mechanics theory.

A £6i Perceptron in teacher-student setting

— Theory
e Simulation

Frac. data kept
® 100%
® 77% Pareto

107 @ 60%

Test error (%)

1 frontier
1 ®46%
. 4 ®36%
= Carefully curating a small subset goes a long | o 28
ey 3
100/2
2 T T
1 2 3

@
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Training examples per parameter (Xprune)

[Beyond neural scaling laws: beating power law scaling via data pruning. Sorscher+ 2022]
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Argument: Scale is Not all You Need Because
of Tail Phenomena

= Tail phenomena will never go away!

Head tasks:
« Translating simple sentences
» Generate rhyming sentence

* Indicating spans of location

Aejndod

> tasks

Qi'l" JOHNS HOPKINS
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Argument: Scale is Not all You Need Because
of Tail Phenomena

= Tail phenomena will never go away!

Tail tasks:
« Translation while while retaining rhyme scheme.
Extract all ACL conference chairs since 1990.

* Do literature review summarizing human studies on corona
Virusgs.

Aejndod

!

By JOHNS HOPKINS
’ W NG SCHOC
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Argument: Scale is Not all You Need
Because of Tail Phenomena

= Tail phenomena will never go away!

Data distribution over language pairs

Example: Google Translat

“The number of parallel

sentences [...] ranges from

around tens of thousands to
almost 2 billion.”

High Resource « — Low Resource
{French, German, Spanish, ...} {Yoruba, Sindhi, Hawaiian, ...}
=y JOHNS HOPKINS
=) J 82

ropassively multilingual neural machine translation in the wild: Findings and challenges. Arivazhagan+ 2019.



Argument: Scale is Not all You Need
Because of Tail Phenomena

et J()HN\ H()M\Ns

\\‘

BLOOM Model
-9 176B
7.1B

0.5 3B
& 1.7B
1.1B
=@= 560M

0.6

QA Accuracy
o o o
N w B~

©
i

0.0

10° 10t 102 103 104 10° 10°
Number of Relevant Pre-training Documents

Figure 1: Language models struggle to capture the

long-tail of information on the web: Above, we plot

accuracy for the BLOOM model family on TriviaQA

as a function of how many documents in the model’s
pre-training data are relevant to each question.

Impact of Pretraining Term Frequencies on Few-Shot Reasoning, Razeghi+ 2022 83
Large Language Models Struggle to Learn Long-Tail Knowledge, Kandpal+ 2022



Argument: Scale is Not all You Need
Because of Tail Phenomena

= Tail phenomena will never go away!

= Will result in brittleness to
small changes

“Tesla's Autopilot system
confusing horse-drawn
carriage for truck”

Qi.-,y JOHNS HOPKINS
" WHITING SCHOOL
of ENGINEERING



which number is bigger, 999934 or 323232323327

The number 32323232332 is larger than 999934. To compare the sizes of two numbers,
we need to look at the number of digits in each number. In this case, the number
32323232332 has 10 digits, while the number 999934 has 6 digits. Because the number
with more digits is always larger, we can conclude that 32323232332 is the larger number
in this case.

which number is bigger, -999934 or -32323232332?

The number -32323232332 is larger than -999934. When comparing negative numbers,
we follow the same rules as when comparing positive numbers. In this case, the number
-32323232332 has 10 digits, while the number -999934 has 6 digits. Because the
number with more digits is always larger, we can conclude that -32323232332 is the

larger number in this case.

It is worth noting that negative numbers are always less than positive numbers, so even
though -32323232332 is larger than -999934, it is still smaller than 999934. This is
because a negative number represents a value that is less than zero, while a positive

number represents a value that is greater than zero.

& &P
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Argument: Scale is Not all You Need Because
of Tail Phenomena

= Hence, scale won't solve the tail phenomena. [QED]

Let's do a
poll!

Head tasks:
« Translating simple sentences
» Generate rhyming sentence

* Indicating spans of location

Aejndod

> tasks
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Argument: Scale is Not all You Need
Because of Tail Phenomena

= How do you rebut this??

87



Summary

= “Scaling” is here is here to stay for now.
o There is plenty of data out there that we haven't been able to use.
o There is no sign of development in hardware technology.

= The long tail poses a serious challenge:

o It's possible that scaling will continue to yield gains in the long-tail, but unlike to
solve it.

o Itis unclear if there are better ways of solving long tail phenomena.

= Unclear “scale” can say about other aspect of intelligence
o coordination, cooperation, communication, etc.
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