
Adversarial Prompting of Unlearned Language Models

Jeffrey Cheng
jcheng71.edu

Steven Lan
slan4.edu

Abstract

As Large Language Models (LLMs) are trained on exponentially more data, there
are rising concerns over confidential information and copyrighted content being
included in pretraining datasets. Under precedent from past rulings in the United
States, LLM creators must also respect an individual’s “right to be forgotten.” Thus,
machine unlearning grew from these needs as a method to allow LLMs to forget
a portion of their training data. While the field of machine unlearning, especially
in the context of LLMs, has grown in the past few years, there has been a marked
lack of methods regarding the auditing of the fine-tuned models. In this paper, We
propose the use of adversarial attacks to perform these privacy audits. Intuitively,
even though the model has been fine-tuned to not produce some tokens, the latent
information was not necessarily erased, allowing carefully crafted prompts to tease
out information.

1 Introduction

LLMs are trained on vast corpuses of text that can and often contain questionable content including
toxic and harmful content, copyrighted materials and personal material. Previous work has shown
many examples of these questionable content coming from both open and closed language models
such as Pythia, GPT-Neo, OPT and GPT-3 to name a few (Wang et al., 2024; Nasr et al., 2023; Carlini
et al., 2023). Moreover, these LLMs have drawn negative press attention and received lawsuits.

To combat these concerns, there have been efforts in machine unlearning techniques to remove the
problematic data from these models (Ginart et al., 2019; Liu et al., 2021; Sekhari et al., 2021; Ye
et al., 2022). However, these techniques cannot easily be extended to LLMs because they usually
involve deleting data points, a much more involved problem in the context of language as identifying
the problematic documents relating to the desired unlearning target is hard. Nevertheless, a new
technique was recently developed that took steps to solve this daunting task, finetuning LLaMA2-chat
(Touvron et al., 2023) to forget about the Harry Potter universe (Eldan & Russinovich, 2023).

While they performed evaluations based on greedily decoding answers to generated questions, their
evaluation was not a comprehensive audit. In fact, a recent paper showed that some facts about
the Harry Potter universe were retained by the fine tuned model (Shi et al., 2024). However, their
methods involved generating a large amount of questions with GPT-4, and using perplexity based
filtering methods to identify topics that were not able to be unlearned.

We propose the use of adversarial attacks to perform these privacy audits on the model. Adversarial
attacks take the form of generating adversarial prompts to induce a model to generate the unlearned
material. In this project, we compare the generations of of baseline prompts with adversarial
altered prompts, as well as different methods to generate these adversarial prompts. We show
while adversarial attacks are successful in inducing unlearned models to generate their supposedly
unlearned content, we hypothesize that this is likely due to the fact that unlearned models that are
simply fine-tuned from their base models are, by design, susceptible to adversarial attacks.

Preprint. Under review.

2 Related Work

Machine Unlearning Since retraining entire models without problematic data is computationally
infeasible, there has been a lot of recent growth in the field of machine unlearning. While of the
recent development in machine unlearning has been in regards to classification models (Ginart et al.,
2019; Sekhari et al., 2021; Xu et al., 2023), there has been growing literature around unlearning in
generative models (Zhang et al., 2023). Nonetheless, applying machine unlearning techniques to
generative models is relatively difficult; many methods still require retraining certain parameters of
the model from scratch (Fleshman et al., 2024). The first paper to propose a concrete method to
address unlearning, using only finetuning methods, introduced a model that was fine-tuned to unlearn
Harry Potter related content (Eldan & Russinovich, 2023).

Adversarial Attacks Adversarial attacks involving generating adversarial inputs that induce un-
desirable behavior in machine learning models are an extensively studied field (Biggio et al., 2013;
Goodfellow et al., 2015; Carlini & Wagner, 2017). These attacks initially stemmed from classification
tasks in the image domain (Moosavi-Dezfooli et al., 2016), and there has been recent development in
language classification tasks such as document classification (Ebrahimi et al., 2018), sentiment analy-
sis (Alzantot et al., 2018), and toxicity filtering (Jones et al., 2023), as well as language generative
tasks such as question answering (Jia & Liang, 2017; Wallace et al., 2021). Recent work has focused
on overcoming toxicity filters (Zou et al., 2023; Hayase et al., 2024) in RLHF models by adapting
methods introduced in the field of automatic prompt generation (Shin et al., 2020).

3 Methodology

Our aim is to audit the Llama-2 model that was fine-tuned to forget Harry Potter content through
adversarial prompting.1 We first curate a dataset for evaluation, and explore several algorithms to
generate adversarial prompts. We then measure the success rates the adversarial prompts generated
by each algorithm on our dataset, comparing to the baseline prompts.

3.1 Model

The model we will audit was fine-tuned from Llama-2-chat, a fine-tuned version of the base Llama-2
model optimized for dialogue use cases, including answering questions (Eldan & Russinovich, 2023;
Touvron et al., 2023). The fine-tuned unlearning was undertaken in three main steps. Firstly, the
authors identified the token spans relevant (and unique) to the Harry Potter universe. They then
generated generic replacement tokens for each of the relevant token spans, and finally fine-tuned
the base model on text with the relevant token spans replaced by their generic counterparts. In our
experiments, we will refer to this model as llama-2-hp and the base model it was fine-tuned from
as llama-2-chat.

3.2 Dataset

We curate a new dataset specifically for the auditing task. First, we query gpt-4 to generate 100
questions pertaining to the Harry Potter universe. To ensure the data quantity and variety, we manually
remove similar questions and prompt llama-2-chat to recover the base behavior of the model,
instructing the model to only answer in a few words for succinctness. This results in a total of 30
unique question-answer pairs. We call this dataset HarryPotterQA. The dataset features a diverse
array of questions primarily categorized under the prefixes "what," "which," and "who."

In addition to HarryPotterQA, we also create a subsequent dataset called HarryPotterQA-P,
consisting of the same 30 questions but instead with the answers contained paraphrased information
about the question leading up to the answer. An example comparing the two datasets is given below:

Question: Who are Harry Potter’s best friends?

Answer:

Ron Weasley and Hermione Granger. HarryPotterQA
Harry Potter’s best friends are Ron
Weasley and Hermione Granger.

HarryPotterQA-P

1https://huggingface.co/microsoft/Llama2-7b-WhoIsHarryPotter

2

3.3 Adversarial Prompting

The standard way of adversarially prompting generative models is through suffix based attacks. Given
a prompt and desired output pair, (q, a), attacks search for a suffix s such that the prompt [q : s]
outputs the desired answer a. We deem an attack successful if the answer a is recovered from [q : s]
under greedy decoding. Recent work has differed in approaches searching for the suffix s. Previous
work introduced an algorithm called GCG (Zou et al., 2023). We describe GCG along with our
algorithm below.

Greedy Coordinate Gradient (GCG) For a given query-answer pair (q, a), we fix a suffix length
ℓ and instantiate a random initial suffix, s0. We form the initial input sequence into the model by
concatenating the tokens [q : s0 : a], and denote it as x1:n. We assume xj corresponds to tokens in
each initial token span given by the constants

xj =

token from the query q 0 ≤ j < Nq

token from the suffix s0 Nq ≤ j < Na

token from the answer a Na ≤ j < n

For an input x1:n, we let the loss be the cross-entropy loss of the tokens in the desired answer;
specifically, we let

L(x1:n) =
∑

Nq≤j<N

− log p(xj | x1:j−1)

At each iteration, we take the gradient of the loss with respect to the one hot vectors ej for all
Nq ≤ j < n. This gradient ∇ejL(x1:n) ∈ R|V | is an estimate of the gradient that corresponds to
substituting each token in the vocabulary at index j. We use the gradient at each index j to compute
the top k candidate replacement tokens at that index, corresponding to the indices with the largest
negative gradient. We denote the set as Σj for each index j.

To determine the token substitution, we pick an arbitrary index m and an arbitrary candidate token
tm ∈ Σm. We form the new input given by, x(m,tm) = [x1:m−1 : tm : xm+1:n], repeating the
process B times, and taking the minimum pair and updating the adversarial suffix

(m∗, tm∗) = argmin
(m,tm)

L(x(m,tm)) x1:n = x(m∗,tm∗)

To summarize, we first initialize a random suffix of fixed length ℓ. For each iteration of the attack, we
calculate a total of k candidates for each index, sample B possible suffixes out of the possible k · ℓ
suffixes (with single replacement), and update the suffix to be the sampled suffix with the minimum
loss. For our experiments, we set ℓ = 64, T = 500, B = 64, k = 128.

Dynamic Suffix Search (DSS) In GCG, we observe that the updated index is not fixed prior to
computing the candidates, thus we try an average of b/ℓ substitutions per index. Other recent work
(Hayase et al., 2024) improves on GCG by focusing the substitution to one index by first trying out a
token substitution at each index, and only trying substitutions on the index that yields the minimum
loss. In our algorithm, we employ the use of a dynamic token length and only append to the growing
suffix. We also improve on the greedy aspect of the algorithm: introducing a beam search mechanism
that reduces calculating. This refinement begins with an initial empty suffix, to which tokens are
incrementally added.

In particular, we initialize our prompt x1:n = [q : a]. We assume that xj corresponds to a token
from the query q if 0 ≤ j < N , and part of the answer a if N ≤ j < n. Our initial suffix length is
ℓ = 0. At each iteration of the attack, we insert a dummy token at the N + ℓth index, and calculate
the candidate token additions at that index, keeping the top k. We sample a total of b tokens from the
candidates, and keep the top m additions that result in the minimum loss. This gives us k possible
suffixes, which we denote as partial suffixes.

We always keep m partial suffixes in memory. At the next iteration, we compute the candidate token
additions at the N + ℓth index for each of the partial suffixes. For each partial suffix, we once again
sample b candidate suffixes resulting from token additions, for a total of b ·m total substitutions,
and keep the top m sampled suffixes to be the next partial suffixes. We provide pseudocode for our
algorithm in Algorithm 1. In our experiments, we set T = 64,m = 4, B = 16, k = 128.

3

Algorithm 1 Dynamic Suffix Search (DSS)
Input: Initial prompt x1:n, suffix length T , loss L, beam size m, k, batch size B, cutoff index N
Y0 ← {(x1:n)} ▷ Beam initialization
for i ∈ [0, . . . , T − 1] do

Ci+1 ← {}
for x̃1:n ∈ Yi do

x̃
(i)
1:n+i+1 ← [x̃1:N+i : tdummy : x̃N+i:n] ▷ Insert dummy token

Zi ← Top-k(−∇eN+i
L(x̃(i)

1:n+i+1)) ▷ Calculate candidate token replacements
Ci+1 ← Ci+1 ∪ {[x̃1:N+i : tj : x̃N+i:n]}Bj=1, tj ∼ Unif(Zi)

Yi+1 ← argminY⊆Ci+1,|Y |=m

∑
y∈Y L(y) ▷ Get next beam from candidates suffixes

n← n+ 1
Output: argminy∈YT

L(y)

Concurrent Greedy Search (CGS) In GCG and DSS, we note that at each iteration, only one index
is being updated. This brings the motivation to the next attack type, which updates multiple indices
in one iteration. If we let S denote the set of all possible suffixes of length ℓ, we have |S| = |V |ℓ.
Moreover, we can construct a metric d on S given by d : (u, v) 7→

∑
ui ̸= vi. This is clearly a

well-defined metric, as it is positive, symmetric and obeys the triangle inequality.

Under the metric D, we note that the diameter of S, diam(S, d) = ℓ. GCG only can update one index
every iteration, which makes convergence slow. We introduce a new algorithm, CGS which is a direct
modification to GCG, that improves the convergence rate by taking bigger steps in S while updating.

Effectively, we run the base GCG attack but crucially when we compute the token substitutions,
we first calculate a random array of indexes to update M and an arbitrary candidate token for each
tm ∈ Σm for all m ∈M , giving an array tM . We form the new input x(M,tM) by substituting each
token tm into index m at all indices m ∈M , and repeat the process B times, taking the minimum
pair and updating the adversarial suffix

(M∗, tM∗) = argmin
M,tM

(L(x(M,tM))) x1:n = x(M∗,tM∗)

To summarize, we first initialize a random suffix of fixed length ℓ. For each iteration of the attack,
we calculate a total of k candidates for each index, sample B possible suffixes out of the possible ℓk

suffixes (with arbitrary indexes being replaced), and update the suffix to be the sampled suffix with
the minimum loss. Pseudocode for this algorithm is provided in Algorithm 2. In our experiments,
we set ℓ = 64, T = 500, B = 64, k = 128, and decrease z exponentially by a factor of 1.5 each
iteration, still requiring it to update a minimum of one index.

Budget Analysis GCG employs a brute force approach, which suffers from significant inefficiencies
in both time and space complexity. Specifically, for each iteration, the process includes a gradient
calculation that requires a full pass, followed by B substitutions which results in the total number of
queries to the model being T (B + 1). Each forward pass is quadratic in the overall fixed sequence
length ℓ, and so the overall time complexity is O(ℓ2TB).

Algorithm 2 Concurrent Greedy Search (CGS)
Input: Initial prompt x1:n, iterations T , loss L, threshold z, k, batch size B, suffix indices J

repeat T times
for j ∈ J do

Σj = Top-k(−∇exj
L(x1:n) ▷ Compute top-k token substitutions

for b ∈ {1, · · ·B} do
x̃
(b)
1:n ← x1:n

I ← {Bernoulli(z)}j∈J ▷ Get random indices by taking indices in J with probability z.
x̃
(b)
j := Unif(Σj),∀j ∈ I ▷ Perform random substitutions for each index

x1:n ← x̃
(b∗)
1:n , b∗ = argminb L(x̃

(b)
1:n) ▷ Get best replacement

Output: x1:n

4

Dataset Algorithm ASR

HarryPotterQA
Greedy Coordinate Gradient 0.87

Dynamic Suffix Search 0.17
Concurrent Greedy Search 0.90

HarryPotterQA-P
Greedy Coordinate Gradient 0.83

Dynamic Suffix Search 0.2
Concurrent Greedy Search 0.87

Table 1: Attack Success Rates (ASRs) of different algorithm-dataset pairs.

In contrast, each DSS iteration includes a gradient calculation that requires a forward pass, but only
at one index, followed by B∗ substitutions for each of m beams. This brings the overall number of
queries to the model as T ∗(mB∗ +1). However, since T ∗ in this case is the number of updates made
to the model, upper bounded by the sequence length, we have that T ∗ << T in most cases. While
the overall complexity of the model is the same, in practice due to the increasing suffix length and the
gradient calculation only in one index, we find that DSS performs attack faster than GCG.

The only differences between GCG and CGS are in which indices to update, so they have the same
budget analysis. However, it is expected that CGS converges faster than GCG due to its ability to
update multiple indices at the initial optimization steps.

4 Results

We run all three of our algorithms on the two datasets HarryPotterQA and HarryPotterQA-P. We
determine an attack to be successful if the greedy decoded answer contains the true target answer.
We only stipulate that the answer contain the target answer because despite the system instructions,
the llama-2-hp model has the tendency to be chatty.

For each algorithm-data pair (A,D), we report the attack success rate (ASR). Specifically, given
a prompt-target pair (x, y), we let p(x, y,A) denote the generated adversarial prompt. We let the
indicator function 1 : (p, y) 7→ {0, 1} denote if the adversarial prompt p satisfies d(p, y) > c where
c = 0.85 for HarryPotterQA and c = 0.95 for HarryPotterQA-P. In this case, d is similarity
function given by the difflib sequencematcher ratio along with the Levenshtein Distance.2 The reason
for the increased threshold value for HarryPotterQA-P is due to the increased sequence length. For
lesser threshold values we empirically saw many more false positive matches.

Then we can denote
ASR(A,D) = 1

|D|
∑

(x,y)∼D

1(p(x, y,A), y)

We show the ASRs for each algorithm-dataset pair in Table 1. In addition to ASR, we also give a
notion of how efficiently each algorithm is able to retrieve the targeted answers. We greedy decode
the updating suffix at various intervals and count how many prompts are able to be successfully
attacked with early termination. We omit the results for DSS since all attacks were either successful
by first intermediate evaluation step or failed. We show the results in Fig. 1.

5 Discussion

5.1 Algorithms and Datasets

From the results in Table 1, it is clear that GCG and CGS perform much better than DSS. Our initial
assumption was that DSS would be able to leverage the causal nature of Transformer decoders in order
to specify the order of which indices get updated to save on computational costs. This assumption
takes heavy inspiration from beam search decoding, in which multiple possible generations are
decoded in parallel to determine which generation has the highest log-probs.

The crucial difference between DSS and beam search decoding is that in beam search, the possible
generations are the exact target of the log-prob maximization whereas in DSS, the possible suffixes

2https://docs.python.org/3/library/difflib.html

5

https://docs.python.org/3/library/difflib.html

50 100 150 200 250 300 350 400 450 500Unsolved
Iterations

0

2

4

6

8

10

Co
un

ts
 o

f S
uc

ce
ss

fu
l A

tta
ck

s GCG on HPQA
GCG on HPQA-P
CGS on HPQA
CGS on HPQA-P

Figure 1: Efficiency of GCG and CGS in attacking HarryPotterQA and HarryPotterQA-P. Each
dataset consists of thirty prompts. If the final answer was incorrect, the prompt is counted as unsolved
even if the correct answer was able to be greedily decoded earlier. Otherwise, the instance of the first
iteration when the answer is able to be greedily decoded is counted.

serve as more context to the target of log-prob maximization. To make this clear, we see that given a
context x, beam search and DSS differ in the maximization domain and target.

Beam search: argmax
y1:t

p(y1:t | x) DSS: argmax
y1:t

p(z | [x : y1:t])

We can also see this empirically by looking at the greedy decodes of partial suffixes in attacks under
DSS. For the prompt “Who was the headmaster of Hogwarts when Harry first arrives,” one of the
partial suffixes (of length 32) greedy decodes the target answer even though the final suffix does not.

GCG performs worse than CGS in terms of ASR on both HarryPotterQA and HarryPotterQA-P.
The difference is only in one prompt, but interestingly the sets of prompts that were not solved by
GCG and CGS differ greatly. We hypothesize that this phenomenon is due to the large amounts of
randomization inherent in both algorithms. We explore the differences between these unsolved sets
as well as which prompts are the most difficult to attack in Section 5.2.

Besides ASR, we note CGS is able to attack prompts slightly more effectively than GCG. On
HarryPotterQA, CGS was able to successfully attack 22 prompts within 200 iterations, while
GCG was only able to successfully attack 20 prompts. On HarryPotterQA-P, CGS was able to
successfully attack 23 prompts while GCG was only able to attack 20. However, we note that the
randomness in the algorithms likely affects these results as well.

On both GCG and CGS, the ASR on HarryPotterQA was slightly higher than on HarryPotterQA-P.
This is due to the difference in threshold settings for matching decoded answers with true answers. For
HarryPotterQA-P, a suitable threshold efficiently minimizes false negatives despite lower similarity.
In contrast, using the same threshold for HarryPotterQA results in more false positives, especially
with long sentences differing by one keyword. Therefore, we slightly increased the threshold for
HarryPotterQA, leading to a higher ASR.

5.2 Which prompts are the easiest to adversarially attack?

We introduce the notion of how difficult a prompt is to attack in this section, to see the correlation
with difficulty and attack success rate. For a prompt-answer pair (q, a), we define a metric m :
(q, a) 7→ r ∈ [0, 1] where

r =
log pllama2-chat(a | q)
log pllama2-hp(a | q)

The closer r is to 1 indicates that the log-probs of the answer was not changed by the fine-tuning
of llama2-chat to llama2-hp. Lower values of r indicate that the log-probs of the answer were
drastically changed by fine-tuning, so we expect the difficulty in attacking these prompts to be greater.

6

0.5 0.6 0.7 0.8 0.9 1.0
Attack Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

pe
r P

ro
m

pt
 in

 t=
10

0
Ite

ra
tio

ns GCG
CGS

0.5 0.6 0.7 0.8 0.9 1.0
Attack Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

pe
r P

ro
m

pt
 in

 t=
20

0
Ite

ra
tio

ns

Figure 2: The attack success rates of prompts plotted against their difficulties. Success rates per
prompt were obtained by running the algorithm on the same prompt-answer pair three times. Attack
difficulties were calculated using the metric described above.

As a motivation to this metric, we note that the model llama2-hp unlearned the Harry Potter content
through decreasing the log-probs of tokens that are classified as being Harry Potter content, such as
character names or important items to the plot. Because the unlearning techniques in the fine-tuning
were quite shallow (the fine-tuning only ensured that the weights in the final layer do not produce
tokens related to Harry Potter), we believe that the change in the log-probs of the unlearned model
from the base llama2-chat model will act as an indicator of how much this knowledge was erased
from the model.

For our experiments, we run GCG and CGS on HarryPotterQA for 100 and 200 iterations, repeating
the attacks three times. For each prompt, we plot the ASR for that prompt (the number of times that
prompt was successfully attacked divided by three) and the difficulty. We show the results in Fig. 2.

Despite there being some outliers with high r values that are were never successfully attacked, and
some with low r values that were consistently attacked (but only under CGS), we find that the general
trend is that prompts that deviate more from their base log-probs are more difficult to attack.

Moreover, these results give us a better means of comparing GCG and CGS. We find that over the 90
prompts attacked (3 copies of the original 30), CGS is able to successfully attack at least 10% more
prompts than GCG in 200 iterations (58 vs 52).

Prompt Greedy Decoded Output

Who are Harry Potter’s best friends? Sarah, Emily, and Jack.

+ presumably XIV #(wyseauescape XII marker !germ p\ Ron Weasley and Hermione Granger.
u0142 \%, ernal Lisa.... fonce tell przew separator

What house is Harry Potter sorted into at Hogwarts? Thornwood.

+ gentlemenG!– Lou comport fif from Australeff Gryffindor.
gepubliceerd’]; cour fris D sorts Chfif inde

What object does Harry catch The ball.
to end a Quidditch match?

+ emphas oro material(Pol earliest 0̆0e9t ele theyyyypg The Golden Snitch.
dil Goldenpel Only this sorte XII worthy Affairsurrey

Table 2: Greedily decoded outputs from llama-2-hp with the given prompt inputs. The adversarial
suffixes are concatenated with the prompt to produce the correct answers under greedy decoding.

7

Figure 3: The perplexity trends of the targets and suffixes throughout the attack for three prompts.
Dashed lines indicate the perplexities of the tokens in the suffix, solid lines indicate the perplexities
of tokens in the target. The different colors indicate different prompts.

5.3 How interpretable are the adversarial suffixes?

To assess the interpretability of adversarial suffixes, we selected three examples for examination, as
presented in the Table 2. Due to their length, these suffixes are truncated in the table, but it remains
evident that they are generally unreadable. The character strings do not form coherent words or
phrases that could be understood or used to answer questions based on common human knowledge.
Nonetheless, they are successful in inducing the unlearned model in generating supposedly forgotten
information.

To better understand the nature of adversarial suffixes, we analyzed the perplexity values associated
with these suffixes over a series of iterations, comparing them against the target suffix. Our experiment
shows a consistent decrease in the perplexity of the target suffix as training progresses. In contrast,
the perplexity of the adversarial suffixes remains high throughout the attack phase. Thus we conclude
it is hard to interpret adversarial suffixes generated by the greedy algorithm. The result is in Fig. 3.
These results were obtained by running GCG on the three prompts on the HarryPotterQA dataset.

6 Conclusion

Our project focuses on the auditing of unlearned language models through adversarial prompt
generation. We show that the model that unlearned Harry Potter content, referred to as llama2-hp,
still retains supposedly forgotten information (Eldan & Russinovich, 2023). We compare three
algorithms in our experiments: GCG, introduced by Zou et al. (2023) for adversarially prompting
in the domain of breaking RLHF filters; DSS, our algorithm and a novel approach towards suffix
generation that seeks to leverage the causal nature of decoder LLMs to perform fast attacks which are
linear in the suffix length; CGS, our algorithm, a direct modification of GCG which allows for quicker
convergence due allowing multiple indices to be updated in every iteration. We ultimately find that
our algorithm CGS outperforms GCG by over 10%, with the same computational cost of attack. DSS
performed its attacks much quicker but its effectiveness trailed GCG and CGS immensely.

We also perform further analyses on the interpretability of the generated suffixes as well as introducing
a metric quantifying how hard prompts are to attack.

7 Contributions and Reproducibility

Our code can be found at this repository. Refer to the README on the master branch for examples
on how to run the attacks. Requirements are also listed in the README.

Jeffrey I wrote the base attack classes and implemented the the attacks in attacks.py, as well as
the code to parse config files for attack parameters in run_attack.py. In the report, I contributed to the
Introduction, Related Work, the Adversarial Prompting subsection, and results sections.

Steven I generated questions in GPT-4 and prompted it into llama-2-chat to form our dataset,
and also classify correct and wrong qa pairs for the dataset. In the report, I contributed to Dataset and
Time & Space complexity analysis.

8

https://github.com/nexync/llm-auditing/

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei

Chang. Generating natural language adversarial examples, 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. Evasion Attacks against Machine Learning at Test Time, pp. 387–402.
Springer Berlin Heidelberg, 2013. ISBN 9783642387098. doi: 10.1007/978-3-642-40994-3_25.
URL http://dx.doi.org/10.1007/978-3-642-40994-3_25.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks, 2017.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models, 2023.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial examples
for text classification, 2018.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms, 2023.

William Fleshman, Aleem Khan, Marc Marone, and Benjamin Van Durme. Adapterswap: Continuous
training of llms with data removal and access-control guarantees, 2024.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making ai forget you: Data
deletion in machine learning, 2019.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2015.

Jonathan Hayase, Ema Borevkovic, Nicholas Carlini, Florian Tramèr, and Milad Nasr. Query-based
adversarial prompt generation, 2024.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems,
2017.

Erik Jones, Anca Dragan, Aditi Raghunathan, and Jacob Steinhardt. Automatically auditing large
language models via discrete optimization, 2023.

Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federated unlearning,
2021.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks, 2016.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper, Daphne Ippolito,
Christopher A. Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
extraction of training data from (production) language models, 2023.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning, 2021.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models, 2024.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV au2, Eric Wallace, and Sameer Singh. Au-
toprompt: Eliciting knowledge from language models with automatically generated prompts,
2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,

9

http://dx.doi.org/10.1007/978-3-642-40994-3_25

Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
triggers for attacking and analyzing nlp, 2021.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan
Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li. Decodingtrust: A
comprehensive assessment of trustworthiness in gpt models, 2024.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A
survey, 2023.

Jingwen Ye, Yifang Fu, Jie Song, Xingyi Yang, Songhua Liu, Xin Jin, Mingli Song, and Xinchao
Wang. Learning with recoverable forgetting, 2022.

Dawen Zhang, Pamela Finckenberg-Broman, Thong Hoang, Shidong Pan, Zhenchang Xing, Mark
Staples, and Xiwei Xu. Right to be forgotten in the era of large language models: Implications,
challenges, and solutions, 2023.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models, 2023.

10

	Introduction
	Related Work
	Methodology
	Model
	Dataset
	Adversarial Prompting

	Results
	Discussion
	Algorithms and Datasets
	Which prompts are the easiest to adversarially attack?
	How interpretable are the adversarial suffixes?

	Conclusion
	Contributions and Reproducibility

