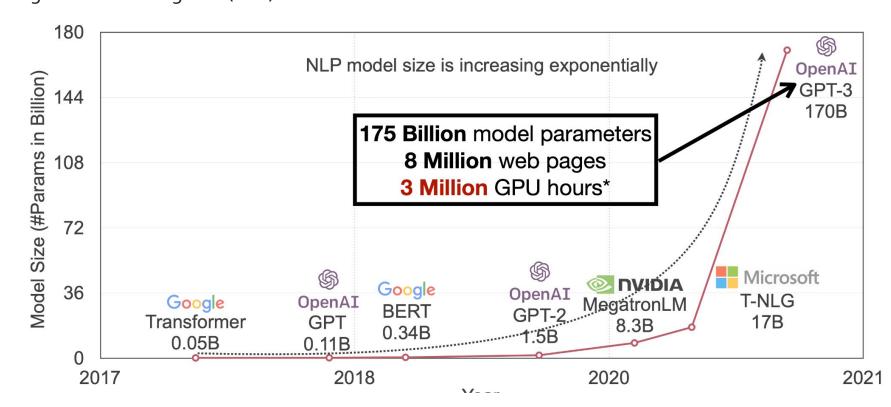
Model Efficiency

Tianjian Li NLP: Self-Supervised Learning Apr 11, 2024

Motivation: Our Models are Getting Larger and Larger Figure Credit: Song Han (MIT)



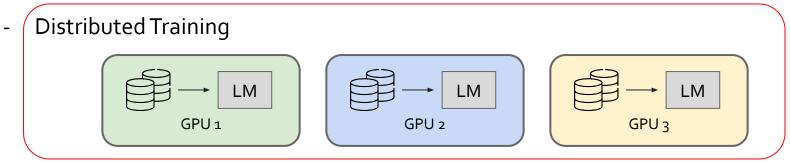
Motivation: How much memory do we need?

Model	Inference Memory
T5-11B	176GB
OPT-66B	1056GB
BLOOM 176B	2800GB

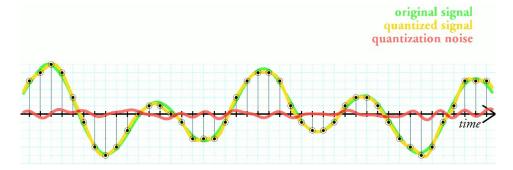
Training/Fine-tuning can take 8x as much memory The memory requirements makes the cost of running these large models prohibitive!

8-bit Methods for Efficient Deep Learning - Tim Dettmers

Topics Today

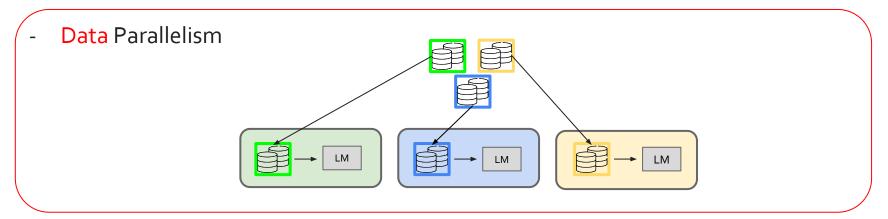


- Compression (Pruning, Distillation, Quantization)



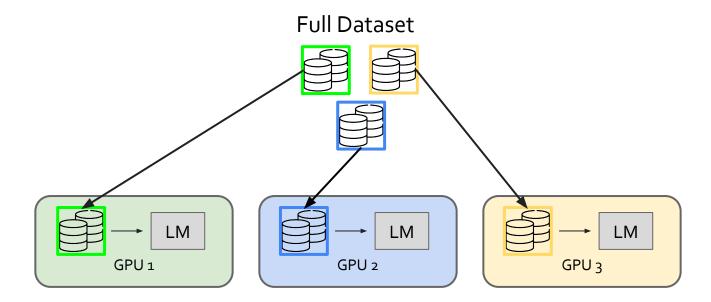
Distributed Training Training Large Models on Multiple GPUs

Distributed Training: An Overview



- Pipeline Parallelism

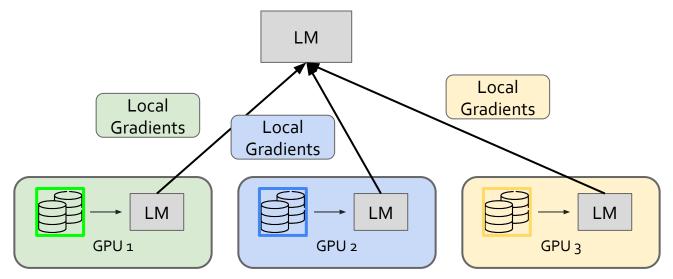
Data Parallelism: Shard Data



Step 1: Shard the dataset into pieces and feed them separately into different GPUs

Data Parallelism: Aggregate Gradients

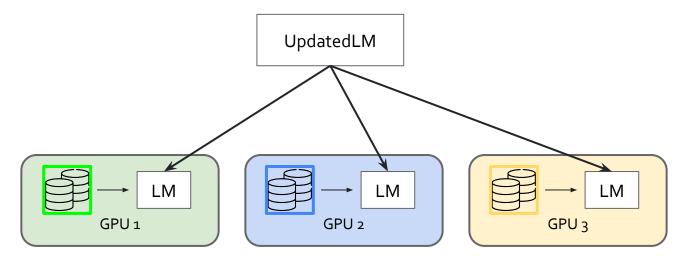
Parameter Server



Step 2: Each gpu sends it gradients to a main process to aggregate.

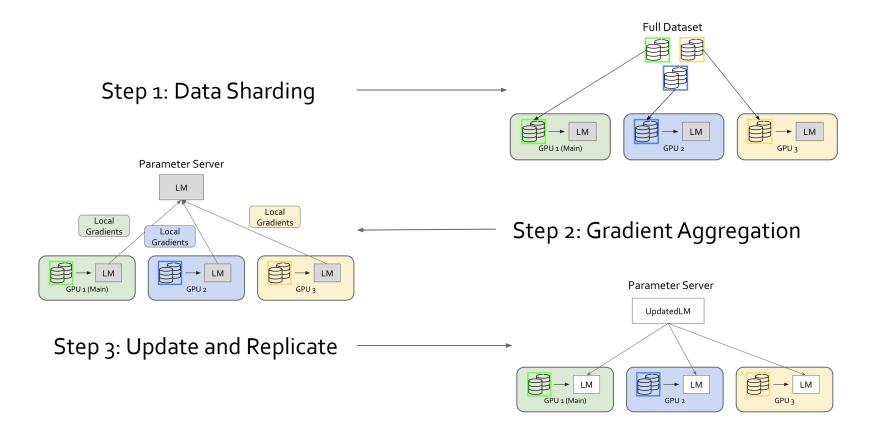
Data Parallelism: Update Weights

Parameter Server



Step 3: The GPU server performs the gradient updates, then replicates the updated weights to each GPU.In practice, the parameter server is often the first GPU.

Data Parallelism: All Together



Data Parallelism: Use it yourself!

In train.py

```
>>> torch.distributed.init_process_group(
>>> backend='nccl', world_size=N, init_method='...'
>>> )
>>> model = DistributedDataParallel(model, device_ids=[i], output_device=i)
```

Launch script example (Using 2 GPUs)

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py

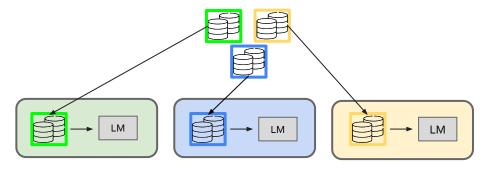
Specifies which GPUs are available

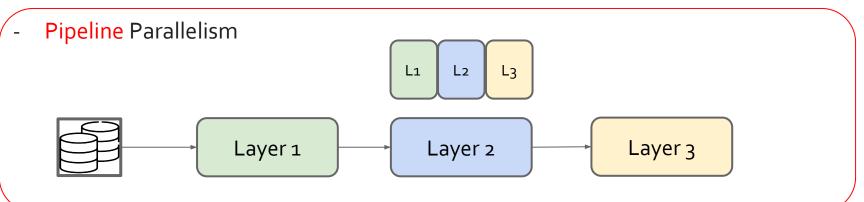
Total number of GPUs to use

This only works if the dataset is too large - but what if the model is too large?

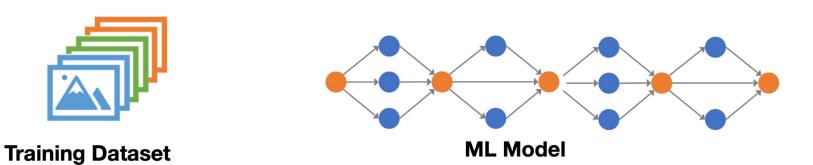
Distributed Training: An Overview

- Data Parallelism

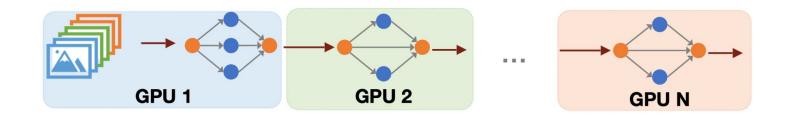




Pipeline Parallelism Figure Credit: Song Han (MIT)

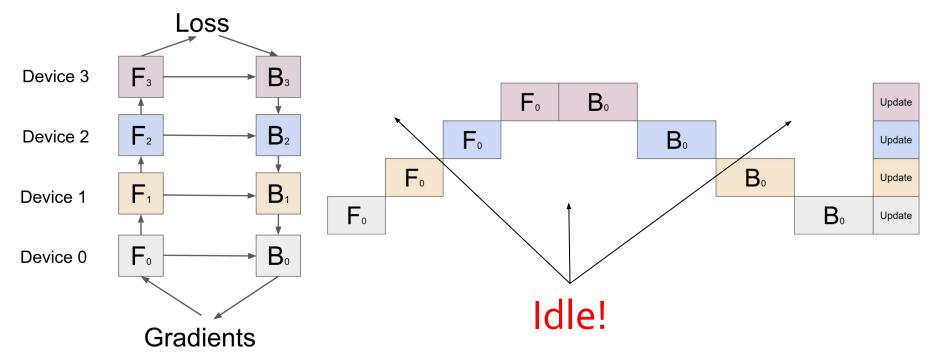


Splitting the model (instead of the data) into multiple GPUs



Pipeline Parallelism: Naive Implementation

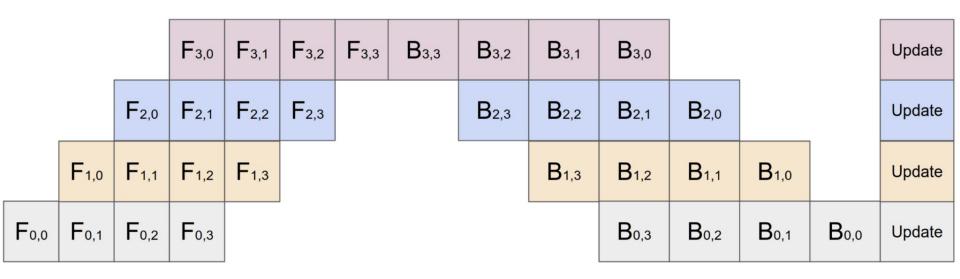
GPUs are idle most of the time!



GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

Pipeline Parallelism: Solution

Splitting data into mini-batches



(32, 128, 768) ______ (8, 128, 768), (8, 128, 768), (8, 128, 768), (8, 128, 768) Smaller mini-batches ≠ Faster Training (Due to inter-gpu communication)

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

Pipeline Parallelism: Use it yourself!

You can map layers to specific GPUs:

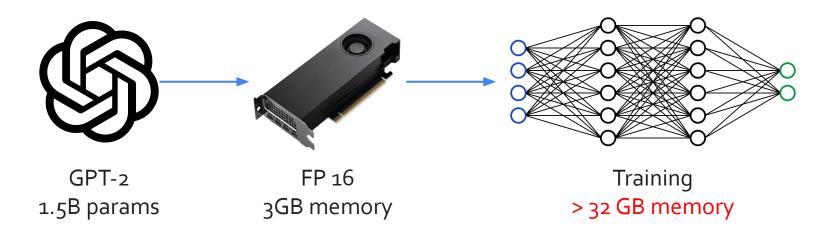
>>> # Build pipe. >>> fc1 = nn.Linear(16, 8).cuda(0) >>> fc2 = nn.Linear(8, 4).cuda(1) >>> model = nn.Sequential(fc1, fc2) >>> model = Pipe(model, chunks=8) >>> input = torch.rand(16, 16).cuda(0) >>> output_rref = model(input)

Again, if you are launching with multiple GPUs:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py

<u>GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism</u> (Huang et al., NeurIPS 2019)

Where Did All the Memory Go?

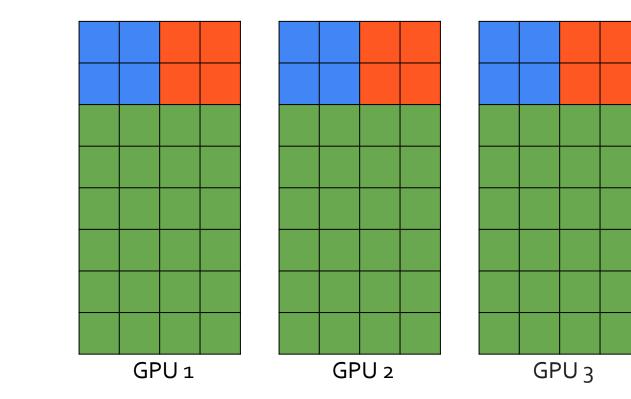


Most of the memory are occupied by optimizer states.

Some are also occupied by residual states: activations, buffers and fragmented memory

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

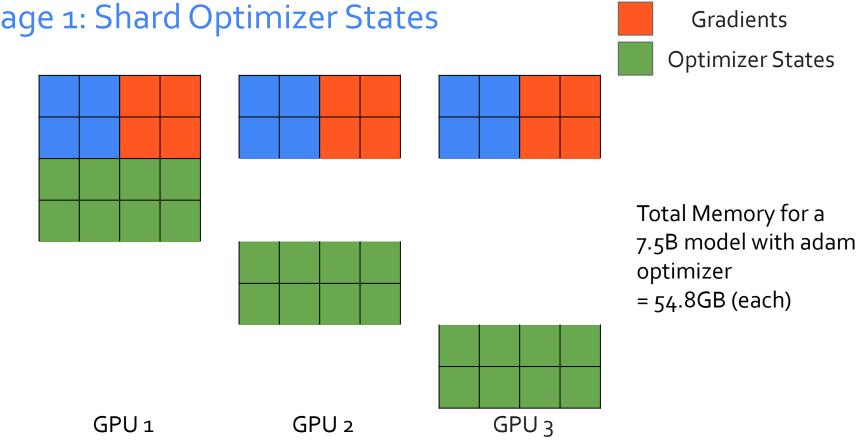
The ZeRO Optimizer



Parameters Gradients Optimizer States

Total Memory for a 7.5B model with adam optimizer = 120GB (Each)

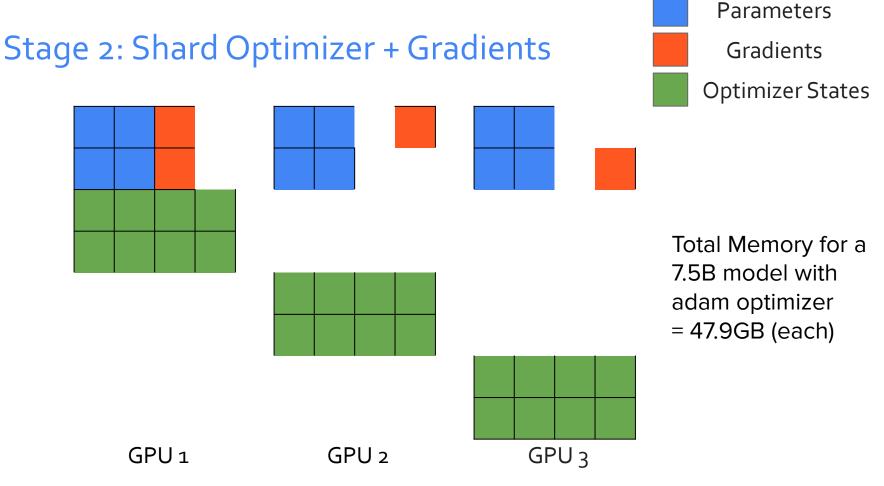
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)



ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

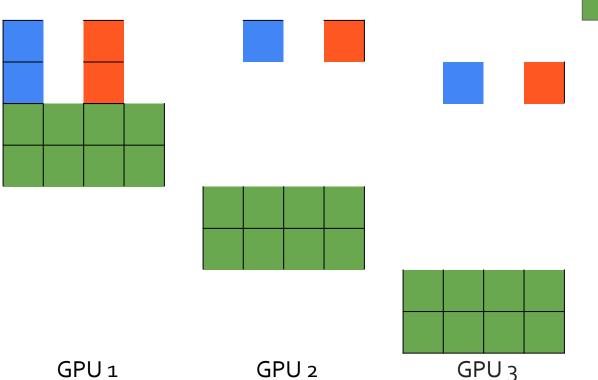
Stage 1: Shard Optimizer States

Parameters



ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Stage 3: Shard ALL



Parameters Gradients Optimizer States

Total Memory for a 7.5B model with adam optimizer = 41GB (each)

The more GPUs you have, the more you benefit from deeper stages!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Practice: A Tutorial of Running LLaMA 2-13B Model

Slide Credit: Chenghao Yang (UChicago)

Write Trainer in your Codes.

<pre>model = AutoModelForSequenceClassification.from_pretrained(</pre>
script_args.model_name_or_path,
<pre>num_labels=num_labels,</pre>
)
trainer = Trainer(
model=model,
<pre>args=training_args,</pre>
<pre>train_dataset=dataset["train"],</pre>
<pre>eval_dataset=dataset["validation"] if "validation" in dataset else dataset['test'],</pre>
tokenizer=tokenizer,
<pre>data_collator=default_data_collator,</pre>
)

Prepare ZeRO Configuration

'zero_optimization": { "stage": 3,	
"offload_optimizer": { "device": "cpu"	
"pin_memory": true },	
"offload_param": {	
"device": "cpu", "pin_memory": true	
}, "overlap_comm": true,	
"contiguous_gradients": t "sub_group_size": 1e9	rue,
"reduce_bucket_size": "au	ıto",

Launch with DeepSpeed

<pre>deepspeed demo_trainer.py \ model_name_or_path "/data/LLAMA2_hf/llama_13B" \ deepspeed ./ds_config_zero3.json \</pre>
bf16 \
do_train \
do_eval \
do_predict \
mode "classification" \
dataset_name "ag_news" \
output_dir ./output/ag_news \
per_device_train_batch_size 2 \
per_device_eval_batch_size 4 \ overwrite_output_dir

Balanced GPU usage Automatic offloading to CPU if GPU memory used up

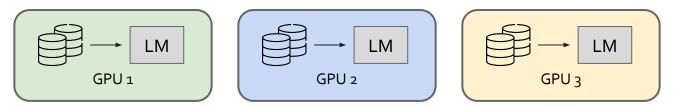
Automatic handling mixed precision, etc.

Bus-Id Disp.A Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M. MIG M.
00000000:01:00.0 Off 36939MiB / 49140MiB	Off 68% Default N/A
00000000:41:00.0 Off 37097MiB / 49140MiB	Off 45% Default N/A
00000000:81:00.0 Off 36935MiB / 49140MiB	Off 39% Default N/A
00000000:C1:00.0 Off 37111MiB / 49140MiB	Off 46% Default N/A

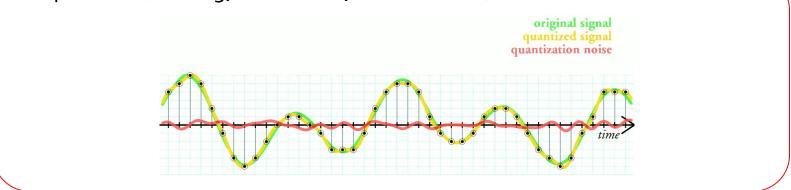
Codes will be available at https://github.com/yangalan123/NLPResearchScaffolding. Welcome to star, fork and PR!

Topics Today

- Distributed Training



- Compression (Pruning, Distillation, Quantization)



Model Compression

Making large models smaller with minimal performance drop

Compression: An Overview

Today!

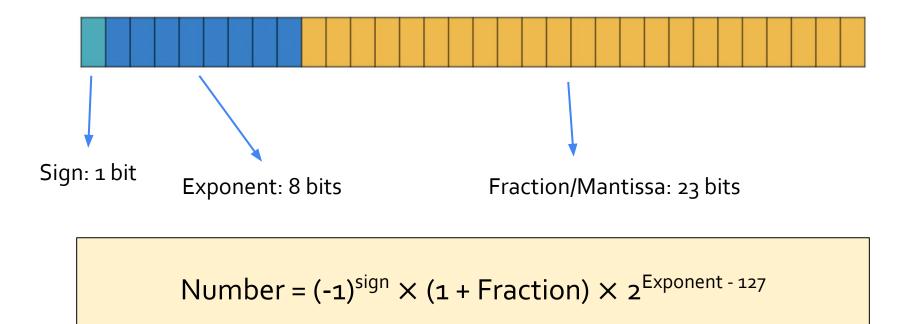
Quantization		Distillation	Pruning
Stores or performs computation on 4/8 bit integers instead of 16/32 bit floating point numbers.	on th	n a small model (the student) he outputs of a large model teacher).	Removing excessive model weights to lower parameter count.
The most effective and practical way do training/inference of a large model.	ense	ssence, distillation = model embling. Therefore we can ill between model with the	A lot of the work are done solely for research purposes.
Can be combined with pruning (GPTQ) and Distillation		e architecture -distillation)	Cultivated different routes of estimating importances of parameters.
(ZeroQuant).	Can	be combined with pruning.	

Numeric Data Types

How numbers are represented in modern computing systems

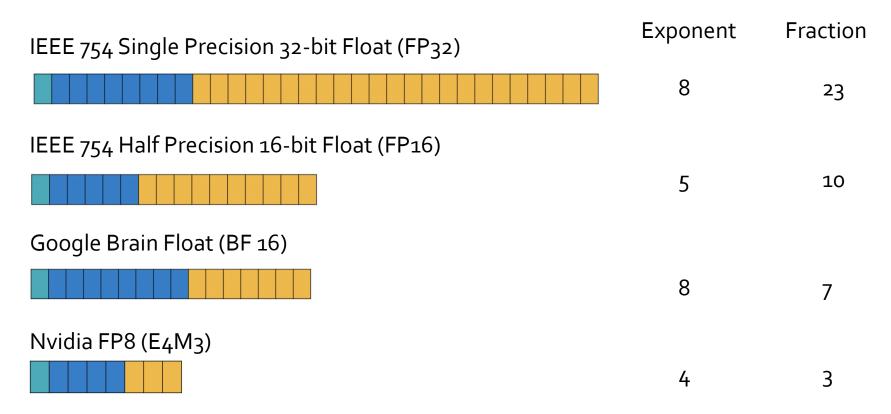
Floating-Point Numbers

Example: 32-bit floating-point number in IEEE 754 (FP32)



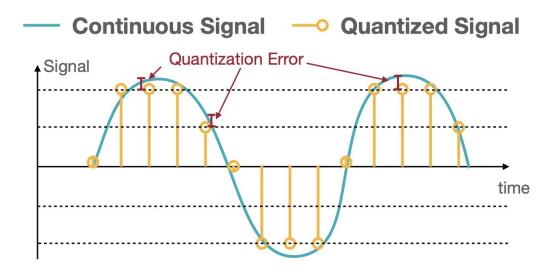
Floating-Point Numbers Exponent: 8 bits Fraction/Mantissa: 23 bits Sign: 1 bit Precision Range FP4 (E2M1) FP4 (E1M2) FP₄ (E₃Mo) 6 0 1 2 3 4 33.5 0 2 8 16 2 0 4

Floating-Point Numbers



Quantization Representing numbers using a discrete set

What is Quantization?



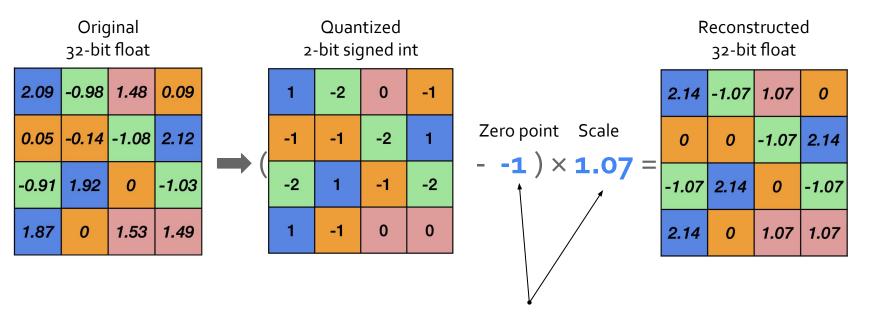
The process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements.

Overview of Quantization Methods

Today's Focus

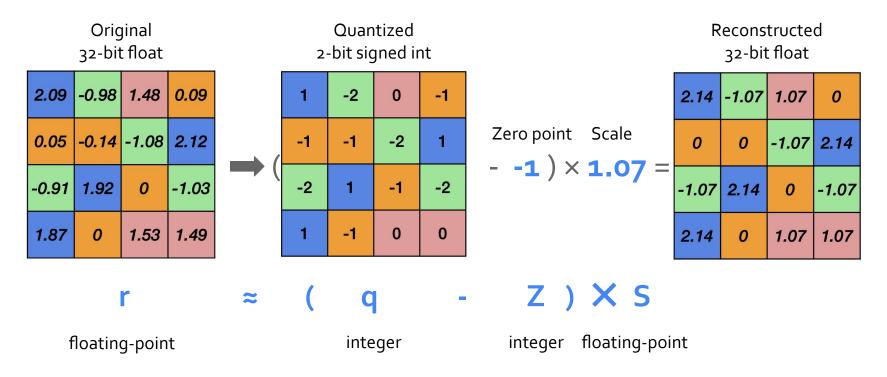
	2.09-0.981.480.090.05-0.14-1.082.12-0.911.920-1.031.8701.531.49	3 0 2 1 3: 2.00 1 1 0 3 2: 1.50 0 3 1 0 1: 0.00 3 1 2: 2: 1.50	$ \begin{pmatrix} 1 & -2 & 0 & -1 \\ -1 & -1 & -2 & 1 \\ -2 & 1 & -1 & -2 \\ 1 & -1 & 0 & 0 \end{pmatrix}1) \times 1.07 $
		K-Means	Linear
Storage	Floating Point	Integer Weights; Floating Point Codebook	Integer
Computation	Floating Point	Floating Point	Integer

Affine Mapping from floating point numbers to integers



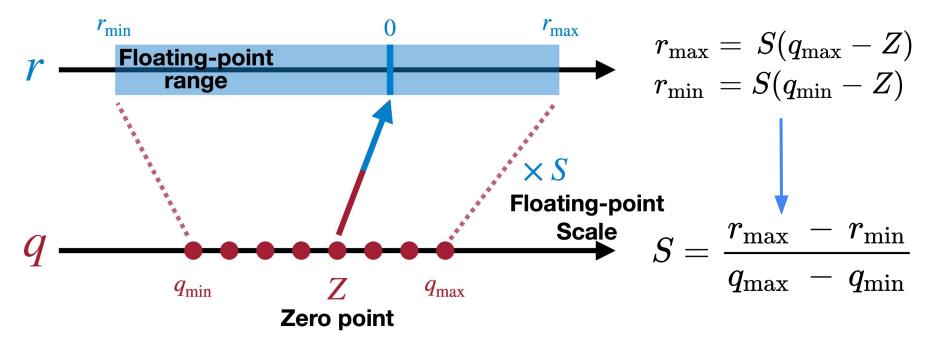
How to find these numbers?

Affine Mapping from floating point numbers to integers



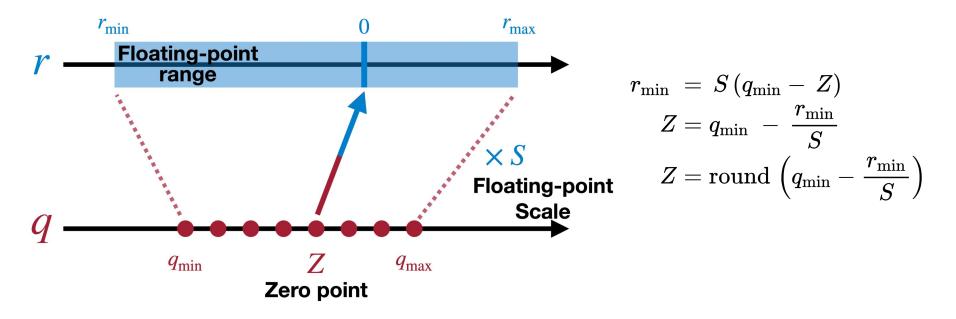
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

Scale Derivation | r = S(q-z)



Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

Zero point Derivation | r = S(q-z)

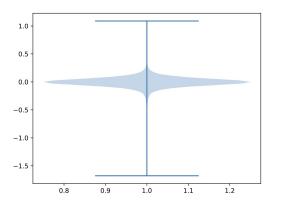


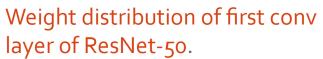
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

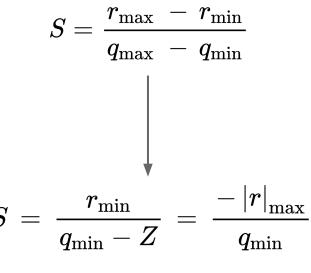
Linear Quantization

"Absmax" Implementation In practice, the weights are usually centered around zero (Z = o):

Therefore, we can find scale by using only the max.







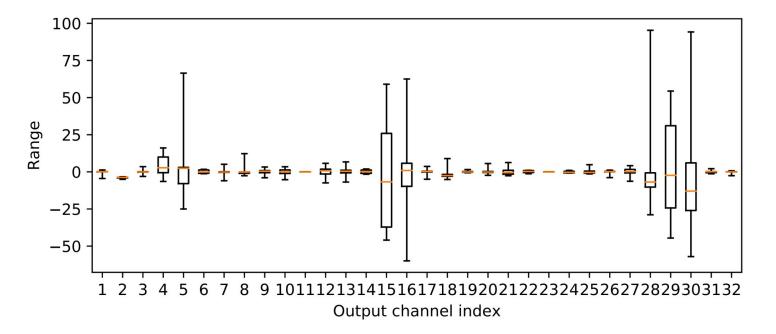
Used in Pytorch, ONNX

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

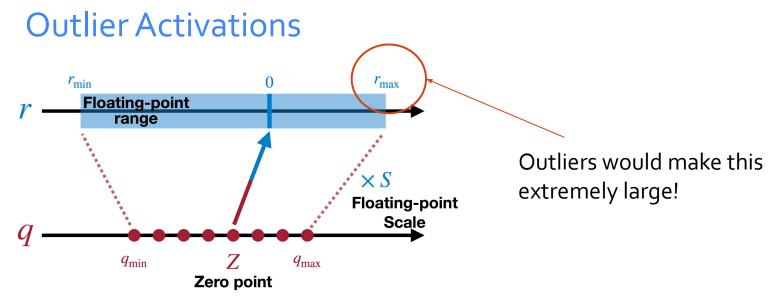
Post Training Quantization of Large Language Models LLM.int8(), GPTQ

Biggest Challenge in Quantizing Large Models

There exists many outliers in activations (activations of the first layer MobileNetV2):



Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)



Example: 15, 0.1, 0.02, 1.0, 0.01 -> 127, 1, 0, 8, 0 (Everything under 0.05 gets mapped to 0)

Observation: Outliers only exists in certain channels (e.g. 523 in 768 in BERT) Solution: Per-Channel Quantization/Row-wise Quantization

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

Per-Channel Quantization

Per-Tensor Quantization:

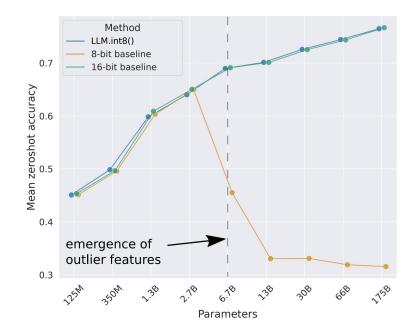
Per-Channel Quantization:

2.09	-0.98	1.98	0.09	1	ο	1	о		2.09	0	2.09	ο	2.12	0	2.12	ο
0.05	-0.14	-1.08	2.12	0	0	-1	1		0	0	-2.12	2.12	ο	0	-2.12	2.12
-0.91	1.92	0	-1.03	0	1	0	-1		0	1.92	0	-1.92	 0	2.12	0	-2.12
1.87	0	1.53	1.49	1	0	1	1		1.87	0	1.87	1.87	2.12	0	2.12	2.12
Original Quantized (Absmax)				Reconstructed (Per-channel)				 Reconstructed (Per-Tensor)								
							Erro	Error:			80			2.	28	

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

LLM.int8()

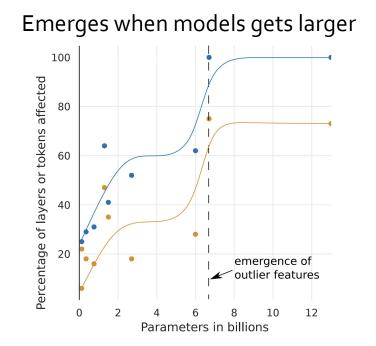
Outlier features significantly degrades performance after quantization.



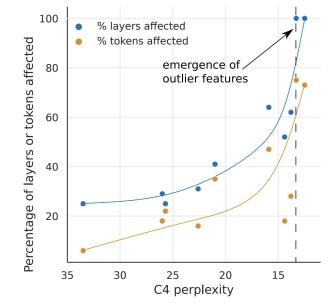
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

LLM.int8(): Number of Outliers A Better Understanding of outlier features Outlier features in large language models

_



Corresponds to decrease in perplexity



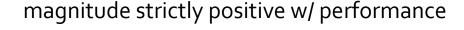
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

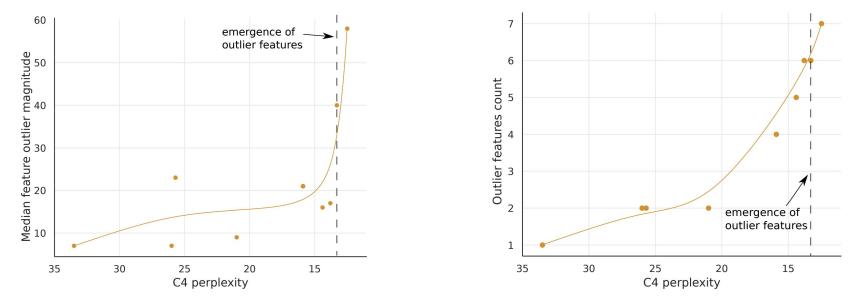
&

LLM.int8(): Magnitude of Outliers

A Better Understanding of outlier features Outlier features in large language models

- Can suddenly get very large





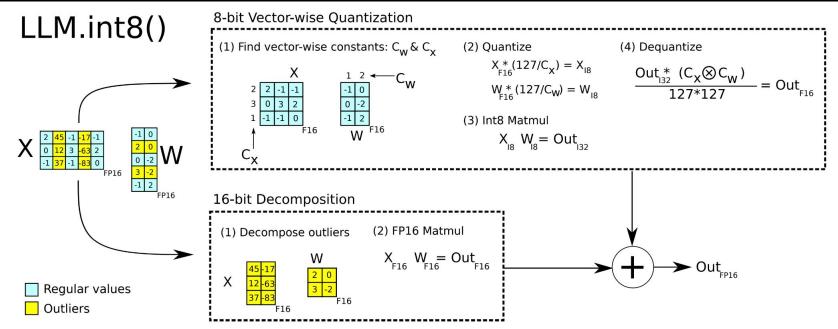
&

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

LLM.int8()

Solution of LLM.int8(): Only quantize the "regular" activations to 8-bit integers;

Leave the "outlier" activations as 16-bit floats.



LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

LLM.int8(): Experiments

C4 validation perplexities

Parameters	125M	1.3B	2.7B	6.7B	13B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax	87.76	16.55	15.11	14.59	19.08
Int8 zeropoint	56.66	16.24	14.76	13.49	13.94
Int8 absmax row-wise	30.93	17.08	15.24	14.13	16.49
Int8 absmax vector-wise	35.84	16.82	14.98	14.13	16.48
Int8 zeropoint vector-wise	25.72	15.94	14.36	13.38	13.47
Int8 absmax row-wise + decomposition	30.76	16.19	14.65	13.25	12.46
Absmax LLM.int8() (vector-wise + decomp)	25.83	15.93	14.44	13.24	12.45
Zeropoint LLM.int8() (vector-wise + decomp)	25.69	15.92	14.43	13.24	12.45

Zeropoint > absmax because outliers non-symmetric (either very large or very small, but not both)

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

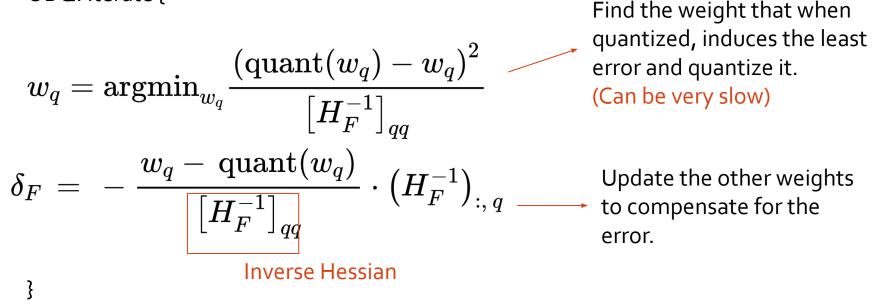
Post Training Quantization

LLM.int8() Ouantizing both weights and activations Quantizing Ouantizing only weights (Faster with same perf.)

GPTQ

Preliminary: Optimal Brain Quantization (OBQ)

OBQ: Iterate {



Optimal Brain Damage (LeCun et al., NIPS 1990)

Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning (Frantar et al., NeurIPS 2022)

GPTQ

Calibrating Quantization with Small amount of data

Observation 1:

Greedily picking the "optimal" weight to quantize \approx arbitrary order Inverse Layer Hessian

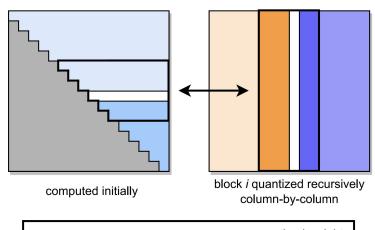
 \implies Quantize the weights column by column.

Observation 2:

Rounding of a column is only affected

by the final update on this column.

⇒Lazy Updates only a subset of the weights



(Cholesky Form)

Weight Matrix / Block

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers (Frantar et al., ICLR 2023)

GPTQ: Experiment Results

OPT Bits	125M 350M	1.3B 2.	7B 6.7B	13B	30B	66B	175B
full 16	27.65 22.00	14.63 12	.47 10.86	10.13	9.56	9.34	8.34
	37.28 25.94 31.12 24.24						
	1.3e3 64.57 53.85 33.79	2024036 C			10-11 Dial Dec 2017		

Table 3: OPT perplexity results on WikiText2.

BLOOM	Bits	560M	1.1 B	1.7B	3B	7.1B	176B
full	16	22.42	17.69	15.39	13.48	11.37	8.11
RTN GPTQ		25.90 24.03					8.37 8.21
RTN GPTQ	33	57.08 32.31		63.59 21.11			571 8.64

Table 4: BLOOM perplexity results for WikiText2.

<u>GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers</u> (Frantar et al., ICLR 2023)

Takeaways

Avg. Perplexity on Wikitext-2, PTB and C4:

Precision	125m	$350\mathrm{m}$	1.3b	$2.7\mathrm{b}$	6.7b	13b	30b	66b
W16-A16	28.27	22.93	15.44	13.58	11.90	11.22	10.70	10.33
$\begin{array}{c} W8^{\rm sym}\text{-}A16\\ W8^{\rm asym}\text{-}A16\\ W4^{\rm sym}\text{-}A16\\ W4^{\rm asym}\text{-}A16\end{array}$	$28.27 \\ 28.31 \\ 45.42 \\ 37.46$	$\begin{array}{c} 22.96 \\ 22.96 \\ 27.00 \\ 26.76 \end{array}$	$15.44 \\ 15.46 \\ 20.79 \\ 19.75$	$\begin{array}{c} 13.59 \\ 13.60 \\ 25.06 \\ 19.58 \end{array}$	$11.90 \\ 11.90 \\ 14.36 \\ 13.44$	$11.22 \\ 11.22 \\ 12.73 \\ 12.09$	$10.70 \\ 10.70 \\ 11.77 \\ 11.52$	$10.33 \\ 10.33 \\ 97.05 \\ 31.52$

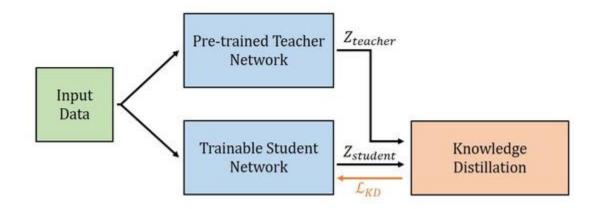
- Int 8 weight only quantization: lossless
- Int 4 quantization: not well (8 bit 13b > 4 bit 3ob...)
- GPTQ quantization: State-of-the-Art, achieving < 0.5 degradation in ppl.

A Comprehensive Study on Post-Training Quantization for Large Models (Yao et al., 2023)

Distillation

Training a small model to match the distribution of a large one

Distillation



Training objective: Minimizing KL Divergence between teacher output and student output

Essentially: We are using the soft labels from the teacher to train student

Distilling the Knowledge in Neural Networks (Hinton et al., 2014)

Transformer Distillation Variants

Standard - KL Divergence between probability vectors (<u>Hinton et al., 2015</u>)

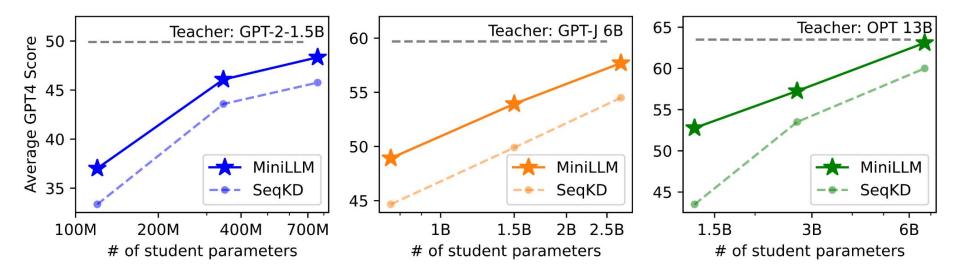
Hidden State - Mean Squared Error between [CLS] tokens (Sun et al., 2019)

- Mean Square Error between embedding of entire sequence (<u>Jiao et al., 2020</u>)

Attention - Mean Square Error between raw attention scores (before softmax)

- KL Divergence between attention probabilities (after softmax)
- Goal Task Specific: Distilling from a fine-tuned model
 - Task Agnostic: Distilling from a pre-trained model

LLM Distillation



Works well even for large models (13B to 6B)

but compared to quantization, KD requires large amounts of data and training time.

MiniLLM: Knowledge Distillation of Large Language Models (Gu et al., ICLR 2024)