
📈 Scaling Language Models
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Scaling model size 

§ LM are getting larger and more expensive

Photocredit:Microsoft ResearchBlog,Alvi et.al.,2021
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Model Size vs. Accuracy
Photo credit:PaLM,Chowdheryet.al.,2022

Larger LMs ⇒  better zero/few-shot performance
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Large Language Models Exhibit “Emergent” 
Abilities

§ With scaling models 
their ICL perf 
consistency 
improves. 

Emergence —qualitative changes in behavior with some “scaling” parameter
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“More is Different”

§ The idea that complex physical systems can behave in 
ways that can't be understood by the laws that govern 
their microscopic parts.

§ Anderson also gives an example of "More is Different" 
at the molecular level. 
o He describes a peculiar broken symmetry that 

appears in larger-scale molecules, which seems to 
go against a law defined at the smaller scale. 

o This broken symmetry is a new effect that 
appears when the scale changes.

§ Anderson argues that new properties appear at each 
level of complexity. 
o For example, although chemistry is subject to the 

laws of physics, we can't infer chemistry from our 
knowledge of physics. 
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What is “Scaling”? 
§ “scaling means larger model size” 

o But model parameters may be under-utilized. 

§ “scaling means more compute”
o But computation may be unnecessarily wasted. 

§ “scaling means more data”
o But more data might not necessarily contain more information (e.g., duplications) 

§ Scale means all the above: effective compression of information
o Requires model capacity 
o Requires compute 
o Requires large, rich data 

259
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Constraints of Real World 

§ Even massive companies have their own 
constraints. 

§ Examples of constraints: 
o The total amount of data 
o The total computing budget. 
o Time 
o ….

§ Given a set of constraints, how do 
you choose which LM to train? 
o Note, trial and error is wasteful. 
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Scaling Laws

§ Hypothesis: there are fundamental principles that govern effective scaling 

§ Importance: understanding these “laws” would allow us to find optimal 
models for a given data/compute budget. 

§ Think of Newton’s laws 
o Provide the basis for understanding and analyzing the motion of objects 

in the physical world
o Can be used to calculate the trajectory of a rocket, the speed of a car, 

or the motion of a planet.
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Scaling Language Models: Chapter Plan 

1. Scaling laws for computational cost of models 
2. Optimal scaling of model size and pre-training data 
3. Why didn’t we scale earlier? 
4. Is scale all you need? A discussion. 

Chapter goal: Getting familiar with various ideas related to “scaling”. 
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Computation Cost 
of Models 
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How do you compute computational cost of 
a single-layer NN with one matrix multiplication?
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FLOPS

§ Floating point operations per second (FLOPS, flops or flop/s) 

§ Each FLOP can represent an addition, subtraction, multiplication, or division of 
floating-point numbers, 

§ The total FLOP of a model (e.g., Transformer) provides a basic approximation of 
computational costs associated with that model.
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FLOPS: Matrix Multiplication

§ Matrix-vector multiplication are common in Self-Attention (e.g., QKV projection) 
o Requires 2𝑚𝑛 (2 x matrix size) operations for multiplying 𝐴 ∈ ℝ!×# and 𝑏 ∈ ℝ#
o (2 because 1 for multiplication, 1 for addition)
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FLOPS: Matrix Multiplication

§ Matrix-vector multiplication are common in Self-Attention (e.g., QKV projection) 
o Requires 2𝑚𝑛 (2 x matrix size) operations for multiplying 𝐴 ∈ ℝ!×# and 𝑏 ∈ ℝ#
o (2 because 1 for multiplication, 1 for addition)

§ For multiplying 𝐴 ∈ ℝ!×# and 𝐵 ∈ ℝ#×$, one needs 2𝑚𝑛𝑝 operations. 
o Again, 2 because of 1 for multiplication, 1 for addition

§ Now this is just forward propagation in Backprop. What about the backward step?
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FLOPS: Matrix Multiplication: Backward

§ Backward pass needs to calculate the derivative of loss with respect to each hidden 
state and for each parameter

𝑋
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𝑌
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𝜕𝑌

Upstream
gradient
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One matrix multiplication for !"
!#

We also need !"
!$

to continue to pass 
gradient to the previous layers.  

FLOPs for backward pass is roughly twice 
of forward pass. 
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FLOPS: Matrix Multiplication: Backward

§ FLOPs for backward pass is roughly twice of forward pass. 
§ Note that, this ratio depends on various parameters (architecture, batch size, et). 

What’s the backward-forward FLOP ratio for Neural Networks? LessWrong, 2021  
https://www.lesswrong.com/posts/fnjKpBoWJXcSDwhZk/what-s-the-backward-
forward-flop-ratio-for-neural-networks

https://www.lesswrong.com/posts/fnjKpBoWJXcSDwhZk/what-s-the-backward-forward-flop-ratio-for-neural-networks
https://www.lesswrong.com/posts/fnjKpBoWJXcSDwhZk/what-s-the-backward-forward-flop-ratio-for-neural-networks
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FLOPS: Matrix Multiplication: Altogether

§ Multiplying an input by a weight matrix requires 2x matrix size FLOPS.
§ FLOPs for backward pass is roughly twice of forward pass. 

Training FLOPs for multiplying by a matrix W = 
6 x (batch size) x (size of W)
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Computing the computational cost of Transformer 
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Transformer FLOPs: The Quick Estimate

§ The Weight FLOPs Assumption 
o The FLOPs that matter the most are weight FLOPs, that is ones performed when 

intermediate states are multiplied by weight matrices.

o The weight FLOPs are the majority of Transformer FLOPs 
o We can ignore FLOPs for 

• Bias vector addition 
• layer normalization 
• residual connections 
• non-linearities 
• Softmax

The FLOPs Calculus of Language Model Training, Dzmitry Bahdanau (2022)
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Transformer FLOPs: The Quick Estimate

§ Let N be number of parameters (the sum of size of all matrices)
§ Let D be the number of tokens in pre-training dataset.  
§ Forward pass: 

o FLOPs for forward pass on a single token is roughly 2N 
o FLOPs for forward pass for the entire dataset is roughly 2ND

§ Backward pass: 
o FLOPs for backward pass is roughly twice of forward pass 
o FLOPs for backward pass for the entire dataset is roughly 4ND

§ What is the total? 
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Transformer FLOPs: The Quick Estimate

§ Let N be number of parameters (the sum of size of all matrices)
§ Let D be the number of tokens in pre-training dataset.  
§ The total cost of pre-training on this dataset is:  

§ You can already see how this relates to our constraints: 
o If you have a fixed compute budget C, increasing D means 

decreasing N (and vice versa). 

C ~ 6ND
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Transformer Parameter Count

§ One can show that: 

§ Assuming: 
o the size of MLP hidden layer to be 4. 𝑑%&'()
o 𝑛*(+',. 𝑑*-''(. = 𝑑%&'()

§ You will prove this in homework assignment! 😊

Most Transformer LMs make 
these design assumptions.
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Transformer Parameter Count

§ One can show that: 

Table from: A General Language Assistant 
as a Laboratory for Alignment, 2021

𝑁!"!#$%&$''(!) = 12 × 64 × 8192* = 51.5𝐵

Vocab size = 65536
Positional emb size = ?
𝑁$%&$''(!) = 65536 + ? × 8192 = 0.5B + ?

For example, see the models in the following table: 
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Transformer Parameter Count

§ Given the pre-training data with 400B tokens. 

𝐶 ≈ 6𝑁𝐷
= 6 × 400 × 10! × 52 ×10!
= 1.24 ×10"#

Training cost (FLOPs): 

Table from: A General Language Assistant 
as a Laboratory for Alignment, 2021
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Estimating training time

• This is a very practical question in real world. 
• We will use our formula earlier to estimate training time. 
• Consider HyperCLOVA, an 82B parameter model that was pre-trained on 

150B tokens, using a cluster of 1024 A100 GPUs. 

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021 
https://arxiv.org/pdf/2109.04650.pdf

https://arxiv.org/pdf/2109.04650.pdf
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Estimating training time

• Consider HyperCLOVA, an 82B parameter model that 
was pre-trained on 150B tokens, using a cluster of 1024 A100 GPUs. 
• Training cost (FLOPs): 

• The peak throughput of A100 GPUs if 312 teraFLOPS or 3.12 ×10$%.  
• How long would this take?

𝐶 ≈ 6𝑁𝐷
= 6 × 150 × 10! × 82 ×10! = 7.3 ×10""

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021 
https://arxiv.org/pdf/2109.04650.pdf

Duration = &'()* +'&,-.) +'/.
+*-/.)0 .10'-21,-.

= 3.# ×$6//

#.$" ×$601× $6"%
= 2.7 days

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://arxiv.org/pdf/2109.04650.pdf
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Estimating training time

• How long would this take?

• According to the white paper, training took 13.4 days. Our estimate is 
5 times off (why?), but we did get the order of magnitude right! 🙌

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers, 2021 
https://arxiv.org/pdf/2109.04650.pdf

Duration = &'()* +'&,-.) +'/.
+*-/.)0 .10'-21,-.

= 3.# ×$6//

#.$" ×$601× $6"%
= 2.7 days

https://arxiv.org/pdf/2109.04650.pdf
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Factors We Did Not Consider

• Note that these estimates can be slightly off in practice
• Theoretical peak throughput is not achievable with distributed training. 

(unless your model only does large matrix multiplications). 
• We ignored many additional operations like softmax, ReLU/GeLU activations, 

self-attention, Layer Norm etc.
• Training divergence and restarting from earlier checkpoints are not uncommon. 

§ There are various factors that contribute to computation latency
o Communication latency, memory bandwidth, caching, etc. 
o See https://kipp.ly/transformer-inference-arithmetic/ for an excellent discussion. 

https://kipp.ly/transformer-inference-arithmetic/
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Measuring FLOPS Empirically 
§ There are libraries for computing FLOPS

o Example: https://github.com/MrYxJ/calculate-flops.pytorch

https://github.com/MrYxJ/calculate-flops.pytorch
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Measuring FLOPS Empirically 
§ There are libraries for computing FLOPS

o Example: https://github.com/MrYxJ/calculate-flops.pytorch

https://github.com/MrYxJ/calculate-flops.pytorch
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Summary 

§ One can measure the computational cost of training neural networks in terms of 
FLOPS.  

§ Such estimates allow you to estimate the training time of your model, given your 
GPU specs. 

§ What else can we do? 
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Optimal Scaling 
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Optimal Scaling 

§ A real problem: Your boss gives you a compute budget $$$. What is the best 
model you can build with this budget? 

§ We know from the literature that larger models generally lead to better models. 
o Does that mean that you should aim to build the largest model possible? 

§ Intuitively, if you choose a model that is too large for your budget, you need to cut 
your training cycles that may reduce its quality. 

§ This chapter: principled approach to selecting optimal data/model scaling. 
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Optimal  
model  
size for  
compute

Photo credit: GPT3, Brown et. al., 2020

Scaling 

Experimental Setup: 

§ Pre-train various models of different sizes 

§ Plot their validation loss throughout training
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Small model  
plateaus early

Large model  
reaches lower loss

Photo credit: GPT3, Brown et. al., 2020

Scaling

§ Smaller models don’t have enough capacity  
to utilize the extra compute. They plateau  
early.

§ Larger models are initially slower to train, 
but  with more compute they reach lower
losses.
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Photo credit: GPT3, Brown et. al., 2020

Scaling -Optimal Model Size

§ Let’s say our compute budget is 𝐶 = 1023
PetaFLOPs-days. 

§ The optimal model is the one that plateaus at 
exactly 𝐶.  

§ If we train a larger model than optimality 
point, we won’t reach the best performance. 

§ If we train a smaller model the performance 
wouldn’t be optimal

Optimality

Optimal model
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Scaling -Optimal Model Size

§ The idea of “optimal model size for given 
compute” was introduced by Kaplan et. al.

§ In ideal world, we are given lots of compute 
to train many models to find the optimality. 

§ Alas not feasible when you have budget to 
train a single model.

§ If we have the equations (“laws”) describing 
the behavior, we can compute it analytically. 

Photo credit: GPT3, Brown et. al., 2020
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Scaling -Optimal Model Size

§ What is the function that describes this 
optimality line?

Photo credit: GPT3, Brown et. al., 2020
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Terminology: Power law vs exponential
Power law = variable +'7/.87.

Exponential = constant 980:8;*)
Exponential goes to 
zero at a faster rate. 

Power law trend looks 
linear, when the variable is 
shown in logarithmic scale.  
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Scaling Laws of Kaplan et. al., 2020

§ A power-law function predicts 
the “compute efficient” frontier:

§ Using this (and some other analysis not 
shown here) we can analytically 
predict the optimal model and data 
size, for a given amount of compute.

Photo credit: GPT3, Brown et. al., 2020

𝐿 ∝ 𝐶!".$%
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Scaling Laws: Kaplan et al. 

§ Optimal model size and optimal number of tokens, for a given compute budget

𝑁"+, exponent  >>  𝐷"+, exponent

§ Takeaway: grow the model size faster than growing the number of tokens.
o Example: Given 10x compute, increase N by 5.5x, and D by 1.8x

§ GPT3 (and many other followed this recipe) training a 175B model on 300B tokens

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

N: number of model parameters 
C: compute 
D: dataset size 

Kaplan et. al. 2020 𝑁"+, ∝ 𝐶-./0 𝐷"+, ∝ 𝐶-.*/

[MASK] [MASK]

https://github.com/allenai/acl2022-zerofewshot-tutorial/
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Recap: Scaling Laws (Kaplan et al.) 

§ It appears that there are Precise scaling laws predicting the performance of AI 
models based on 
o Model size: Number of params 
o Dataset size 
o Total compute used for training

§ Scaling Laws: scale model size at a faster rate. 
§ Given a 10x increase in compute budget, 

o increase the size of the model by 5.5x, 
and training data size by 1.8x.
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Implications of Scaling Laws (Kaplan et al.)

§ Subsequent papers tried to engineer larger and larger models
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However …

§ In 2022 a Hoffmann et al. from DeepMind showed a different set of scaling laws.
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Scaling - Kaplan et al. vs. Hoffmann et al.

Experimental setup: 
§ They chose different compute budgets.
§ For each compute budget, train different 
sized models (varying data or model size) 
§ They find a clear valley like shape 
§ For each compute budget there is an 
optimal model to train

Training Compute-Optimal Large Language Models (2022) 
https://arxiv.org/pdf/2203.15556.pdf
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Scaling Laws: Hoffmann et al. 

§ Optimal model size and optimal number of tokens, for a given compute budget

𝑁"+, exponent ≅ 𝐷"+, exponent

§ Compute and tokens should increase at the same rate.
o Example 1: Given 10x compute, grow N by 3.2x and D by 3.2x
o Example 2: Given 100x compute, grow N by 10x and D by 10x

Kaplan et. al. 2020

Hoffmann et. al., 2021

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

N: number of model parameters 
C: compute 
D: dataset size 

𝑁"+, ∝ 𝐶-./0 𝐷"+, ∝ 𝐶-.*/

𝑁"+, ∝ 𝐶-.1 𝐷"+, ∝ 𝐶-.1

[MASK] [MASK]

https://github.com/allenai/acl2022-zerofewshot-tutorial/
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Recap

§ We used to train “oversized” and “under-trained” models.

§ You should scale your model at the same rate as your data. 

§ For example, if you get a 100x increase in compute,
o you should make your model 10x bigger and your data 10x bigger.
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A Word of Caution

§ While we kept referring to these as “law”, one should take them with grain of salt. 
§ There are various confounding factors here:

o Different optimizer: AdamW vs. Adam vs. others
o Different tokenizers 
o Different numerical representation (e.g., bfloat16 vs float32)
o ….
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More Recently … 
§ Training Loss for Llama 2 models.
§ After pretraining on 2T Tokens, the models still did not show any sign of saturation. 

Why? 🤔
§ The scaling laws are usually 

derived on much smaller scales. 
Behavior might be different at 
larger scales.
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Data Quality Matters 

§ There is increasing evidence that data more than just token count. 
o Previously we saw that data duplications and noise hurts LLM performance. 
o There is also evidence that’s one can be selective about data diversity. 

§ These are topics of the ongoing research and there will be more discuss here in 
coming years. 

Beyond neural scaling laws: beating power law scaling 
via data pruning (Sorscher et al., 2022)
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Summary

§ Optimality conditions: given a limited budget (compute, data, size) what is the best 
model you can train. 

§ For now: maintain similar ratio for model size and data size. 

§ Next: why didn’t we scale earlier? 
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Why didn’t we 
scale earlier?? 
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The Old Wisdom: Optimizing Model Capacity

[Figure credit: NeurIPS ‘23 Tutorial: Reconsidering Overfitting in the Age of Overparameterized Models]
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The Old Wisdom: Optimizing Model Capacity

Small models cannot fit perfectly. 
• they cannot express complex functions → high statistical bias. 
• largely ignores noise → does not fluctuate a lot (small variance)

[Figure credit: NeurIPS ‘23 Tutorial: Reconsidering Overfitting in the Age of Overparameterized Models]
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The Old Wisdom: Optimizing Model Capacity

Large models fit perfectly (overfit)
• Can express function of interest → small statistical bias. 

• Fits too much of the noise (overfit) → fluctuates a lot (high variance)

[Figure credit: NeurIPS ‘23 Tutorial: Reconsidering Overfitting in the Age of Overparameterized Models]
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The Old Wisdom: Optimizing Model Capacity

Classical generalization theory — one can get generalization by optimizing for 
capacity (expressivity) — equivalent to balancing the bias-variance trade-off. 

[Figure credit: NeurIPS ‘23 Tutorial: Reconsidering Overfitting in the Age of Overparameterized Models]
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The Old Wisdom: Optimizing Model Capacity

[Reconciling modern machine learning practice and the bias-variance trade-off, Belkin et al. 2019]

Classical generalization theory — one can get generalization by optimizing for 
capacity (expressivity) — equivalent to balancing the bias-variance trade-off. 

https://arxiv.org/abs/1812.11118
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Harmless Interpolation for Large Models

§ Learning theory made us allergic to over-parametrized models. 

[Reconciling modern machine learning practice and the bias-variance trade-off, Belkin et al. 2019]

https://arxiv.org/abs/1812.11118
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Harmless Interpolation for Large Models

[Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever ’20]
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There Were Empirical Evidence 

§ Even in mid-90’s there were evidence supporting the benefit of larger models
§ Although they were ignored …. 

[Lawrence, Giles, and Tsoi 1997]

“ …. larger networks may generalize well and better generalization is possible from larger networks if 
they can be trained more successfully than the smaller networks” -- Lawrence, Giles, and Tsoi in 1997 
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There Were Empirical Evidence 

§ Even in mid-90’s there were evidence supporting the benefit of larger models
§ Although they were ignored …. 

[Caruana, Lawrence, and Giles 2000]

“ …. "Nets of all sizes overfit some 
problems. But generalization is surprisingly 
insensitive to excess capacity if the net is 
trained with backprop.” 

-- Caruana, Lawrence, and Giles (2000)
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Summary

§ We some had evidence for impact of scaling. 

§ Took us some time to trust them. 
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Is Scale All You Need?
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Is Scale All We Need? 

§ For what purpose? 
o For building useful applications 

(answering simple questions, 
translating simple sentences) we 
already have good models. Not our 
focus. 

o General intelligence: think of an 
assistant that is always with you, 
knows what you want, assists you 
with anything you need. 
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Is Scale All We Need? 

§ For what purpose? 
o For building useful applications 

(answering simple questions, 
translating simple sentences) we 
already have good models. Not our 
focus. 

o General intelligence: think of an 
assistant that is always with you, 
knows what you want, assists you 
with anything you need. 

Do you agree with Nando?
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Is Scale All We Need? 

1. Is scale the/a right “hill to climb”? 
2. Even if it is a right “hill” is it feasible/practical to climb this hill? (there might be 

other “hills” too). 
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Argument: Not Enough Compute

Limitations regarding compute: 
§ There is simply not enough compute available.

o Models have been increasing 10x every year 
o Moore’s law: # of transistors on an IC doubles about every two years.
o There are physical limits to how much faster computers can get. 

§ Even if we have the compute, scaling the compute will be quite costly. 

§ Scaling compute is simply infeasible. [QED] 

Are you convinced?
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Rebutting “Not Enough Compute”

§ On insufficiency of compute resource:
o Hardware technologies continue to progress at a rapid pace. 
o Huang’s law: advancements in GPUs happen at much faster rate than what 

Moore predicted. 
o So much potentials in parallel computing. 

§ On cost-[in]efficiency of scaling:
o While models like GPT3 cost a lot (monetary or otherwise), their availability 

prevent training MANY smaller, mediocre models. 
o Therefore, it might be that the net cost of scaling large models is negative. 

• It is the case within Microsoft according to its CTO, Kevin Scott. 
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Argument: Not Enough Data

§ Hoffmann et al showed that, to be compute-optimal, model size and training data 
must be scaled equally. 

§ It shows that existing LLMs are severely data-starved and under-trained. 

§ Given the new scaling law, even if you pump a billions of params into a model, the 
gains will not compensate for more training tokens. 

§ There is simply not enough [language] data. [QED] 

[Training Compute-Optimal Large Language Models. Hoffmann+ NeurIPS, 2022]

Are you convinced?
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Rebutting “Not Enough Data” 

§ Data is growing exponentially (?)

Wikipedia size
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Rebutting “Not Enough Data” (2)

§ You can harness data from other modalities. 

o For example, to get more text data we can build a solid speech processor model 
that converts speech to text. 

o (aside: more than 80% if internet traffic is video) 

o (aside2: is that why OpenAI built Whisper?!) 

["Robust speech recognition via large-scale weak supervision." Radford+ 2022]
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Rebutting “Not Enough Data” (3)

§ You can use data more effectively. 

§ Sorscher et al. lays out recipes to achieve 
*exponential* scaling instead through 
statistical mechanics theory. 

§ Carefully curating a small subset goes a long 
way!

[Beyond neural scaling laws: beating power law scaling via data pruning. Sorscher+ 2022]
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Argument: Scale is Not all You Need Because 
of Tail Phenomena 

§ Tail phenomena will never go away! 

tasks

popularity

Head tasks: 
• Translating simple sentences 
• Generate rhyming sentence 
• Indicating spans of location
• …
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Argument: Scale is Not all You Need Because 
of Tail Phenomena 

§ Tail phenomena will never go away! 

tasks

popularity

Tail tasks: 
• Translation while while retaining rhyme scheme.
• Extract all ACL conference chairs since 1990.
• Do literature review summarizing human studies on corona 

viruses.
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Argument: Scale is Not all You Need 
Because of Tail Phenomena 

§ Tail phenomena will never go away! 

Massively multilingual neural machine translation in the wild: Findings and challenges. Arivazhagan+ 2019.

“The number of parallel 
sentences […] ranges from 
around tens of thousands to 
almost 2 billion.”

Example: Google Translate 
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Argument: Scale is Not all You Need 
Because of Tail Phenomena 

Impact of Pretraining Term Frequencies on Few-Shot Reasoning, Razeghi+ 2022
Large Language Models Struggle to Learn Long-Tail Knowledge, Kandpal+ 2022
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Argument: Scale is Not all You Need 
Because of Tail Phenomena 

§ Tail phenomena will never go away! 
§ Will result in brittleness to 

small changes 

“Tesla's Autopilot system 
confusing horse-drawn 
carriage for truck”
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Argument: Scale is Not all You Need Because 
of Tail Phenomena 

§ Hence, scale won’t solve the tail phenomena. [QED] 

tasks

popularity

Head tasks: 
• Translating simple sentences 
• Generate rhyming sentence 
• Indicating spans of location
• …

Let’s do a 
poll! 
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Argument: Scale is Not all You Need 
Because of Tail Phenomena 

§ How do you rebut this??
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Summary

§ “Scaling” is here is here to stay for now. 
o There is plenty of data out there that we haven’t been able to use. 
o There is no sign of development in hardware technology. 

§ The long tail poses a serious challenge: 
o It’s possible that scaling will continue to yield gains in the long-tail, but unlike to 

solve it. 
o It is unclear if there are better ways of solving long tail phenomena. 

§ Unclear “scale” can say about other aspect of intelligence 
o coordination, cooperation, communication, etc. 


