
Model Efficiency

Tianjian Li
NLP: Self-Supervised Learning
Apr 11, 2024

Motivation: Our Models are Getting Larger and Larger
Figure Credit: Song Han (MIT)

Motivation: How much memory do we need?

Model Inference Memory

T5-11B 176GB

OPT-66B 1056GB

BLOOM 176B 2800GB

Training/Fine-tuning can take 8x as much memory
The memory requirements makes the cost of running these large models prohibitive!

8-bit Methods for Efficient Deep Learning - Tim Dettmers

https://www.youtube.com/watch?v=2ETNONas068

Topics Today

- Distributed Training

- Compression (Pruning, Distillation, Quantization)

GPU 1

LM

GPU 2

LM

GPU 3

LM

Distributed Training
Training Large Models on Multiple GPUs

Distributed Training: An Overview

- Data Parallelism

- Pipeline Parallelism

LM LM LM

 L1 L2 L3

Layer 1
GPU 1

Layer 2
GPU 2

Layer 3
GPU 3

Data Parallelism: Shard Data

GPU 1

LM

GPU 2

LM

GPU 3

LM

Full Dataset

Step 1: Shard the dataset into pieces and feed them separately into different GPUs

Data Parallelism: Aggregate Gradients

GPU 1

LM

GPU 2

LM

GPU 3

LM

Parameter Server

Step 2: Each gpu sends it gradients to a main process to aggregate.

LM

Local
Gradients

Local
Gradients

Local
Gradients

Data Parallelism: Update Weights

GPU 1

LM

GPU 2

LM

GPU 3

LM

Parameter Server

Step 3: The GPU server performs the gradient updates,
then replicates the updated weights to each GPU.

In practice, the parameter server is often the first GPU.

UpdatedLM

Data Parallelism: All Together

Step 1: Data Sharding

Step 2: Gradient Aggregation

Step 3: Update and Replicate

Data Parallelism: Use it yourself!

In train.py

Launch script example (Using 2 GPUs)

Specifies which GPUs are available Total number of GPUs to use

This only works if the dataset is too large - but what if the model is too large?

Distributed Training: An Overview

- Data Parallelism

- Pipeline Parallelism

LM LM LM

 L1 L2 L3

Layer 1 Layer 2 Layer 3

Pipeline Parallelism
Figure Credit: Song Han (MIT)

Splitting the model (instead of the data) into multiple GPUs

Pipeline Parallelism: Naive Implementation
GPUs are idle most of the time!

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

Idle!

https://arxiv.org/pdf/1811.06965

Pipeline Parallelism: Solution
Splitting data into mini-batches

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

(32, 128, 768) (8, 128, 768), (8, 128, 768), (8, 128, 768), (8, 128, 768)

Smaller mini-batches ≠ Faster Training (Due to inter-gpu communication)

https://arxiv.org/pdf/1811.06965

Pipeline Parallelism: Use it yourself!

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

You can map layers to specific GPUs:

Again, if you are launching with multiple GPUs:

https://arxiv.org/pdf/1811.06965

Where Did All the Memory Go?

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

GPT-2
1.5B params

FP 16
3GB memory

Training
> 32 GB memory

Most of the memory are occupied by optimizer states.
Some are also occupied by residual states: activations, buffers and fragmented memory

https://arxiv.org/abs/1910.02054

The ZeRO Optimizer

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Parameters

Gradients

Optimizer States

GPU 1 GPU 2 GPU 3

Total Memory for a
7.5B model with adam
optimizer
= 120GB (Each)

https://arxiv.org/abs/1910.02054

Stage 1: Shard Optimizer States

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Parameters

Gradients

Optimizer States

GPU 1 GPU 2 GPU 3

Total Memory for a
7.5B model with adam
optimizer
= 54.8GB (each)

https://arxiv.org/abs/1910.02054

Stage 2: Shard Optimizer + Gradients

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Parameters

Gradients

Optimizer States

GPU 1 GPU 2 GPU 3

Total Memory for a
7.5B model with
adam optimizer
= 47.9GB (each)

https://arxiv.org/abs/1910.02054

Stage 3: Shard ALL

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Parameters

Gradients

Optimizer States

GPU 1 GPU 2 GPU 3

Total Memory for a
7.5B model with adam
optimizer
= 41GB (each)

The more GPUs you
have, the more you
benefit from deeper
stages!

https://arxiv.org/abs/1910.02054

Practice: A Tutorial of Running LLaMA 2-13B Model
Slide Credit: Chenghao Yang (UChicago)

Codes will be available at https://github.com/yangalan123/NLPResearchScaffolding. Welcome to star, fork and PR!

Write Trainer in your Codes.

Prepare ZeRO Configuration Launch with DeepSpeed

Balanced GPU usage
Automatic offloading to CPU

 if GPU memory used up
Automatic handling mixed precision, etc.

https://github.com/yangalan123/NLPResearchScaffolding

Topics Today

- Distributed Training

- Compression (Pruning, Distillation, Quantization)

GPU 1

LM

GPU 2

LM

GPU 3

LM

Model Compression
Making large models smaller with minimal performance drop

Compression: An Overview

PruningQuantization Distillation

Train a small model (the student)
on the outputs of a large model
(the teacher).

In essence, distillation = model
ensembling. Therefore we can
distill between model with the
same architecture
(self-distillation)

Can be combined with pruning.

Stores or performs computation
on 4/8 bit integers instead of
16/32 bit floating point numbers.

The most effective and practical
way do training/inference of a
large model.

Can be combined with pruning
(GPTQ) and Distillation
(ZeroQuant).

Removing excessive model
weights to lower parameter
count.

A lot of the work are done solely
for research purposes.

Cultivated different routes of
estimating importances of
parameters.

Today!

Numeric Data Types
How numbers are represented in modern computing systems

Floating-Point Numbers
Example: 32-bit floating-point number in IEEE 754 (FP32)

Sign: 1 bit Exponent: 8 bits Fraction/Mantissa: 23 bits

Number = (-1)sign ✕ (1 + Fraction) ✕ 2Exponent - 127

Floating-Point Numbers

Sign: 1 bit
Exponent: 8 bits

Range
Fraction/Mantissa: 23 bits

Precision

FP4 (E1M2)
FP4 (E2M1)

FP4 (E3M0)

Floating-Point Numbers

IEEE 754 Single Precision 32-bit Float (FP32)

IEEE 754 Half Precision 16-bit Float (FP16)

Google Brain Float (BF 16)

Nvidia FP8 (E4M3)

Exponent Fraction

8 23

5 10

8 7

4 3

Quantization
Representing numbers using a discrete set

What is Quantization?

The process of mapping input values from a large set (often a continuous set) to
output values in a (countable) smaller set, often with a finite number of elements.

Overview of Quantization Methods

Storage

Computation

Floating Point

Floating Point

Integer Weights;
Floating Point

Codebook

Floating Point

Integer

Integer

K-Means Linear

Today’s Focus

Linear Quantization
Affine Mapping from floating point numbers to integers

(- -1) × 1.07 =

How to find these numbers?

Original
32-bit float

Quantized
2-bit signed int

Reconstructed
32-bit float

Zero point Scale

Linear Quantization
Affine Mapping from floating point numbers to integers

(- -1) × 1.07 =

Original
32-bit float

Quantized
2-bit signed int

Reconstructed
32-bit float

Zero point Scale

r ≈ (q - Z) ✕ S

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

floating-point integer integer floating-point

https://arxiv.org/abs/1712.05877

Linear QuantizationLinear QuantizationLinear Quantization
Scale Derivation | r = S(q-z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877

Linear QuantizationLinear QuantizationLinear Quantization
Zero point Derivation | r = S(q-z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877

Linear Quantization
“Absmax” Implementation
In practice, the weights are usually centered around zero (Z = 0):

Therefore, we can find scale by using only the max.

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

Used in Pytorch, ONNX
Weight distribution of first conv
layer of ResNet-50.

https://arxiv.org/abs/1712.05877

Post Training Quantization of
 Large Language Models

LLM.int8(), GPTQ

Biggest Challenge in Quantizing Large Models

There exists many outliers in activations (activations of the first layer MobileNetV2):

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

https://arxiv.org/abs/1906.04721

Outlier Activations

Outliers would make this
extremely large!

 Example: 15, 0.1, 0.02, 1.0, 0.01 -> 127, 1, 0, 8, 0
 (Everything under 0.05 gets mapped to 0)

Observation: Outliers only exists in certain channels (e.g. 523 in 768 in BERT)
Solution: Per-Channel Quantization/Row-wise Quantization

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

https://arxiv.org/abs/1906.04721

Per-Channel Quantization

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

Per-Tensor Quantization: Per-Channel Quantization:

2.09 -0.98 1.98 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

Original

1 0 1 0

0 0 -1 1

0 1 0 -1

1 0 1 1

Quantized
(Absmax)

2.09 0 2.09 0

0 0 -2.12 2.12

0 1.92 0 -1.92

1.87 0 1.87 1.87

Reconstructed
(Per-channel)

Reconstructed
(Per-Tensor)

Error: 2.08 2.28��

2.12 0 2.12 0

0 0 -2.12 2.12

0 2.12 0 -2.12

2.12 0 2.12 2.12

https://arxiv.org/abs/1906.04721

LLM.int8()

Outlier features significantly degrades performance after quantization.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339

LLM.int8(): Number of Outliers
A Better Understanding of outlier features
Outlier features in large language models

- Emerges when models gets larger & Corresponds to decrease in perplexity

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339

LLM.int8(): Magnitude of Outliers
A Better Understanding of outlier features
Outlier features in large language models

- Can suddenly get very large & magnitude strictly positive w/ performance

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339

LLM.int8()
Solution of LLM.int8(): Only quantize the “regular” activations to 8-bit integers;

 Leave the “outlier” activations as 16-bit floats.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339

LLM.int8(): Experiments
C4 validation perplexities

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

Zeropoint > absmax because outliers non-symmetric (either very large or very small, but not both)

https://arxiv.org/abs/2208.07339

Post Training Quantization

LLM.int8()
Quantizing
both weights and
activations

GPTQ
Quantizing
only weights
(Faster with same perf.)

GPTQ
Preliminary: Optimal Brain Quantization (OBQ)

OBQ: Iterate {

}

Find the weight that when
quantized, induces the least
error and quantize it.
(Can be very slow)

Update the other weights
to compensate for the
error.

Optimal Brain Damage (LeCun et al., NIPS 1990)
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning (Frantar et al., NeurIPS 2022)

Inverse Hessian

https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://arxiv.org/abs/2208.11580

GPTQ
Calibrating Quantization with Small amount of data

Observation 1:

Greedily picking the “optimal” weight to quantize arbitrary order

 Quantize the weights column by column.

Observation 2:

Rounding of a column is only affected

by the final update on this column.

Lazy Updates only a subset of the weights

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers (Frantar et al., ICLR 2023)

https://arxiv.org/abs/2210.17323

GPTQ: Experiment Results

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers (Frantar et al., ICLR 2023)

https://arxiv.org/abs/2210.17323

Takeaways

Avg. Perplexity on Wikitext-2, PTB and C4:

- Int 8 weight only quantization: lossless
- Int 4 quantization: not well (8 bit 13b > 4 bit 30b…)
- GPTQ quantization: State-of-the-Art, achieving < 0.5 degradation in ppl.

A Comprehensive Study on Post-Training Quantization for Large Models (Yao et al., 2023)

https://arxiv.org/abs/2303.08302v1

Distillation
Training a small model to match the distribution of a large one

Distillation

Distilling the Knowledge in Neural Networks (Hinton et al., 2014)

Training objective:
Minimizing KL Divergence between teacher output and student output

Essentially: We are using the soft labels from the teacher to train student

https://arxiv.org/abs/1503.02531

Transformer Distillation Variants

Standard - KL Divergence between probability vectors (Hinton et al., 2015)

Hidden State - Mean Squared Error between [CLS] tokens (Sun et al., 2019)

 - Mean Square Error between embedding of entire sequence (Jiao et al., 2020)

Attention - Mean Square Error between raw attention scores (before softmax)

 - KL Divergence between attention probabilities (after softmax)

 Goal - Task Specific: Distilling from a fine-tuned model

 - Task Agnostic: Distilling from a pre-trained model

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1908.09355
https://aclanthology.org/2020.findings-emnlp.372/

LLM Distillation

MiniLLM: Knowledge Distillation of Large Language Models (Gu et al., ICLR 2024)

Works well even for large models (13B to 6B)
but compared to quantization, KD requires large amounts of data and training time.

https://arxiv.org/pdf/2306.08543.pdf

